Defining parameters
| Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 14 \) |
| Character orbit: | \([\chi]\) | \(=\) | 25.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(35\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(25))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 35 | 22 | 13 |
| Cusp forms | 29 | 19 | 10 |
| Eisenstein series | 6 | 3 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(5\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(17\) | \(10\) | \(7\) | \(14\) | \(9\) | \(5\) | \(3\) | \(1\) | \(2\) | |||
| \(-\) | \(18\) | \(12\) | \(6\) | \(15\) | \(10\) | \(5\) | \(3\) | \(2\) | \(1\) | |||
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(25))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | |||||||
| 25.14.a.a | $2$ | $26.808$ | \(\Q(\sqrt{499}) \) | None | \(80\) | \(-780\) | \(0\) | \(616300\) | $+$ | \(q+(40+\beta )q^{2}+(-390-12\beta )q^{3}+(1392+\cdots)q^{4}+\cdots\) | |
| 25.14.a.b | $3$ | $26.808$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-142\) | \(-416\) | \(0\) | \(-448292\) | $+$ | \(q+(-47+\beta _{1})q^{2}+(-138+3\beta _{1}+\beta _{2})q^{3}+\cdots\) | |
| 25.14.a.c | $4$ | $26.808$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-65\) | \(-860\) | \(0\) | \(-102800\) | $+$ | \(q+(-2^{4}-\beta _{1})q^{2}+(-215-\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\) | |
| 25.14.a.d | $4$ | $26.808$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(65\) | \(860\) | \(0\) | \(102800\) | $-$ | \(q+(2^{4}+\beta _{1})q^{2}+(215+\beta _{1}+\beta _{2})q^{3}+\cdots\) | |
| 25.14.a.e | $6$ | $26.808$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{2})q^{3}+(5492+\beta _{3}+\cdots)q^{4}+\cdots\) | |
Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_0(25))\) into lower level spaces
\( S_{14}^{\mathrm{old}}(\Gamma_0(25)) \simeq \) \(S_{14}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)