Properties

Label 25.14.a
Level $25$
Weight $14$
Character orbit 25.a
Rep. character $\chi_{25}(1,\cdot)$
Character field $\Q$
Dimension $19$
Newform subspaces $5$
Sturm bound $35$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(35\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(25))\).

Total New Old
Modular forms 35 22 13
Cusp forms 29 19 10
Eisenstein series 6 3 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(17\)\(10\)\(7\)\(14\)\(9\)\(5\)\(3\)\(1\)\(2\)
\(-\)\(18\)\(12\)\(6\)\(15\)\(10\)\(5\)\(3\)\(2\)\(1\)

Trace form

\( 19 q - 62 q^{2} - 1196 q^{3} + 61078 q^{4} + 95178 q^{6} + 168008 q^{7} - 1846920 q^{8} + 7890447 q^{9} + 10497708 q^{11} + 7307408 q^{12} + 26984114 q^{13} + 21894396 q^{14} + 124355794 q^{16} - 83763002 q^{17}+ \cdots + 22807879631604 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(25))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5
25.14.a.a 25.a 1.a $2$ $26.808$ \(\Q(\sqrt{499}) \) None 5.14.a.a \(80\) \(-780\) \(0\) \(616300\) $+$ $\mathrm{SU}(2)$ \(q+(40+\beta )q^{2}+(-390-12\beta )q^{3}+(1392+\cdots)q^{4}+\cdots\)
25.14.a.b 25.a 1.a $3$ $26.808$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 5.14.a.b \(-142\) \(-416\) \(0\) \(-448292\) $+$ $\mathrm{SU}(2)$ \(q+(-47+\beta _{1})q^{2}+(-138+3\beta _{1}+\beta _{2})q^{3}+\cdots\)
25.14.a.c 25.a 1.a $4$ $26.808$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 25.14.a.c \(-65\) \(-860\) \(0\) \(-102800\) $+$ $\mathrm{SU}(2)$ \(q+(-2^{4}-\beta _{1})q^{2}+(-215-\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
25.14.a.d 25.a 1.a $4$ $26.808$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 25.14.a.c \(65\) \(860\) \(0\) \(102800\) $-$ $\mathrm{SU}(2)$ \(q+(2^{4}+\beta _{1})q^{2}+(215+\beta _{1}+\beta _{2})q^{3}+\cdots\)
25.14.a.e 25.a 1.a $6$ $26.808$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 5.14.b.a \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{2})q^{3}+(5492+\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_0(25))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_0(25)) \simeq \) \(S_{14}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)