Properties

Label 25.12.b.c
Level 25
Weight 12
Character orbit 25.b
Analytic conductor 19.209
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 25 = 5^{2} \)
Weight: \( k \) = \( 12 \)
Character orbit: \([\chi]\) = 25.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.2085795140\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{151})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 5)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{1} - 3 \beta_{3} ) q^{2} + ( -11 \beta_{1} + 16 \beta_{3} ) q^{3} + ( -3488 + 6 \beta_{2} ) q^{4} + ( 30092 - 49 \beta_{2} ) q^{6} + ( -2895 \beta_{1} - 528 \beta_{3} ) q^{7} + ( -12312 \beta_{1} + 4920 \beta_{3} ) q^{8} + ( 10423 + 352 \beta_{2} ) q^{9} +O(q^{10})\) \( q + ( \beta_{1} - 3 \beta_{3} ) q^{2} + ( -11 \beta_{1} + 16 \beta_{3} ) q^{3} + ( -3488 + 6 \beta_{2} ) q^{4} + ( 30092 - 49 \beta_{2} ) q^{6} + ( -2895 \beta_{1} - 528 \beta_{3} ) q^{7} + ( -12312 \beta_{1} + 4920 \beta_{3} ) q^{8} + ( 10423 + 352 \beta_{2} ) q^{9} + ( -309088 - 2640 \beta_{2} ) q^{11} + ( 96352 \beta_{1} - 62408 \beta_{3} ) q^{12} + ( 170713 \beta_{1} - 12864 \beta_{3} ) q^{13} + ( -667236 - 8157 \beta_{2} ) q^{14} + ( 3002816 - 29568 \beta_{2} ) q^{16} + ( -65897 \beta_{1} - 126528 \beta_{3} ) q^{17} + ( -627401 \beta_{1} + 3931 \beta_{3} ) q^{18} + ( -2662660 - 27456 \beta_{2} ) q^{19} + ( 1918092 + 40512 \beta_{2} ) q^{21} + ( 4474592 \beta_{1} + 663264 \beta_{3} ) q^{22} + ( 2947197 \beta_{1} + 33456 \beta_{3} ) q^{23} + ( -61090080 + 251112 \beta_{2} ) q^{24} + ( -40380868 + 525003 \beta_{2} ) q^{26} + ( 1338458 \beta_{1} + 2613920 \beta_{3} ) q^{27} + ( 8184288 \beta_{1} + 104664 \beta_{3} ) q^{28} + ( -47070190 - 229824 \beta_{2} ) q^{29} + ( 122271732 - 720720 \beta_{2} ) q^{31} + ( 31365056 \beta_{1} - 1889088 \beta_{3} ) q^{32} + ( -22112992 \beta_{1} - 2041408 \beta_{3} ) q^{33} + ( -222679036 - 71163 \beta_{2} ) q^{34} + ( 91209376 - 1165238 \beta_{2} ) q^{36} + ( -1050161 \beta_{1} - 19033728 \beta_{3} ) q^{37} + ( 47087612 \beta_{1} + 5242380 \beta_{3} ) q^{38} + ( 312101996 - 2872912 \beta_{2} ) q^{39} + ( -372871658 - 2265120 \beta_{2} ) q^{41} + ( -71489652 \beta_{1} - 1703076 \beta_{3} ) q^{42} + ( 31497505 \beta_{1} - 13909104 \beta_{3} ) q^{43} + ( 121362944 + 7353792 \beta_{2} ) q^{44} + ( -234097428 + 8808135 \beta_{2} ) q^{46} + ( 70103077 \beta_{1} + 20505072 \beta_{3} ) q^{47} + ( -318776128 \beta_{1} + 80569856 \beta_{3} ) q^{48} + ( 970838707 - 3057120 \beta_{2} ) q^{49} + ( 1150279892 - 337456 \beta_{2} ) q^{51} + ( -642066080 \beta_{1} + 147297432 \beta_{3} ) q^{52} + ( 56916029 \beta_{1} - 186753984 \beta_{3} ) q^{53} + ( 4602577240 + 1401454 \beta_{2} ) q^{54} + ( -1995276960 + 7742664 \beta_{2} ) q^{56} + ( -236045524 \beta_{1} - 12400960 \beta_{3} ) q^{57} + ( 369370898 \beta_{1} + 118228170 \beta_{3} ) q^{58} + ( -3658757780 - 17581728 \beta_{2} ) q^{59} + ( -758212838 - 5356800 \beta_{2} ) q^{61} + ( 1428216372 \beta_{1} - 438887196 \beta_{3} ) q^{62} + ( -142431609 \beta_{1} - 107407344 \beta_{3} ) q^{63} + ( -409765888 + 35428992 \beta_{2} ) q^{64} + ( -1487732096 - 64297568 \beta_{2} ) q^{66} + ( -786714507 \beta_{1} + 91691472 \beta_{3} ) q^{67} + ( -228688736 \beta_{1} + 401791464 \beta_{3} ) q^{68} + ( 2918597916 - 46787136 \beta_{2} ) q^{69} + ( 16469235772 - 5480400 \beta_{2} ) q^{71} + ( 917703384 \beta_{1} - 382101240 \beta_{3} ) q^{72} + ( -1499142443 \beta_{1} + 339617856 \beta_{3} ) q^{73} + ( -34384099036 + 15883245 \beta_{2} ) q^{74} + ( -662696320 + 79790568 \beta_{2} ) q^{76} + ( 1736737440 \beta_{1} + 927478464 \beta_{3} ) q^{77} + ( 5517818540 \beta_{1} - 1223597188 \beta_{3} ) q^{78} + ( 1651411560 + 57563616 \beta_{2} ) q^{79} + ( -21942215899 + 69693536 \beta_{2} ) q^{81} + ( 3731525782 \beta_{1} + 892102974 \beta_{3} ) q^{82} + ( 664955121 \beta_{1} - 1100818224 \beta_{3} ) q^{83} + ( 7991243904 - 129797304 \beta_{2} ) q^{84} + ( -28353046948 + 108401619 \beta_{2} ) q^{86} + ( -1703247046 \beta_{1} - 500316640 \beta_{3} ) q^{87} + ( -4039743744 \beta_{1} + 1729655040 \beta_{3} ) q^{88} + ( 6337385430 + 145528128 \beta_{2} ) q^{89} + ( 45318929532 + 52895184 \beta_{2} ) q^{91} + ( -10158578592 \beta_{1} + 1651623672 \beta_{3} ) q^{92} + ( -8310027132 \beta_{1} + 2749139712 \beta_{3} ) q^{93} + ( 30144882764 + 189804159 \beta_{2} ) q^{94} + ( 52757708032 - 522620864 \beta_{2} ) q^{96} + ( 154035187 \beta_{1} - 4545870528 \beta_{3} ) q^{97} + ( 6510340147 \beta_{1} - 3218228121 \beta_{3} ) q^{98} + ( -59350136224 - 136315696 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 13952q^{4} + 120368q^{6} + 41692q^{9} + O(q^{10}) \) \( 4q - 13952q^{4} + 120368q^{6} + 41692q^{9} - 1236352q^{11} - 2668944q^{14} + 12011264q^{16} - 10650640q^{19} + 7672368q^{21} - 244360320q^{24} - 161523472q^{26} - 188280760q^{29} + 489086928q^{31} - 890716144q^{34} + 364837504q^{36} + 1248407984q^{39} - 1491486632q^{41} + 485451776q^{44} - 936389712q^{46} + 3883354828q^{49} + 4601119568q^{51} + 18410308960q^{54} - 7981107840q^{56} - 14635031120q^{59} - 3032851352q^{61} - 1639063552q^{64} - 5950928384q^{66} + 11674391664q^{69} + 65876943088q^{71} - 137536396144q^{74} - 2650785280q^{76} + 6605646240q^{79} - 87768863596q^{81} + 31964975616q^{84} - 113412187792q^{86} + 25349541720q^{89} + 181275718128q^{91} + 120579531056q^{94} + 211030832128q^{96} - 237400544896q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 75 x^{2} + 1444\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( 5 \nu^{3} - 185 \nu \)\()/19\)
\(\beta_{2}\)\(=\)\((\)\( -10 \nu^{3} + 1130 \nu \)\()/19\)
\(\beta_{3}\)\(=\)\( 4 \nu^{2} - 150 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} + 2 \beta_{1}\)\()/40\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} + 150\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(37 \beta_{2} + 226 \beta_{1}\)\()/40\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
24.1
−6.14410 0.500000i
6.14410 + 0.500000i
6.14410 0.500000i
−6.14410 + 0.500000i
83.7292i 503.223i −4962.58 0 42134.4 15973.7i 244036.i −76086.0 0
24.2 63.7292i 283.223i −2013.42 0 18049.6 41926.3i 2204.06i 96932.0 0
24.3 63.7292i 283.223i −2013.42 0 18049.6 41926.3i 2204.06i 96932.0 0
24.4 83.7292i 503.223i −4962.58 0 42134.4 15973.7i 244036.i −76086.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.12.b.c 4
3.b odd 2 1 225.12.b.f 4
5.b even 2 1 inner 25.12.b.c 4
5.c odd 4 1 5.12.a.b 2
5.c odd 4 1 25.12.a.c 2
15.d odd 2 1 225.12.b.f 4
15.e even 4 1 45.12.a.d 2
15.e even 4 1 225.12.a.h 2
20.e even 4 1 80.12.a.j 2
35.f even 4 1 245.12.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.12.a.b 2 5.c odd 4 1
25.12.a.c 2 5.c odd 4 1
25.12.b.c 4 1.a even 1 1 trivial
25.12.b.c 4 5.b even 2 1 inner
45.12.a.d 2 15.e even 4 1
80.12.a.j 2 20.e even 4 1
225.12.a.h 2 15.e even 4 1
225.12.b.f 4 3.b odd 2 1
225.12.b.f 4 15.d odd 2 1
245.12.a.b 2 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 11072 T_{2}^{2} + 28472896 \) acting on \(S_{12}^{\mathrm{new}}(25, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 2880 T^{2} + 8287808 T^{4} + 12079595520 T^{6} + 17592186044416 T^{8} \)
$3$ \( 1 - 375140 T^{2} + 90460822518 T^{4} - 11772290701720260 T^{6} + \)\(98\!\cdots\!81\)\( T^{8} \)
$5$ 1
$7$ \( 1 - 5896330900 T^{2} + 15946824262997918598 T^{4} - \)\(23\!\cdots\!00\)\( T^{6} + \)\(15\!\cdots\!01\)\( T^{8} \)
$11$ \( ( 1 + 618176 T + 245194892966 T^{2} + 176372827291625536 T^{3} + \)\(81\!\cdots\!21\)\( T^{4} )^{2} \)
$13$ \( 1 - 1140153047180 T^{2} + \)\(55\!\cdots\!38\)\( T^{4} - \)\(36\!\cdots\!20\)\( T^{6} + \)\(10\!\cdots\!61\)\( T^{8} \)
$17$ \( 1 - 116879825889660 T^{2} + \)\(57\!\cdots\!78\)\( T^{4} - \)\(13\!\cdots\!40\)\( T^{6} + \)\(13\!\cdots\!21\)\( T^{8} \)
$19$ \( ( 1 + 5325320 T + 194538827137638 T^{2} + \)\(62\!\cdots\!80\)\( T^{3} + \)\(13\!\cdots\!61\)\( T^{4} )^{2} \)
$23$ \( 1 - 2072692881139220 T^{2} + \)\(28\!\cdots\!58\)\( T^{4} - \)\(18\!\cdots\!80\)\( T^{6} + \)\(82\!\cdots\!41\)\( T^{8} \)
$29$ \( ( 1 + 94140380 T + 23426350431097358 T^{2} + \)\(11\!\cdots\!20\)\( T^{3} + \)\(14\!\cdots\!41\)\( T^{4} )^{2} \)
$31$ \( ( 1 - 244543464 T + 34393316207729486 T^{2} - \)\(62\!\cdots\!84\)\( T^{3} + \)\(64\!\cdots\!61\)\( T^{4} )^{2} \)
$37$ \( 1 - 273812295186452780 T^{2} + \)\(81\!\cdots\!38\)\( T^{4} - \)\(86\!\cdots\!20\)\( T^{6} + \)\(10\!\cdots\!61\)\( T^{8} \)
$41$ \( ( 1 + 745743316 T + 929792912462405846 T^{2} + \)\(41\!\cdots\!56\)\( T^{3} + \)\(30\!\cdots\!81\)\( T^{4} )^{2} \)
$43$ \( 1 - 3285052879347844100 T^{2} + \)\(43\!\cdots\!98\)\( T^{4} - \)\(28\!\cdots\!00\)\( T^{6} + \)\(74\!\cdots\!01\)\( T^{8} \)
$47$ \( 1 - 8397835342270441140 T^{2} + \)\(29\!\cdots\!18\)\( T^{4} - \)\(51\!\cdots\!60\)\( T^{6} + \)\(37\!\cdots\!81\)\( T^{8} \)
$53$ \( 1 + 5703220206102687060 T^{2} + \)\(15\!\cdots\!18\)\( T^{4} + \)\(48\!\cdots\!40\)\( T^{6} + \)\(73\!\cdots\!81\)\( T^{8} \)
$59$ \( ( 1 + 7317515560 T + 55027608950440780118 T^{2} + \)\(22\!\cdots\!40\)\( T^{3} + \)\(90\!\cdots\!81\)\( T^{4} )^{2} \)
$61$ \( ( 1 + 1516425676 T + 85869525433683691566 T^{2} + \)\(65\!\cdots\!36\)\( T^{3} + \)\(18\!\cdots\!21\)\( T^{4} )^{2} \)
$67$ \( 1 - \)\(35\!\cdots\!60\)\( T^{2} + \)\(60\!\cdots\!78\)\( T^{4} - \)\(52\!\cdots\!40\)\( T^{6} + \)\(22\!\cdots\!21\)\( T^{8} \)
$71$ \( ( 1 - 32938471544 T + \)\(73\!\cdots\!26\)\( T^{2} - \)\(76\!\cdots\!24\)\( T^{3} + \)\(53\!\cdots\!41\)\( T^{4} )^{2} \)
$73$ \( 1 - \)\(66\!\cdots\!20\)\( T^{2} + \)\(24\!\cdots\!58\)\( T^{4} - \)\(65\!\cdots\!80\)\( T^{6} + \)\(96\!\cdots\!41\)\( T^{8} \)
$79$ \( ( 1 - 3302823120 T + \)\(12\!\cdots\!58\)\( T^{2} - \)\(24\!\cdots\!80\)\( T^{3} + \)\(55\!\cdots\!41\)\( T^{4} )^{2} \)
$83$ \( 1 - \)\(35\!\cdots\!60\)\( T^{2} + \)\(64\!\cdots\!78\)\( T^{4} - \)\(59\!\cdots\!40\)\( T^{6} + \)\(27\!\cdots\!21\)\( T^{8} \)
$89$ \( ( 1 - 12674770860 T + \)\(43\!\cdots\!78\)\( T^{2} - \)\(35\!\cdots\!40\)\( T^{3} + \)\(77\!\cdots\!21\)\( T^{4} )^{2} \)
$97$ \( 1 - \)\(36\!\cdots\!40\)\( T^{2} + \)\(10\!\cdots\!18\)\( T^{4} - \)\(18\!\cdots\!60\)\( T^{6} + \)\(26\!\cdots\!81\)\( T^{8} \)
show more
show less