Properties

 Label 25.12.a.c Level 25 Weight 12 Character orbit 25.a Self dual yes Analytic conductor 19.209 Analytic rank 0 Dimension 2 CM no Inner twists 1

Related objects

Newspace parameters

 Level: $$N$$ = $$25 = 5^{2}$$ Weight: $$k$$ = $$12$$ Character orbit: $$[\chi]$$ = 25.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$19.2085795140$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{151})$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 5) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 2\sqrt{151}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 10 + 3 \beta ) q^{2} + ( 110 + 16 \beta ) q^{3} + ( 3488 + 60 \beta ) q^{4} + ( 30092 + 490 \beta ) q^{6} + ( -28950 + 528 \beta ) q^{7} + ( 123120 + 4920 \beta ) q^{8} + ( -10423 + 3520 \beta ) q^{9} +O(q^{10})$$ $$q + ( 10 + 3 \beta ) q^{2} + ( 110 + 16 \beta ) q^{3} + ( 3488 + 60 \beta ) q^{4} + ( 30092 + 490 \beta ) q^{6} + ( -28950 + 528 \beta ) q^{7} + ( 123120 + 4920 \beta ) q^{8} + ( -10423 + 3520 \beta ) q^{9} + ( -309088 + 26400 \beta ) q^{11} + ( 963520 + 62408 \beta ) q^{12} + ( -1707130 - 12864 \beta ) q^{13} + ( 667236 - 81570 \beta ) q^{14} + ( 3002816 + 295680 \beta ) q^{16} + ( -658970 + 126528 \beta ) q^{17} + ( 6274010 + 3931 \beta ) q^{18} + ( 2662660 - 274560 \beta ) q^{19} + ( 1918092 - 405120 \beta ) q^{21} + ( 44745920 - 663264 \beta ) q^{22} + ( -29471970 + 33456 \beta ) q^{23} + ( 61090080 + 2511120 \beta ) q^{24} + ( -40380868 - 5250030 \beta ) q^{26} + ( 13384580 - 2613920 \beta ) q^{27} + ( -81842880 + 104664 \beta ) q^{28} + ( 47070190 - 2298240 \beta ) q^{29} + ( 122271732 + 7207200 \beta ) q^{31} + ( 313650560 + 1889088 \beta ) q^{32} + ( 221129920 - 2041408 \beta ) q^{33} + ( 222679036 - 711630 \beta ) q^{34} + ( 91209376 + 11652380 \beta ) q^{36} + ( -10501610 + 19033728 \beta ) q^{37} + ( -470876120 + 5242380 \beta ) q^{38} + ( -312101996 - 28729120 \beta ) q^{39} + ( -372871658 + 22651200 \beta ) q^{41} + ( -714896520 + 1703076 \beta ) q^{42} + ( -314975050 - 13909104 \beta ) q^{43} + ( -121362944 + 73537920 \beta ) q^{44} + ( -234097428 - 88081350 \beta ) q^{46} + ( 701030770 - 20505072 \beta ) q^{47} + ( 3187761280 + 80569856 \beta ) q^{48} + ( -970838707 - 30571200 \beta ) q^{49} + ( 1150279892 + 3374560 \beta ) q^{51} + ( -6420660800 - 147297432 \beta ) q^{52} + ( -569160290 - 186753984 \beta ) q^{53} + ( -4602577240 + 14014540 \beta ) q^{54} + ( -1995276960 - 77426640 \beta ) q^{56} + ( -2360455240 + 12400960 \beta ) q^{57} + ( -3693708980 + 118228170 \beta ) q^{58} + ( 3658757780 - 175817280 \beta ) q^{59} + ( -758212838 + 53568000 \beta ) q^{61} + ( 14282163720 + 438887196 \beta ) q^{62} + ( 1424316090 - 107407344 \beta ) q^{63} + ( 409765888 + 354289920 \beta ) q^{64} + ( -1487732096 + 642975680 \beta ) q^{66} + ( -7867145070 - 91691472 \beta ) q^{67} + ( 2286887360 + 401791464 \beta ) q^{68} + ( -2918597916 - 467871360 \beta ) q^{69} + ( 16469235772 + 54804000 \beta ) q^{71} + ( 9177033840 + 382101240 \beta ) q^{72} + ( 14991424430 + 339617856 \beta ) q^{73} + ( 34384099036 + 158832450 \beta ) q^{74} + ( -662696320 - 797905680 \beta ) q^{76} + ( 17367374400 - 927478464 \beta ) q^{77} + ( -55178185400 - 1223597188 \beta ) q^{78} + ( -1651411560 + 575636160 \beta ) q^{79} + ( -21942215899 - 696935360 \beta ) q^{81} + ( 37315257820 - 892102974 \beta ) q^{82} + ( -6649551210 - 1100818224 \beta ) q^{83} + ( -7991243904 - 1297973040 \beta ) q^{84} + ( -28353046948 - 1084016190 \beta ) q^{86} + ( -17032470460 + 500316640 \beta ) q^{87} + ( 40397437440 + 1729655040 \beta ) q^{88} + ( -6337385430 + 1455281280 \beta ) q^{89} + ( 45318929532 - 528951840 \beta ) q^{91} + ( -101585785920 - 1651623672 \beta ) q^{92} + ( 83100271320 + 2749139712 \beta ) q^{93} + ( -30144882764 + 1898041590 \beta ) q^{94} + ( 52757708032 + 5226208640 \beta ) q^{96} + ( 1540351870 + 4545870528 \beta ) q^{97} + ( -65103401470 - 3218228121 \beta ) q^{98} + ( 59350136224 - 1363156960 \beta ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 20q^{2} + 220q^{3} + 6976q^{4} + 60184q^{6} - 57900q^{7} + 246240q^{8} - 20846q^{9} + O(q^{10})$$ $$2q + 20q^{2} + 220q^{3} + 6976q^{4} + 60184q^{6} - 57900q^{7} + 246240q^{8} - 20846q^{9} - 618176q^{11} + 1927040q^{12} - 3414260q^{13} + 1334472q^{14} + 6005632q^{16} - 1317940q^{17} + 12548020q^{18} + 5325320q^{19} + 3836184q^{21} + 89491840q^{22} - 58943940q^{23} + 122180160q^{24} - 80761736q^{26} + 26769160q^{27} - 163685760q^{28} + 94140380q^{29} + 244543464q^{31} + 627301120q^{32} + 442259840q^{33} + 445358072q^{34} + 182418752q^{36} - 21003220q^{37} - 941752240q^{38} - 624203992q^{39} - 745743316q^{41} - 1429793040q^{42} - 629950100q^{43} - 242725888q^{44} - 468194856q^{46} + 1402061540q^{47} + 6375522560q^{48} - 1941677414q^{49} + 2300559784q^{51} - 12841321600q^{52} - 1138320580q^{53} - 9205154480q^{54} - 3990553920q^{56} - 4720910480q^{57} - 7387417960q^{58} + 7317515560q^{59} - 1516425676q^{61} + 28564327440q^{62} + 2848632180q^{63} + 819531776q^{64} - 2975464192q^{66} - 15734290140q^{67} + 4573774720q^{68} - 5837195832q^{69} + 32938471544q^{71} + 18354067680q^{72} + 29982848860q^{73} + 68768198072q^{74} - 1325392640q^{76} + 34734748800q^{77} - 110356370800q^{78} - 3302823120q^{79} - 43884431798q^{81} + 74630515640q^{82} - 13299102420q^{83} - 15982487808q^{84} - 56706093896q^{86} - 34064940920q^{87} + 80794874880q^{88} - 12674770860q^{89} + 90637859064q^{91} - 203171571840q^{92} + 166200542640q^{93} - 60289765528q^{94} + 105515416064q^{96} + 3080703740q^{97} - 130206802940q^{98} + 118700272448q^{99} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −12.2882 12.2882
−63.7292 −283.223 2013.42 0 18049.6 −41926.3 2204.06 −96932.0 0
1.2 83.7292 503.223 4962.58 0 42134.4 −15973.7 244036. 76086.0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.12.a.c 2
3.b odd 2 1 225.12.a.h 2
5.b even 2 1 5.12.a.b 2
5.c odd 4 2 25.12.b.c 4
15.d odd 2 1 45.12.a.d 2
15.e even 4 2 225.12.b.f 4
20.d odd 2 1 80.12.a.j 2
35.c odd 2 1 245.12.a.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.12.a.b 2 5.b even 2 1
25.12.a.c 2 1.a even 1 1 trivial
25.12.b.c 4 5.c odd 4 2
45.12.a.d 2 15.d odd 2 1
80.12.a.j 2 20.d odd 2 1
225.12.a.h 2 3.b odd 2 1
225.12.b.f 4 15.e even 4 2
245.12.a.b 2 35.c odd 2 1

Atkin-Lehner signs

$$p$$ Sign
$$5$$ $$1$$

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{2} - 20 T_{2} - 5336$$ acting on $$S_{12}^{\mathrm{new}}(\Gamma_0(25))$$.

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ $$1 - 20 T - 1240 T^{2} - 40960 T^{3} + 4194304 T^{4}$$
$3$ $$1 - 220 T + 211770 T^{2} - 38972340 T^{3} + 31381059609 T^{4}$$
$5$ 1
$7$ $$1 + 57900 T + 4624370450 T^{2} + 114487218419700 T^{3} + 3909821048582988049 T^{4}$$
$11$ $$1 + 618176 T + 245194892966 T^{2} + 176372827291625536 T^{3} +$$$$81\!\cdots\!21$$$$T^{4}$$
$13$ $$1 + 3414260 T + 6398662197390 T^{2} + 6118901546944767620 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$
$17$ $$1 + 1317940 T + 59308395866630 T^{2} + 45168303019681836020 T^{3} +$$$$11\!\cdots\!89$$$$T^{4}$$
$19$ $$1 - 5325320 T + 194538827137638 T^{2} -$$$$62\!\cdots\!80$$$$T^{3} +$$$$13\!\cdots\!61$$$$T^{4}$$
$23$ $$1 + 58943940 T + 2773540471931410 T^{2} +$$$$56\!\cdots\!80$$$$T^{3} +$$$$90\!\cdots\!29$$$$T^{4}$$
$29$ $$1 - 94140380 T + 23426350431097358 T^{2} -$$$$11\!\cdots\!20$$$$T^{3} +$$$$14\!\cdots\!41$$$$T^{4}$$
$31$ $$1 - 244543464 T + 34393316207729486 T^{2} -$$$$62\!\cdots\!84$$$$T^{3} +$$$$64\!\cdots\!61$$$$T^{4}$$
$37$ $$1 + 21003220 T + 137126715218410590 T^{2} +$$$$37\!\cdots\!60$$$$T^{3} +$$$$31\!\cdots\!69$$$$T^{4}$$
$41$ $$1 + 745743316 T + 929792912462405846 T^{2} +$$$$41\!\cdots\!56$$$$T^{3} +$$$$30\!\cdots\!81$$$$T^{4}$$
$43$ $$1 + 629950100 T + 1840945003918927050 T^{2} +$$$$58\!\cdots\!00$$$$T^{3} +$$$$86\!\cdots\!49$$$$T^{4}$$
$47$ $$1 - 1402061540 T + 5181805952108806370 T^{2} -$$$$34\!\cdots\!20$$$$T^{3} +$$$$61\!\cdots\!09$$$$T^{4}$$
$53$ $$1 + 1138320580 T - 2203723231625575330 T^{2} +$$$$10\!\cdots\!60$$$$T^{3} +$$$$85\!\cdots\!09$$$$T^{4}$$
$59$ $$1 - 7317515560 T + 55027608950440780118 T^{2} -$$$$22\!\cdots\!40$$$$T^{3} +$$$$90\!\cdots\!81$$$$T^{4}$$
$61$ $$1 + 1516425676 T + 85869525433683691566 T^{2} +$$$$65\!\cdots\!36$$$$T^{3} +$$$$18\!\cdots\!21$$$$T^{4}$$
$67$ $$1 + 15734290140 T +$$$$30\!\cdots\!30$$$$T^{2} +$$$$19\!\cdots\!20$$$$T^{3} +$$$$14\!\cdots\!89$$$$T^{4}$$
$71$ $$1 - 32938471544 T +$$$$73\!\cdots\!26$$$$T^{2} -$$$$76\!\cdots\!24$$$$T^{3} +$$$$53\!\cdots\!41$$$$T^{4}$$
$73$ $$1 - 29982848860 T +$$$$78\!\cdots\!10$$$$T^{2} -$$$$94\!\cdots\!20$$$$T^{3} +$$$$98\!\cdots\!29$$$$T^{4}$$
$79$ $$1 + 3302823120 T +$$$$12\!\cdots\!58$$$$T^{2} +$$$$24\!\cdots\!80$$$$T^{3} +$$$$55\!\cdots\!41$$$$T^{4}$$
$83$ $$1 + 13299102420 T +$$$$18\!\cdots\!30$$$$T^{2} +$$$$17\!\cdots\!40$$$$T^{3} +$$$$16\!\cdots\!89$$$$T^{4}$$
$89$ $$1 + 12674770860 T +$$$$43\!\cdots\!78$$$$T^{2} +$$$$35\!\cdots\!40$$$$T^{3} +$$$$77\!\cdots\!21$$$$T^{4}$$
$97$ $$1 - 3080703740 T +$$$$18\!\cdots\!70$$$$T^{2} -$$$$22\!\cdots\!20$$$$T^{3} +$$$$51\!\cdots\!09$$$$T^{4}$$