Properties

Label 25.10.b.c
Level $25$
Weight $10$
Character orbit 25.b
Analytic conductor $12.876$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 25.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.8758959041\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Defining polynomial: \(x^{6} + 1305 x^{4} + 433104 x^{2} + 16000000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( -2 \beta_{2} - \beta_{4} ) q^{3} + ( -114 + \beta_{1} ) q^{4} + ( 1147 - 19 \beta_{1} - \beta_{5} ) q^{6} + ( 140 \beta_{2} + 4 \beta_{3} - 26 \beta_{4} ) q^{7} + ( 279 \beta_{2} - 27 \beta_{3} - 33 \beta_{4} ) q^{8} + ( -19438 + 88 \beta_{1} - 8 \beta_{5} ) q^{9} +O(q^{10})\) \( q + \beta_{2} q^{2} + ( -2 \beta_{2} - \beta_{4} ) q^{3} + ( -114 + \beta_{1} ) q^{4} + ( 1147 - 19 \beta_{1} - \beta_{5} ) q^{6} + ( 140 \beta_{2} + 4 \beta_{3} - 26 \beta_{4} ) q^{7} + ( 279 \beta_{2} - 27 \beta_{3} - 33 \beta_{4} ) q^{8} + ( -19438 + 88 \beta_{1} - 8 \beta_{5} ) q^{9} + ( -18264 + 76 \beta_{1} + 17 \beta_{5} ) q^{11} + ( 2431 \beta_{2} + 183 \beta_{3} + 221 \beta_{4} ) q^{12} + ( 928 \beta_{2} - 832 \beta_{3} + 460 \beta_{4} ) q^{13} + ( -90870 - 282 \beta_{1} - 30 \beta_{5} ) q^{14} + ( -233112 + 95 \beta_{1} - 6 \beta_{5} ) q^{16} + ( -3974 \beta_{2} + 1521 \beta_{3} - 168 \beta_{4} ) q^{17} + ( -29534 \beta_{2} - 5016 \beta_{3} - 2056 \beta_{4} ) q^{18} + ( -273096 + 92 \beta_{1} + 351 \beta_{5} ) q^{19} + ( -791154 - 1512 \beta_{1} - 420 \beta_{5} ) q^{21} + ( -28107 \beta_{2} + 3558 \beta_{3} - 4310 \beta_{4} ) q^{22} + ( -4764 \beta_{2} - 11160 \beta_{3} + 3426 \beta_{4} ) q^{23} + ( -934212 - 2625 \beta_{1} - 474 \beta_{5} ) q^{24} + ( -428628 + 4588 \beta_{1} + 1292 \beta_{5} ) q^{26} + ( 152846 \beta_{2} + 3792 \beta_{3} + 18163 \beta_{4} ) q^{27} + ( 15778 \beta_{2} - 238 \beta_{3} - 826 \beta_{4} ) q^{28} + ( -728268 + 9832 \beta_{1} - 508 \beta_{5} ) q^{29} + ( 1423984 + 2648 \beta_{1} - 534 \beta_{5} ) q^{31} + ( -101287 \beta_{2} - 18369 \beta_{3} - 19395 \beta_{4} ) q^{32} + ( 290078 \beta_{2} + 40071 \beta_{3} + 7288 \beta_{4} ) q^{33} + ( 2279959 + 775 \beta_{1} - 1689 \beta_{5} ) q^{34} + ( 8947148 - 44510 \beta_{1} - 1136 \beta_{5} ) q^{36} + ( -137524 \beta_{2} - 15866 \beta_{3} - 37572 \beta_{4} ) q^{37} + ( -300541 \beta_{2} + 113346 \beta_{3} - 40242 \beta_{4} ) q^{38} + ( 16805092 - 9016 \beta_{1} + 7832 \beta_{5} ) q^{39} + ( 1952709 + 73088 \beta_{1} - 4904 \beta_{5} ) q^{41} + ( -591486 \beta_{2} - 97776 \beta_{3} + 94416 \beta_{4} ) q^{42} + ( -34976 \beta_{2} + 83000 \beta_{3} - 2732 \beta_{4} ) q^{43} + ( 7346514 - 44675 \beta_{1} + 836 \beta_{5} ) q^{44} + ( 4736994 - 2322 \beta_{1} + 14586 \beta_{5} ) q^{46} + ( 894880 \beta_{2} + 121500 \beta_{3} - 9384 \beta_{4} ) q^{47} + ( 645113 \beta_{2} + 8151 \beta_{3} + 250021 \beta_{4} ) q^{48} + ( 2188595 - 93952 \beta_{1} - 17904 \beta_{5} ) q^{49} + ( -8551832 + 26108 \beta_{1} - 5311 \beta_{5} ) q^{51} + ( -560188 \beta_{2} - 123500 \beta_{3} - 52836 \beta_{4} ) q^{52} + ( 208484 \beta_{2} - 428022 \beta_{3} - 314856 \beta_{4} ) q^{53} + ( -94248481 + 480577 \beta_{1} + 14371 \beta_{5} ) q^{54} + ( -56459448 - 143838 \beta_{1} - 15948 \beta_{5} ) q^{56} + ( 2527034 \beta_{2} + 557025 \beta_{3} - 111584 \beta_{4} ) q^{57} + ( -1874400 \beta_{2} - 433104 \beta_{3} - 270608 \beta_{4} ) q^{58} + ( -1818504 - 193768 \beta_{1} - 21680 \beta_{5} ) q^{59} + ( 41881302 - 359960 \beta_{1} + 22980 \beta_{5} ) q^{61} + ( 1133970 \beta_{2} - 247716 \beta_{3} - 30780 \beta_{4} ) q^{62} + ( -1120728 \beta_{2} - 844344 \beta_{3} + 589692 \beta_{4} ) q^{63} + ( -55688032 - 474207 \beta_{1} - 4098 \beta_{5} ) q^{64} + ( -185832463 + 614329 \beta_{1} - 32783 \beta_{5} ) q^{66} + ( -6018994 \beta_{2} + 906256 \beta_{3} + 322747 \beta_{4} ) q^{67} + ( 232429 \beta_{2} + 200457 \beta_{3} + 67443 \beta_{4} ) q^{68} + ( 104612274 + 343296 \beta_{1} + 94824 \beta_{5} ) q^{69} + ( 98905212 + 786920 \beta_{1} + 48040 \beta_{5} ) q^{71} + ( -824178 \beta_{2} - 1741302 \beta_{3} + 536574 \beta_{4} ) q^{72} + ( -10112822 \beta_{2} + 497441 \beta_{3} - 56864 \beta_{4} ) q^{73} + ( 84128214 - 855578 \beta_{1} - 21706 \beta_{5} ) q^{74} + ( 29919854 - 370821 \beta_{1} + 26124 \beta_{5} ) q^{76} + ( 2388876 \beta_{2} + 1613286 \beta_{3} - 701052 \beta_{4} ) q^{77} + ( 17509892 \beta_{2} + 2827992 \beta_{3} - 532664 \beta_{4} ) q^{78} + ( 102948380 + 1255264 \beta_{1} - 75234 \beta_{5} ) q^{79} + ( 467073073 - 2224216 \beta_{1} - 147640 \beta_{5} ) q^{81} + ( -6514275 \beta_{2} - 3591696 \beta_{3} - 1892080 \beta_{4} ) q^{82} + ( 10762890 \beta_{2} + 1204200 \beta_{3} + 165897 \beta_{4} ) q^{83} + ( -12664932 - 249438 \beta_{1} - 22848 \beta_{5} ) q^{84} + ( 11233116 + 333580 \beta_{1} - 85732 \beta_{5} ) q^{86} + ( 20542904 \beta_{2} + 1017444 \beta_{3} + 2351284 \beta_{4} ) q^{87} + ( -1767237 \beta_{2} + 3303801 \beta_{3} - 821061 \beta_{4} ) q^{88} + ( 367582761 + 1107576 \beta_{1} + 4176 \beta_{5} ) q^{89} + ( 393981224 + 796432 \beta_{1} + 447552 \beta_{5} ) q^{91} + ( 1888602 \beta_{2} - 837846 \beta_{3} + 284622 \beta_{4} ) q^{92} + ( 280332 \beta_{2} - 337242 \beta_{3} - 540432 \beta_{4} ) q^{93} + ( -576367700 + 1342852 \beta_{1} - 130884 \beta_{5} ) q^{94} + ( -856923952 + 3592225 \beta_{1} - 818 \beta_{5} ) q^{96} + ( -29036476 \beta_{2} + 2021122 \beta_{3} + 62616 \beta_{4} ) q^{97} + ( 14210371 \beta_{2} - 3371616 \beta_{3} + 4998240 \beta_{4} ) q^{98} + ( 299406712 - 5902672 \beta_{1} - 82942 \beta_{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 682q^{4} + 6842q^{6} - 116468q^{9} + O(q^{10}) \) \( 6q - 682q^{4} + 6842q^{6} - 116468q^{9} - 109398q^{11} - 545844q^{14} - 1398494q^{16} - 1637690q^{19} - 4750788q^{21} - 5611470q^{24} - 2560008q^{26} - 4350960q^{29} + 8548132q^{31} + 13677926q^{34} + 53591596q^{36} + 100828184q^{39} + 11852622q^{41} + 43991406q^{44} + 28446492q^{46} + 12907858q^{49} - 51269398q^{51} - 564500990q^{54} - 339076260q^{56} - 11341920q^{59} + 250613852q^{61} - 335084802q^{64} - 1113831686q^{66} + 628549884q^{69} + 595101192q^{71} + 503014716q^{74} + 178829730q^{76} + 620050340q^{79} + 2797694726q^{81} - 76534164q^{84} + 67894392q^{86} + 2207720070q^{89} + 2366375312q^{91} - 3455782264q^{94} - 5134360898q^{96} + 1784469044q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} + 1305 x^{4} + 433104 x^{2} + 16000000\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -35 \nu^{4} - 17275 \nu^{2} + 2252704 \)\()/13392\)
\(\beta_{2}\)\(=\)\((\)\( 77 \nu^{5} + 71485 \nu^{3} + 13296008 \nu \)\()/3348000\)
\(\beta_{3}\)\(=\)\((\)\( -491 \nu^{5} - 908755 \nu^{3} - 378730064 \nu \)\()/13392000\)
\(\beta_{4}\)\(=\)\((\)\( -1177 \nu^{5} - 1291985 \nu^{3} - 198655408 \nu \)\()/13392000\)
\(\beta_{5}\)\(=\)\((\)\( -185 \nu^{4} - 171025 \nu^{2} - 22789928 \)\()/6696\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(25 \beta_{4} - 11 \beta_{3} + 78 \beta_{2}\)\()/250\)
\(\nu^{2}\)\(=\)\((\)\(-21 \beta_{5} + 222 \beta_{1} - 108817\)\()/250\)
\(\nu^{3}\)\(=\)\((\)\(-16225 \beta_{4} - 253 \beta_{3} - 62406 \beta_{2}\)\()/250\)
\(\nu^{4}\)\(=\)\((\)\(2073 \beta_{5} - 41046 \beta_{1} + 13959941\)\()/50\)
\(\nu^{5}\)\(=\)\((\)\(10746025 \beta_{4} + 2134309 \beta_{3} + 55337718 \beta_{2}\)\()/250\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
24.1
27.7229i
22.2334i
6.48955i
6.48955i
22.2334i
27.7229i
31.7828i 268.664i −498.143 0 8538.88 637.237i 440.406i −52497.3 0
24.2 21.4187i 210.171i 53.2406 0 −4501.59 9905.49i 12106.7i −24489.0 0
24.3 20.2014i 30.5073i 103.903 0 −616.291 4010.25i 12442.1i 18752.3 0
24.4 20.2014i 30.5073i 103.903 0 −616.291 4010.25i 12442.1i 18752.3 0
24.5 21.4187i 210.171i 53.2406 0 −4501.59 9905.49i 12106.7i −24489.0 0
24.6 31.7828i 268.664i −498.143 0 8538.88 637.237i 440.406i −52497.3 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 24.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.10.b.c 6
3.b odd 2 1 225.10.b.m 6
4.b odd 2 1 400.10.c.q 6
5.b even 2 1 inner 25.10.b.c 6
5.c odd 4 1 25.10.a.c 3
5.c odd 4 1 25.10.a.d yes 3
15.d odd 2 1 225.10.b.m 6
15.e even 4 1 225.10.a.m 3
15.e even 4 1 225.10.a.p 3
20.d odd 2 1 400.10.c.q 6
20.e even 4 1 400.10.a.u 3
20.e even 4 1 400.10.a.y 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.10.a.c 3 5.c odd 4 1
25.10.a.d yes 3 5.c odd 4 1
25.10.b.c 6 1.a even 1 1 trivial
25.10.b.c 6 5.b even 2 1 inner
225.10.a.m 3 15.e even 4 1
225.10.a.p 3 15.e even 4 1
225.10.b.m 6 3.b odd 2 1
225.10.b.m 6 15.d odd 2 1
400.10.a.u 3 20.e even 4 1
400.10.a.y 3 20.e even 4 1
400.10.c.q 6 4.b odd 2 1
400.10.c.q 6 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 1877 T_{2}^{4} + 1062868 T_{2}^{2} + 189117504 \) acting on \(S_{10}^{\mathrm{new}}(25, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 189117504 + 1062868 T^{2} + 1877 T^{4} + T^{6} \)
$3$ \( 2967381766881 + 3296636163 T^{2} + 117283 T^{4} + T^{6} \)
$5$ \( T^{6} \)
$7$ \( \)\(64\!\cdots\!44\)\( + 1624330022979888 T^{2} + 114606892 T^{4} + T^{6} \)
$11$ \( ( -75283351667163 - 1257655633 T + 54699 T^{2} + T^{3} )^{2} \)
$13$ \( \)\(22\!\cdots\!56\)\( + \)\(64\!\cdots\!88\)\( T^{2} + 47782585008 T^{4} + T^{6} \)
$17$ \( \)\(31\!\cdots\!49\)\( + \)\(11\!\cdots\!03\)\( T^{2} + 113679545147 T^{4} + T^{6} \)
$19$ \( ( -226123024842854125 - 499889436625 T + 818845 T^{2} + T^{3} )^{2} \)
$23$ \( \)\(14\!\cdots\!56\)\( + \)\(81\!\cdots\!88\)\( T^{2} + 5844421656108 T^{4} + T^{6} \)
$29$ \( ( -3964526545895424000 - 11063731072000 T + 2175480 T^{2} + T^{3} )^{2} \)
$31$ \( ( -817098195664566648 + 3532627327452 T - 4274066 T^{2} + T^{3} )^{2} \)
$37$ \( \)\(29\!\cdots\!84\)\( + \)\(59\!\cdots\!08\)\( T^{2} + 204279936810732 T^{4} + T^{6} \)
$41$ \( ( \)\(15\!\cdots\!47\)\( - 750102076057093 T - 5926311 T^{2} + T^{3} )^{2} \)
$43$ \( \)\(10\!\cdots\!56\)\( + \)\(12\!\cdots\!88\)\( T^{2} + 260277885634608 T^{4} + T^{6} \)
$47$ \( \)\(21\!\cdots\!64\)\( + \)\(11\!\cdots\!48\)\( T^{2} + 2150337413915312 T^{4} + T^{6} \)
$53$ \( \)\(16\!\cdots\!56\)\( + \)\(10\!\cdots\!88\)\( T^{2} + 18968285309086508 T^{4} + T^{6} \)
$59$ \( ( \)\(49\!\cdots\!00\)\( - 6651292273432000 T + 5670960 T^{2} + T^{3} )^{2} \)
$61$ \( ( \)\(62\!\cdots\!12\)\( - 12890308075143508 T - 125306926 T^{2} + T^{3} )^{2} \)
$67$ \( \)\(77\!\cdots\!49\)\( + \)\(21\!\cdots\!03\)\( T^{2} + 110005113588027547 T^{4} + T^{6} \)
$71$ \( ( \)\(11\!\cdots\!32\)\( - 50509406137014928 T - 297550596 T^{2} + T^{3} )^{2} \)
$73$ \( \)\(19\!\cdots\!81\)\( + \)\(11\!\cdots\!63\)\( T^{2} + 197376584603920683 T^{4} + T^{6} \)
$79$ \( ( \)\(26\!\cdots\!00\)\( - 183462234827962500 T - 310025170 T^{2} + T^{3} )^{2} \)
$83$ \( \)\(70\!\cdots\!81\)\( + \)\(16\!\cdots\!63\)\( T^{2} + 285265670458184883 T^{4} + T^{6} \)
$89$ \( ( \)\(19\!\cdots\!75\)\( + 269595002285863875 T - 1103860035 T^{2} + T^{3} )^{2} \)
$97$ \( \)\(11\!\cdots\!64\)\( + \)\(85\!\cdots\!48\)\( T^{2} + 1696277618616206412 T^{4} + T^{6} \)
show more
show less