Properties

Label 2496.4.v
Level $2496$
Weight $4$
Character orbit 2496.v
Rep. character $\chi_{2496}(623,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $664$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.v (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 624 \)
Character field: \(\Q(i)\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).

Total New Old
Modular forms 2720 680 2040
Cusp forms 2656 664 1992
Eisenstein series 64 16 48

Trace form

\( 664 q + 4 q^{3} - 4 q^{13} - 260 q^{27} + 604 q^{39} - 424 q^{43} - 30200 q^{49} - 104 q^{51} - 272 q^{55} - 8 q^{61} + 104 q^{69} - 604 q^{75} - 8 q^{81} + 8 q^{87} - 3168 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)