Properties

Label 2496.4.r
Level $2496$
Weight $4$
Character orbit 2496.r
Rep. character $\chi_{2496}(463,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $336$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(i)\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).

Total New Old
Modular forms 2720 336 2384
Cusp forms 2656 336 2320
Eisenstein series 64 0 64

Trace form

\( 336 q - 8400 q^{25} + 432 q^{43} - 288 q^{55} - 448 q^{71} - 592 q^{73} - 1104 q^{75} - 27216 q^{81} + 176 q^{89} + 104 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)