Properties

Label 2496.4.dn
Level $2496$
Weight $4$
Character orbit 2496.dn
Rep. character $\chi_{2496}(335,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1328$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.dn (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 624 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).

Total New Old
Modular forms 5440 1360 4080
Cusp forms 5312 1328 3984
Eisenstein series 128 32 96

Trace form

\( 1328 q + 2 q^{3} + 24 q^{7} - 8 q^{13} + 12 q^{19} + 272 q^{27} - 12 q^{33} - 12 q^{37} + 1208 q^{39} + 436 q^{43} + 744 q^{45} + 30176 q^{49} + 116 q^{51} + 296 q^{55} - 4 q^{61} + 12 q^{67} - 110 q^{69}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)