Defining parameters
Level: | \( N \) | \(=\) | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2496.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(1792\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1368 | 168 | 1200 |
Cusp forms | 1320 | 168 | 1152 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)