Properties

Label 2496.4.bz
Level $2496$
Weight $4$
Character orbit 2496.bz
Rep. character $\chi_{2496}(959,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $664$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.bz (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).

Total New Old
Modular forms 2736 680 2056
Cusp forms 2640 664 1976
Eisenstein series 96 16 80

Trace form

\( 664 q - 2 q^{9} - 64 q^{13} + 15784 q^{25} - 6 q^{33} + 12 q^{37} + 756 q^{45} - 15096 q^{49} + 1084 q^{61} - 106 q^{69} - 2 q^{81} + 1512 q^{85} + 168 q^{93} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)