Properties

Label 2496.4.bu
Level $2496$
Weight $4$
Character orbit 2496.bu
Rep. character $\chi_{2496}(191,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $664$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.bu (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).

Total New Old
Modular forms 2736 680 2056
Cusp forms 2640 664 1976
Eisenstein series 96 16 80

Trace form

\( 664 q - 2 q^{9} + 80 q^{13} + 116 q^{21} - 15816 q^{25} + 106 q^{33} + 1012 q^{37} - 248 q^{45} + 15088 q^{49} - 116 q^{57} - 1076 q^{61} - 106 q^{69} - 16 q^{73} - 2 q^{81} - 496 q^{85} + 4220 q^{93} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)