Defining parameters
Level: | \( N \) | \(=\) | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2496.bf (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1792\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2736 | 680 | 2056 |
Cusp forms | 2640 | 664 | 1976 |
Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)