Properties

Label 2496.4.bc
Level $2496$
Weight $4$
Character orbit 2496.bc
Rep. character $\chi_{2496}(1087,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $336$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.bc (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).

Total New Old
Modular forms 2736 336 2400
Cusp forms 2640 336 2304
Eisenstein series 96 0 96

Trace form

\( 336 q - 3024 q^{9} - 240 q^{21} + 1008 q^{37} + 944 q^{41} + 2096 q^{65} - 592 q^{73} + 27216 q^{81} - 176 q^{89} + 3696 q^{93} - 3632 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)