Properties

Label 2496.4.a.z.1.2
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +5.46410 q^{5} -12.3923 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +5.46410 q^{5} -12.3923 q^{7} +9.00000 q^{9} -6.78461 q^{11} +13.0000 q^{13} -16.3923 q^{15} +72.0666 q^{17} -99.2436 q^{19} +37.1769 q^{21} -120.708 q^{23} -95.1436 q^{25} -27.0000 q^{27} +185.138 q^{29} +85.4641 q^{31} +20.3538 q^{33} -67.7128 q^{35} +340.928 q^{37} -39.0000 q^{39} -427.587 q^{41} +64.9179 q^{43} +49.1769 q^{45} +39.2820 q^{47} -189.431 q^{49} -216.200 q^{51} +21.4462 q^{53} -37.0718 q^{55} +297.731 q^{57} +62.4205 q^{59} +423.149 q^{61} -111.531 q^{63} +71.0333 q^{65} +451.643 q^{67} +362.123 q^{69} -335.779 q^{71} -1016.60 q^{73} +285.431 q^{75} +84.0770 q^{77} +398.390 q^{79} +81.0000 q^{81} -865.672 q^{83} +393.779 q^{85} -555.415 q^{87} +641.577 q^{89} -161.100 q^{91} -256.392 q^{93} -542.277 q^{95} +1381.71 q^{97} -61.0615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 4 q^{5} - 4 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} + 4 q^{5} - 4 q^{7} + 18 q^{9} + 28 q^{11} + 26 q^{13} - 12 q^{15} - 36 q^{17} + 44 q^{19} + 12 q^{21} + 8 q^{23} - 218 q^{25} - 54 q^{27} + 204 q^{29} + 164 q^{31} - 84 q^{33} - 80 q^{35} + 668 q^{37} - 78 q^{39} - 100 q^{41} - 272 q^{43} + 36 q^{45} - 60 q^{47} - 462 q^{49} + 108 q^{51} + 708 q^{53} - 88 q^{55} - 132 q^{57} - 180 q^{59} + 1068 q^{61} - 36 q^{63} + 52 q^{65} - 420 q^{67} - 24 q^{69} - 436 q^{71} - 412 q^{73} + 654 q^{75} + 376 q^{77} - 672 q^{79} + 162 q^{81} - 124 q^{83} + 552 q^{85} - 612 q^{87} + 140 q^{89} - 52 q^{91} - 492 q^{93} - 752 q^{95} - 188 q^{97} + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 5.46410 0.488724 0.244362 0.969684i \(-0.421421\pi\)
0.244362 + 0.969684i \(0.421421\pi\)
\(6\) 0 0
\(7\) −12.3923 −0.669122 −0.334561 0.942374i \(-0.608588\pi\)
−0.334561 + 0.942374i \(0.608588\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −6.78461 −0.185967 −0.0929835 0.995668i \(-0.529640\pi\)
−0.0929835 + 0.995668i \(0.529640\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −16.3923 −0.282165
\(16\) 0 0
\(17\) 72.0666 1.02816 0.514080 0.857742i \(-0.328133\pi\)
0.514080 + 0.857742i \(0.328133\pi\)
\(18\) 0 0
\(19\) −99.2436 −1.19832 −0.599159 0.800630i \(-0.704498\pi\)
−0.599159 + 0.800630i \(0.704498\pi\)
\(20\) 0 0
\(21\) 37.1769 0.386318
\(22\) 0 0
\(23\) −120.708 −1.09432 −0.547158 0.837029i \(-0.684290\pi\)
−0.547158 + 0.837029i \(0.684290\pi\)
\(24\) 0 0
\(25\) −95.1436 −0.761149
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 185.138 1.18549 0.592747 0.805388i \(-0.298043\pi\)
0.592747 + 0.805388i \(0.298043\pi\)
\(30\) 0 0
\(31\) 85.4641 0.495155 0.247578 0.968868i \(-0.420366\pi\)
0.247578 + 0.968868i \(0.420366\pi\)
\(32\) 0 0
\(33\) 20.3538 0.107368
\(34\) 0 0
\(35\) −67.7128 −0.327016
\(36\) 0 0
\(37\) 340.928 1.51482 0.757409 0.652941i \(-0.226465\pi\)
0.757409 + 0.652941i \(0.226465\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) −427.587 −1.62873 −0.814364 0.580354i \(-0.802914\pi\)
−0.814364 + 0.580354i \(0.802914\pi\)
\(42\) 0 0
\(43\) 64.9179 0.230230 0.115115 0.993352i \(-0.463276\pi\)
0.115115 + 0.993352i \(0.463276\pi\)
\(44\) 0 0
\(45\) 49.1769 0.162908
\(46\) 0 0
\(47\) 39.2820 0.121912 0.0609561 0.998140i \(-0.480585\pi\)
0.0609561 + 0.998140i \(0.480585\pi\)
\(48\) 0 0
\(49\) −189.431 −0.552276
\(50\) 0 0
\(51\) −216.200 −0.593609
\(52\) 0 0
\(53\) 21.4462 0.0555824 0.0277912 0.999614i \(-0.491153\pi\)
0.0277912 + 0.999614i \(0.491153\pi\)
\(54\) 0 0
\(55\) −37.0718 −0.0908865
\(56\) 0 0
\(57\) 297.731 0.691849
\(58\) 0 0
\(59\) 62.4205 0.137736 0.0688682 0.997626i \(-0.478061\pi\)
0.0688682 + 0.997626i \(0.478061\pi\)
\(60\) 0 0
\(61\) 423.149 0.888175 0.444087 0.895984i \(-0.353528\pi\)
0.444087 + 0.895984i \(0.353528\pi\)
\(62\) 0 0
\(63\) −111.531 −0.223041
\(64\) 0 0
\(65\) 71.0333 0.135548
\(66\) 0 0
\(67\) 451.643 0.823538 0.411769 0.911288i \(-0.364911\pi\)
0.411769 + 0.911288i \(0.364911\pi\)
\(68\) 0 0
\(69\) 362.123 0.631804
\(70\) 0 0
\(71\) −335.779 −0.561263 −0.280632 0.959816i \(-0.590544\pi\)
−0.280632 + 0.959816i \(0.590544\pi\)
\(72\) 0 0
\(73\) −1016.60 −1.62992 −0.814959 0.579519i \(-0.803241\pi\)
−0.814959 + 0.579519i \(0.803241\pi\)
\(74\) 0 0
\(75\) 285.431 0.439449
\(76\) 0 0
\(77\) 84.0770 0.124435
\(78\) 0 0
\(79\) 398.390 0.567371 0.283686 0.958917i \(-0.408443\pi\)
0.283686 + 0.958917i \(0.408443\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −865.672 −1.14482 −0.572408 0.819969i \(-0.693991\pi\)
−0.572408 + 0.819969i \(0.693991\pi\)
\(84\) 0 0
\(85\) 393.779 0.502487
\(86\) 0 0
\(87\) −555.415 −0.684446
\(88\) 0 0
\(89\) 641.577 0.764124 0.382062 0.924137i \(-0.375214\pi\)
0.382062 + 0.924137i \(0.375214\pi\)
\(90\) 0 0
\(91\) −161.100 −0.185581
\(92\) 0 0
\(93\) −256.392 −0.285878
\(94\) 0 0
\(95\) −542.277 −0.585647
\(96\) 0 0
\(97\) 1381.71 1.44630 0.723150 0.690691i \(-0.242693\pi\)
0.723150 + 0.690691i \(0.242693\pi\)
\(98\) 0 0
\(99\) −61.0615 −0.0619890
\(100\) 0 0
\(101\) −932.662 −0.918845 −0.459422 0.888218i \(-0.651944\pi\)
−0.459422 + 0.888218i \(0.651944\pi\)
\(102\) 0 0
\(103\) −70.3332 −0.0672829 −0.0336414 0.999434i \(-0.510710\pi\)
−0.0336414 + 0.999434i \(0.510710\pi\)
\(104\) 0 0
\(105\) 203.138 0.188803
\(106\) 0 0
\(107\) −283.672 −0.256295 −0.128148 0.991755i \(-0.540903\pi\)
−0.128148 + 0.991755i \(0.540903\pi\)
\(108\) 0 0
\(109\) 897.559 0.788721 0.394360 0.918956i \(-0.370966\pi\)
0.394360 + 0.918956i \(0.370966\pi\)
\(110\) 0 0
\(111\) −1022.78 −0.874580
\(112\) 0 0
\(113\) −640.656 −0.533344 −0.266672 0.963787i \(-0.585924\pi\)
−0.266672 + 0.963787i \(0.585924\pi\)
\(114\) 0 0
\(115\) −659.559 −0.534819
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) −893.072 −0.687964
\(120\) 0 0
\(121\) −1284.97 −0.965416
\(122\) 0 0
\(123\) 1282.76 0.940347
\(124\) 0 0
\(125\) −1202.89 −0.860716
\(126\) 0 0
\(127\) −999.369 −0.698265 −0.349133 0.937073i \(-0.613524\pi\)
−0.349133 + 0.937073i \(0.613524\pi\)
\(128\) 0 0
\(129\) −194.754 −0.132923
\(130\) 0 0
\(131\) 2638.88 1.76000 0.880001 0.474973i \(-0.157542\pi\)
0.880001 + 0.474973i \(0.157542\pi\)
\(132\) 0 0
\(133\) 1229.86 0.801820
\(134\) 0 0
\(135\) −147.531 −0.0940550
\(136\) 0 0
\(137\) 1850.07 1.15374 0.576870 0.816836i \(-0.304274\pi\)
0.576870 + 0.816836i \(0.304274\pi\)
\(138\) 0 0
\(139\) −476.687 −0.290878 −0.145439 0.989367i \(-0.546459\pi\)
−0.145439 + 0.989367i \(0.546459\pi\)
\(140\) 0 0
\(141\) −117.846 −0.0703860
\(142\) 0 0
\(143\) −88.1999 −0.0515780
\(144\) 0 0
\(145\) 1011.62 0.579380
\(146\) 0 0
\(147\) 568.292 0.318857
\(148\) 0 0
\(149\) 955.889 0.525567 0.262784 0.964855i \(-0.415359\pi\)
0.262784 + 0.964855i \(0.415359\pi\)
\(150\) 0 0
\(151\) −1558.42 −0.839882 −0.419941 0.907551i \(-0.637949\pi\)
−0.419941 + 0.907551i \(0.637949\pi\)
\(152\) 0 0
\(153\) 648.600 0.342720
\(154\) 0 0
\(155\) 466.985 0.241994
\(156\) 0 0
\(157\) 3292.06 1.67347 0.836736 0.547607i \(-0.184461\pi\)
0.836736 + 0.547607i \(0.184461\pi\)
\(158\) 0 0
\(159\) −64.3387 −0.0320905
\(160\) 0 0
\(161\) 1495.85 0.732231
\(162\) 0 0
\(163\) −255.279 −0.122669 −0.0613344 0.998117i \(-0.519536\pi\)
−0.0613344 + 0.998117i \(0.519536\pi\)
\(164\) 0 0
\(165\) 111.215 0.0524734
\(166\) 0 0
\(167\) 3433.68 1.59106 0.795528 0.605917i \(-0.207194\pi\)
0.795528 + 0.605917i \(0.207194\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −893.192 −0.399439
\(172\) 0 0
\(173\) −347.543 −0.152735 −0.0763677 0.997080i \(-0.524332\pi\)
−0.0763677 + 0.997080i \(0.524332\pi\)
\(174\) 0 0
\(175\) 1179.05 0.509301
\(176\) 0 0
\(177\) −187.261 −0.0795222
\(178\) 0 0
\(179\) 2267.54 0.946837 0.473418 0.880838i \(-0.343020\pi\)
0.473418 + 0.880838i \(0.343020\pi\)
\(180\) 0 0
\(181\) −670.605 −0.275390 −0.137695 0.990475i \(-0.543969\pi\)
−0.137695 + 0.990475i \(0.543969\pi\)
\(182\) 0 0
\(183\) −1269.45 −0.512788
\(184\) 0 0
\(185\) 1862.87 0.740328
\(186\) 0 0
\(187\) −488.944 −0.191204
\(188\) 0 0
\(189\) 334.592 0.128773
\(190\) 0 0
\(191\) −1446.88 −0.548129 −0.274065 0.961711i \(-0.588368\pi\)
−0.274065 + 0.961711i \(0.588368\pi\)
\(192\) 0 0
\(193\) −1815.79 −0.677222 −0.338611 0.940927i \(-0.609957\pi\)
−0.338611 + 0.940927i \(0.609957\pi\)
\(194\) 0 0
\(195\) −213.100 −0.0782585
\(196\) 0 0
\(197\) −1933.30 −0.699196 −0.349598 0.936900i \(-0.613682\pi\)
−0.349598 + 0.936900i \(0.613682\pi\)
\(198\) 0 0
\(199\) 257.595 0.0917611 0.0458805 0.998947i \(-0.485391\pi\)
0.0458805 + 0.998947i \(0.485391\pi\)
\(200\) 0 0
\(201\) −1354.93 −0.475470
\(202\) 0 0
\(203\) −2294.29 −0.793240
\(204\) 0 0
\(205\) −2336.38 −0.795999
\(206\) 0 0
\(207\) −1086.37 −0.364772
\(208\) 0 0
\(209\) 673.329 0.222847
\(210\) 0 0
\(211\) 1990.83 0.649547 0.324774 0.945792i \(-0.394712\pi\)
0.324774 + 0.945792i \(0.394712\pi\)
\(212\) 0 0
\(213\) 1007.34 0.324045
\(214\) 0 0
\(215\) 354.718 0.112519
\(216\) 0 0
\(217\) −1059.10 −0.331319
\(218\) 0 0
\(219\) 3049.80 0.941034
\(220\) 0 0
\(221\) 936.866 0.285160
\(222\) 0 0
\(223\) 3481.70 1.04552 0.522762 0.852479i \(-0.324902\pi\)
0.522762 + 0.852479i \(0.324902\pi\)
\(224\) 0 0
\(225\) −856.292 −0.253716
\(226\) 0 0
\(227\) −3265.64 −0.954836 −0.477418 0.878676i \(-0.658427\pi\)
−0.477418 + 0.878676i \(0.658427\pi\)
\(228\) 0 0
\(229\) 771.939 0.222756 0.111378 0.993778i \(-0.464474\pi\)
0.111378 + 0.993778i \(0.464474\pi\)
\(230\) 0 0
\(231\) −252.231 −0.0718423
\(232\) 0 0
\(233\) 5.41053 0.00152127 0.000760635 1.00000i \(-0.499758\pi\)
0.000760635 1.00000i \(0.499758\pi\)
\(234\) 0 0
\(235\) 214.641 0.0595814
\(236\) 0 0
\(237\) −1195.17 −0.327572
\(238\) 0 0
\(239\) 1328.61 0.359584 0.179792 0.983705i \(-0.442457\pi\)
0.179792 + 0.983705i \(0.442457\pi\)
\(240\) 0 0
\(241\) 3454.13 0.923236 0.461618 0.887079i \(-0.347269\pi\)
0.461618 + 0.887079i \(0.347269\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −1035.07 −0.269911
\(246\) 0 0
\(247\) −1290.17 −0.332353
\(248\) 0 0
\(249\) 2597.01 0.660960
\(250\) 0 0
\(251\) −7667.13 −1.92807 −0.964033 0.265781i \(-0.914370\pi\)
−0.964033 + 0.265781i \(0.914370\pi\)
\(252\) 0 0
\(253\) 818.954 0.203507
\(254\) 0 0
\(255\) −1181.34 −0.290111
\(256\) 0 0
\(257\) 6033.77 1.46450 0.732249 0.681037i \(-0.238471\pi\)
0.732249 + 0.681037i \(0.238471\pi\)
\(258\) 0 0
\(259\) −4224.89 −1.01360
\(260\) 0 0
\(261\) 1666.25 0.395165
\(262\) 0 0
\(263\) −120.625 −0.0282816 −0.0141408 0.999900i \(-0.504501\pi\)
−0.0141408 + 0.999900i \(0.504501\pi\)
\(264\) 0 0
\(265\) 117.184 0.0271645
\(266\) 0 0
\(267\) −1924.73 −0.441167
\(268\) 0 0
\(269\) 1207.01 0.273578 0.136789 0.990600i \(-0.456322\pi\)
0.136789 + 0.990600i \(0.456322\pi\)
\(270\) 0 0
\(271\) 4969.39 1.11391 0.556954 0.830543i \(-0.311970\pi\)
0.556954 + 0.830543i \(0.311970\pi\)
\(272\) 0 0
\(273\) 483.300 0.107145
\(274\) 0 0
\(275\) 645.512 0.141549
\(276\) 0 0
\(277\) 8498.78 1.84347 0.921737 0.387817i \(-0.126771\pi\)
0.921737 + 0.387817i \(0.126771\pi\)
\(278\) 0 0
\(279\) 769.177 0.165052
\(280\) 0 0
\(281\) −1782.60 −0.378438 −0.189219 0.981935i \(-0.560596\pi\)
−0.189219 + 0.981935i \(0.560596\pi\)
\(282\) 0 0
\(283\) −2119.57 −0.445214 −0.222607 0.974908i \(-0.571457\pi\)
−0.222607 + 0.974908i \(0.571457\pi\)
\(284\) 0 0
\(285\) 1626.83 0.338123
\(286\) 0 0
\(287\) 5298.79 1.08982
\(288\) 0 0
\(289\) 280.601 0.0571140
\(290\) 0 0
\(291\) −4145.12 −0.835022
\(292\) 0 0
\(293\) 3426.59 0.683220 0.341610 0.939842i \(-0.389028\pi\)
0.341610 + 0.939842i \(0.389028\pi\)
\(294\) 0 0
\(295\) 341.072 0.0673151
\(296\) 0 0
\(297\) 183.184 0.0357894
\(298\) 0 0
\(299\) −1569.20 −0.303509
\(300\) 0 0
\(301\) −804.482 −0.154052
\(302\) 0 0
\(303\) 2797.98 0.530495
\(304\) 0 0
\(305\) 2312.13 0.434072
\(306\) 0 0
\(307\) 6328.81 1.17656 0.588280 0.808657i \(-0.299805\pi\)
0.588280 + 0.808657i \(0.299805\pi\)
\(308\) 0 0
\(309\) 211.000 0.0388458
\(310\) 0 0
\(311\) 6256.63 1.14077 0.570387 0.821376i \(-0.306793\pi\)
0.570387 + 0.821376i \(0.306793\pi\)
\(312\) 0 0
\(313\) 5273.42 0.952305 0.476153 0.879363i \(-0.342031\pi\)
0.476153 + 0.879363i \(0.342031\pi\)
\(314\) 0 0
\(315\) −609.415 −0.109005
\(316\) 0 0
\(317\) −1697.23 −0.300713 −0.150357 0.988632i \(-0.548042\pi\)
−0.150357 + 0.988632i \(0.548042\pi\)
\(318\) 0 0
\(319\) −1256.09 −0.220463
\(320\) 0 0
\(321\) 851.015 0.147972
\(322\) 0 0
\(323\) −7152.15 −1.23206
\(324\) 0 0
\(325\) −1236.87 −0.211105
\(326\) 0 0
\(327\) −2692.68 −0.455368
\(328\) 0 0
\(329\) −486.795 −0.0815741
\(330\) 0 0
\(331\) 1118.14 0.185675 0.0928373 0.995681i \(-0.470406\pi\)
0.0928373 + 0.995681i \(0.470406\pi\)
\(332\) 0 0
\(333\) 3068.35 0.504939
\(334\) 0 0
\(335\) 2467.83 0.402483
\(336\) 0 0
\(337\) 3523.47 0.569541 0.284771 0.958596i \(-0.408083\pi\)
0.284771 + 0.958596i \(0.408083\pi\)
\(338\) 0 0
\(339\) 1921.97 0.307926
\(340\) 0 0
\(341\) −579.841 −0.0920825
\(342\) 0 0
\(343\) 6598.04 1.03866
\(344\) 0 0
\(345\) 1978.68 0.308778
\(346\) 0 0
\(347\) −799.968 −0.123760 −0.0618798 0.998084i \(-0.519710\pi\)
−0.0618798 + 0.998084i \(0.519710\pi\)
\(348\) 0 0
\(349\) 4341.88 0.665947 0.332974 0.942936i \(-0.391948\pi\)
0.332974 + 0.942936i \(0.391948\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) 9306.07 1.40315 0.701576 0.712595i \(-0.252480\pi\)
0.701576 + 0.712595i \(0.252480\pi\)
\(354\) 0 0
\(355\) −1834.73 −0.274303
\(356\) 0 0
\(357\) 2679.22 0.397196
\(358\) 0 0
\(359\) 1263.82 0.185798 0.0928992 0.995676i \(-0.470387\pi\)
0.0928992 + 0.995676i \(0.470387\pi\)
\(360\) 0 0
\(361\) 2990.28 0.435965
\(362\) 0 0
\(363\) 3854.91 0.557383
\(364\) 0 0
\(365\) −5554.80 −0.796580
\(366\) 0 0
\(367\) −12720.9 −1.80934 −0.904670 0.426113i \(-0.859883\pi\)
−0.904670 + 0.426113i \(0.859883\pi\)
\(368\) 0 0
\(369\) −3848.28 −0.542910
\(370\) 0 0
\(371\) −265.768 −0.0371914
\(372\) 0 0
\(373\) −3519.00 −0.488491 −0.244245 0.969713i \(-0.578540\pi\)
−0.244245 + 0.969713i \(0.578540\pi\)
\(374\) 0 0
\(375\) 3608.66 0.496935
\(376\) 0 0
\(377\) 2406.80 0.328797
\(378\) 0 0
\(379\) 13881.2 1.88135 0.940673 0.339314i \(-0.110195\pi\)
0.940673 + 0.339314i \(0.110195\pi\)
\(380\) 0 0
\(381\) 2998.11 0.403144
\(382\) 0 0
\(383\) 9275.31 1.23746 0.618729 0.785605i \(-0.287648\pi\)
0.618729 + 0.785605i \(0.287648\pi\)
\(384\) 0 0
\(385\) 459.405 0.0608141
\(386\) 0 0
\(387\) 584.261 0.0767433
\(388\) 0 0
\(389\) −1016.09 −0.132436 −0.0662181 0.997805i \(-0.521093\pi\)
−0.0662181 + 0.997805i \(0.521093\pi\)
\(390\) 0 0
\(391\) −8699.00 −1.12513
\(392\) 0 0
\(393\) −7916.64 −1.01614
\(394\) 0 0
\(395\) 2176.84 0.277288
\(396\) 0 0
\(397\) 8300.95 1.04940 0.524701 0.851287i \(-0.324177\pi\)
0.524701 + 0.851287i \(0.324177\pi\)
\(398\) 0 0
\(399\) −3689.57 −0.462931
\(400\) 0 0
\(401\) 9367.49 1.16656 0.583280 0.812271i \(-0.301769\pi\)
0.583280 + 0.812271i \(0.301769\pi\)
\(402\) 0 0
\(403\) 1111.03 0.137331
\(404\) 0 0
\(405\) 442.592 0.0543027
\(406\) 0 0
\(407\) −2313.06 −0.281706
\(408\) 0 0
\(409\) 984.560 0.119030 0.0595151 0.998227i \(-0.481045\pi\)
0.0595151 + 0.998227i \(0.481045\pi\)
\(410\) 0 0
\(411\) −5550.22 −0.666113
\(412\) 0 0
\(413\) −773.534 −0.0921625
\(414\) 0 0
\(415\) −4730.12 −0.559500
\(416\) 0 0
\(417\) 1430.06 0.167939
\(418\) 0 0
\(419\) 13998.0 1.63210 0.816049 0.577983i \(-0.196160\pi\)
0.816049 + 0.577983i \(0.196160\pi\)
\(420\) 0 0
\(421\) −12495.1 −1.44649 −0.723247 0.690590i \(-0.757351\pi\)
−0.723247 + 0.690590i \(0.757351\pi\)
\(422\) 0 0
\(423\) 353.538 0.0406374
\(424\) 0 0
\(425\) −6856.68 −0.782583
\(426\) 0 0
\(427\) −5243.79 −0.594297
\(428\) 0 0
\(429\) 264.600 0.0297785
\(430\) 0 0
\(431\) 3688.03 0.412172 0.206086 0.978534i \(-0.433927\pi\)
0.206086 + 0.978534i \(0.433927\pi\)
\(432\) 0 0
\(433\) 7132.01 0.791553 0.395776 0.918347i \(-0.370476\pi\)
0.395776 + 0.918347i \(0.370476\pi\)
\(434\) 0 0
\(435\) −3034.85 −0.334505
\(436\) 0 0
\(437\) 11979.5 1.31134
\(438\) 0 0
\(439\) −16089.0 −1.74917 −0.874583 0.484875i \(-0.838865\pi\)
−0.874583 + 0.484875i \(0.838865\pi\)
\(440\) 0 0
\(441\) −1704.88 −0.184092
\(442\) 0 0
\(443\) 8126.71 0.871584 0.435792 0.900047i \(-0.356468\pi\)
0.435792 + 0.900047i \(0.356468\pi\)
\(444\) 0 0
\(445\) 3505.64 0.373446
\(446\) 0 0
\(447\) −2867.67 −0.303436
\(448\) 0 0
\(449\) 5032.96 0.528998 0.264499 0.964386i \(-0.414793\pi\)
0.264499 + 0.964386i \(0.414793\pi\)
\(450\) 0 0
\(451\) 2901.01 0.302890
\(452\) 0 0
\(453\) 4675.25 0.484906
\(454\) 0 0
\(455\) −880.267 −0.0906979
\(456\) 0 0
\(457\) 13560.8 1.38807 0.694035 0.719941i \(-0.255831\pi\)
0.694035 + 0.719941i \(0.255831\pi\)
\(458\) 0 0
\(459\) −1945.80 −0.197870
\(460\) 0 0
\(461\) 12346.8 1.24739 0.623694 0.781669i \(-0.285631\pi\)
0.623694 + 0.781669i \(0.285631\pi\)
\(462\) 0 0
\(463\) 11593.0 1.16366 0.581829 0.813311i \(-0.302337\pi\)
0.581829 + 0.813311i \(0.302337\pi\)
\(464\) 0 0
\(465\) −1400.95 −0.139715
\(466\) 0 0
\(467\) 8356.87 0.828073 0.414036 0.910260i \(-0.364119\pi\)
0.414036 + 0.910260i \(0.364119\pi\)
\(468\) 0 0
\(469\) −5596.90 −0.551047
\(470\) 0 0
\(471\) −9876.18 −0.966179
\(472\) 0 0
\(473\) −440.443 −0.0428152
\(474\) 0 0
\(475\) 9442.39 0.912098
\(476\) 0 0
\(477\) 193.016 0.0185275
\(478\) 0 0
\(479\) 9082.15 0.866334 0.433167 0.901314i \(-0.357396\pi\)
0.433167 + 0.901314i \(0.357396\pi\)
\(480\) 0 0
\(481\) 4432.07 0.420135
\(482\) 0 0
\(483\) −4487.54 −0.422754
\(484\) 0 0
\(485\) 7549.79 0.706842
\(486\) 0 0
\(487\) −12068.8 −1.12297 −0.561487 0.827486i \(-0.689770\pi\)
−0.561487 + 0.827486i \(0.689770\pi\)
\(488\) 0 0
\(489\) 765.838 0.0708229
\(490\) 0 0
\(491\) 8466.25 0.778159 0.389080 0.921204i \(-0.372793\pi\)
0.389080 + 0.921204i \(0.372793\pi\)
\(492\) 0 0
\(493\) 13342.3 1.21888
\(494\) 0 0
\(495\) −333.646 −0.0302955
\(496\) 0 0
\(497\) 4161.08 0.375553
\(498\) 0 0
\(499\) 2026.69 0.181818 0.0909089 0.995859i \(-0.471023\pi\)
0.0909089 + 0.995859i \(0.471023\pi\)
\(500\) 0 0
\(501\) −10301.0 −0.918596
\(502\) 0 0
\(503\) 3781.23 0.335182 0.167591 0.985857i \(-0.446401\pi\)
0.167591 + 0.985857i \(0.446401\pi\)
\(504\) 0 0
\(505\) −5096.16 −0.449061
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) 1661.22 0.144660 0.0723302 0.997381i \(-0.476956\pi\)
0.0723302 + 0.997381i \(0.476956\pi\)
\(510\) 0 0
\(511\) 12598.0 1.09061
\(512\) 0 0
\(513\) 2679.58 0.230616
\(514\) 0 0
\(515\) −384.308 −0.0328828
\(516\) 0 0
\(517\) −266.513 −0.0226716
\(518\) 0 0
\(519\) 1042.63 0.0881818
\(520\) 0 0
\(521\) −3172.82 −0.266802 −0.133401 0.991062i \(-0.542590\pi\)
−0.133401 + 0.991062i \(0.542590\pi\)
\(522\) 0 0
\(523\) 5582.08 0.466706 0.233353 0.972392i \(-0.425030\pi\)
0.233353 + 0.972392i \(0.425030\pi\)
\(524\) 0 0
\(525\) −3537.15 −0.294045
\(526\) 0 0
\(527\) 6159.11 0.509099
\(528\) 0 0
\(529\) 2403.34 0.197529
\(530\) 0 0
\(531\) 561.784 0.0459122
\(532\) 0 0
\(533\) −5558.63 −0.451728
\(534\) 0 0
\(535\) −1550.01 −0.125258
\(536\) 0 0
\(537\) −6802.61 −0.546656
\(538\) 0 0
\(539\) 1285.21 0.102705
\(540\) 0 0
\(541\) 14569.5 1.15784 0.578920 0.815385i \(-0.303474\pi\)
0.578920 + 0.815385i \(0.303474\pi\)
\(542\) 0 0
\(543\) 2011.81 0.158997
\(544\) 0 0
\(545\) 4904.35 0.385467
\(546\) 0 0
\(547\) −13175.0 −1.02984 −0.514920 0.857238i \(-0.672178\pi\)
−0.514920 + 0.857238i \(0.672178\pi\)
\(548\) 0 0
\(549\) 3808.34 0.296058
\(550\) 0 0
\(551\) −18373.8 −1.42060
\(552\) 0 0
\(553\) −4936.96 −0.379640
\(554\) 0 0
\(555\) −5588.60 −0.427429
\(556\) 0 0
\(557\) 22466.6 1.70905 0.854524 0.519412i \(-0.173849\pi\)
0.854524 + 0.519412i \(0.173849\pi\)
\(558\) 0 0
\(559\) 843.933 0.0638543
\(560\) 0 0
\(561\) 1466.83 0.110392
\(562\) 0 0
\(563\) −15302.0 −1.14547 −0.572736 0.819740i \(-0.694118\pi\)
−0.572736 + 0.819740i \(0.694118\pi\)
\(564\) 0 0
\(565\) −3500.61 −0.260658
\(566\) 0 0
\(567\) −1003.78 −0.0743468
\(568\) 0 0
\(569\) 23986.5 1.76725 0.883625 0.468196i \(-0.155096\pi\)
0.883625 + 0.468196i \(0.155096\pi\)
\(570\) 0 0
\(571\) 16827.0 1.23326 0.616628 0.787254i \(-0.288498\pi\)
0.616628 + 0.787254i \(0.288498\pi\)
\(572\) 0 0
\(573\) 4340.64 0.316463
\(574\) 0 0
\(575\) 11484.6 0.832938
\(576\) 0 0
\(577\) −15544.9 −1.12157 −0.560783 0.827963i \(-0.689500\pi\)
−0.560783 + 0.827963i \(0.689500\pi\)
\(578\) 0 0
\(579\) 5447.38 0.390994
\(580\) 0 0
\(581\) 10727.7 0.766022
\(582\) 0 0
\(583\) −145.504 −0.0103365
\(584\) 0 0
\(585\) 639.300 0.0451826
\(586\) 0 0
\(587\) 12905.7 0.907455 0.453727 0.891141i \(-0.350094\pi\)
0.453727 + 0.891141i \(0.350094\pi\)
\(588\) 0 0
\(589\) −8481.76 −0.593353
\(590\) 0 0
\(591\) 5799.89 0.403681
\(592\) 0 0
\(593\) −23367.5 −1.61819 −0.809097 0.587675i \(-0.800043\pi\)
−0.809097 + 0.587675i \(0.800043\pi\)
\(594\) 0 0
\(595\) −4879.84 −0.336225
\(596\) 0 0
\(597\) −772.786 −0.0529783
\(598\) 0 0
\(599\) −18586.6 −1.26783 −0.633913 0.773404i \(-0.718552\pi\)
−0.633913 + 0.773404i \(0.718552\pi\)
\(600\) 0 0
\(601\) 10855.6 0.736790 0.368395 0.929669i \(-0.379907\pi\)
0.368395 + 0.929669i \(0.379907\pi\)
\(602\) 0 0
\(603\) 4064.79 0.274513
\(604\) 0 0
\(605\) −7021.20 −0.471822
\(606\) 0 0
\(607\) −27366.9 −1.82997 −0.914983 0.403493i \(-0.867796\pi\)
−0.914983 + 0.403493i \(0.867796\pi\)
\(608\) 0 0
\(609\) 6882.88 0.457977
\(610\) 0 0
\(611\) 510.666 0.0338124
\(612\) 0 0
\(613\) −17849.1 −1.17605 −0.588025 0.808843i \(-0.700094\pi\)
−0.588025 + 0.808843i \(0.700094\pi\)
\(614\) 0 0
\(615\) 7009.14 0.459570
\(616\) 0 0
\(617\) −6364.18 −0.415255 −0.207628 0.978208i \(-0.566574\pi\)
−0.207628 + 0.978208i \(0.566574\pi\)
\(618\) 0 0
\(619\) −10366.6 −0.673133 −0.336567 0.941660i \(-0.609266\pi\)
−0.336567 + 0.941660i \(0.609266\pi\)
\(620\) 0 0
\(621\) 3259.11 0.210601
\(622\) 0 0
\(623\) −7950.61 −0.511292
\(624\) 0 0
\(625\) 5320.25 0.340496
\(626\) 0 0
\(627\) −2019.99 −0.128661
\(628\) 0 0
\(629\) 24569.6 1.55748
\(630\) 0 0
\(631\) 19163.5 1.20902 0.604508 0.796599i \(-0.293370\pi\)
0.604508 + 0.796599i \(0.293370\pi\)
\(632\) 0 0
\(633\) −5972.49 −0.375016
\(634\) 0 0
\(635\) −5460.66 −0.341259
\(636\) 0 0
\(637\) −2462.60 −0.153174
\(638\) 0 0
\(639\) −3022.02 −0.187088
\(640\) 0 0
\(641\) −19112.1 −1.17766 −0.588832 0.808255i \(-0.700412\pi\)
−0.588832 + 0.808255i \(0.700412\pi\)
\(642\) 0 0
\(643\) −21612.9 −1.32555 −0.662775 0.748818i \(-0.730622\pi\)
−0.662775 + 0.748818i \(0.730622\pi\)
\(644\) 0 0
\(645\) −1064.15 −0.0649628
\(646\) 0 0
\(647\) 20487.9 1.24492 0.622460 0.782652i \(-0.286133\pi\)
0.622460 + 0.782652i \(0.286133\pi\)
\(648\) 0 0
\(649\) −423.499 −0.0256144
\(650\) 0 0
\(651\) 3177.29 0.191287
\(652\) 0 0
\(653\) 27263.9 1.63387 0.816937 0.576727i \(-0.195670\pi\)
0.816937 + 0.576727i \(0.195670\pi\)
\(654\) 0 0
\(655\) 14419.1 0.860155
\(656\) 0 0
\(657\) −9149.40 −0.543306
\(658\) 0 0
\(659\) 25701.3 1.51924 0.759620 0.650367i \(-0.225385\pi\)
0.759620 + 0.650367i \(0.225385\pi\)
\(660\) 0 0
\(661\) 14294.0 0.841107 0.420553 0.907268i \(-0.361836\pi\)
0.420553 + 0.907268i \(0.361836\pi\)
\(662\) 0 0
\(663\) −2810.60 −0.164637
\(664\) 0 0
\(665\) 6720.06 0.391869
\(666\) 0 0
\(667\) −22347.6 −1.29731
\(668\) 0 0
\(669\) −10445.1 −0.603633
\(670\) 0 0
\(671\) −2870.90 −0.165171
\(672\) 0 0
\(673\) −15167.5 −0.868742 −0.434371 0.900734i \(-0.643029\pi\)
−0.434371 + 0.900734i \(0.643029\pi\)
\(674\) 0 0
\(675\) 2568.88 0.146483
\(676\) 0 0
\(677\) −26749.8 −1.51858 −0.759291 0.650751i \(-0.774454\pi\)
−0.759291 + 0.650751i \(0.774454\pi\)
\(678\) 0 0
\(679\) −17122.5 −0.967751
\(680\) 0 0
\(681\) 9796.91 0.551275
\(682\) 0 0
\(683\) 4152.73 0.232650 0.116325 0.993211i \(-0.462889\pi\)
0.116325 + 0.993211i \(0.462889\pi\)
\(684\) 0 0
\(685\) 10109.0 0.563861
\(686\) 0 0
\(687\) −2315.82 −0.128608
\(688\) 0 0
\(689\) 278.801 0.0154158
\(690\) 0 0
\(691\) −22309.0 −1.22818 −0.614091 0.789235i \(-0.710477\pi\)
−0.614091 + 0.789235i \(0.710477\pi\)
\(692\) 0 0
\(693\) 756.693 0.0414782
\(694\) 0 0
\(695\) −2604.67 −0.142159
\(696\) 0 0
\(697\) −30814.8 −1.67459
\(698\) 0 0
\(699\) −16.2316 −0.000878305 0
\(700\) 0 0
\(701\) −12201.2 −0.657392 −0.328696 0.944436i \(-0.606609\pi\)
−0.328696 + 0.944436i \(0.606609\pi\)
\(702\) 0 0
\(703\) −33834.9 −1.81523
\(704\) 0 0
\(705\) −643.923 −0.0343994
\(706\) 0 0
\(707\) 11557.8 0.614819
\(708\) 0 0
\(709\) −348.094 −0.0184386 −0.00921929 0.999958i \(-0.502935\pi\)
−0.00921929 + 0.999958i \(0.502935\pi\)
\(710\) 0 0
\(711\) 3585.51 0.189124
\(712\) 0 0
\(713\) −10316.2 −0.541856
\(714\) 0 0
\(715\) −481.933 −0.0252074
\(716\) 0 0
\(717\) −3985.83 −0.207606
\(718\) 0 0
\(719\) 32069.3 1.66340 0.831698 0.555228i \(-0.187369\pi\)
0.831698 + 0.555228i \(0.187369\pi\)
\(720\) 0 0
\(721\) 871.591 0.0450204
\(722\) 0 0
\(723\) −10362.4 −0.533031
\(724\) 0 0
\(725\) −17614.7 −0.902338
\(726\) 0 0
\(727\) 33679.4 1.71816 0.859079 0.511844i \(-0.171037\pi\)
0.859079 + 0.511844i \(0.171037\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 4678.41 0.236713
\(732\) 0 0
\(733\) −3811.99 −0.192086 −0.0960429 0.995377i \(-0.530619\pi\)
−0.0960429 + 0.995377i \(0.530619\pi\)
\(734\) 0 0
\(735\) 3105.21 0.155833
\(736\) 0 0
\(737\) −3064.22 −0.153151
\(738\) 0 0
\(739\) −30425.3 −1.51449 −0.757247 0.653129i \(-0.773456\pi\)
−0.757247 + 0.653129i \(0.773456\pi\)
\(740\) 0 0
\(741\) 3870.50 0.191884
\(742\) 0 0
\(743\) −3628.76 −0.179174 −0.0895871 0.995979i \(-0.528555\pi\)
−0.0895871 + 0.995979i \(0.528555\pi\)
\(744\) 0 0
\(745\) 5223.08 0.256857
\(746\) 0 0
\(747\) −7791.04 −0.381606
\(748\) 0 0
\(749\) 3515.34 0.171493
\(750\) 0 0
\(751\) −30912.3 −1.50200 −0.751002 0.660300i \(-0.770429\pi\)
−0.751002 + 0.660300i \(0.770429\pi\)
\(752\) 0 0
\(753\) 23001.4 1.11317
\(754\) 0 0
\(755\) −8515.35 −0.410471
\(756\) 0 0
\(757\) 1575.52 0.0756448 0.0378224 0.999284i \(-0.487958\pi\)
0.0378224 + 0.999284i \(0.487958\pi\)
\(758\) 0 0
\(759\) −2456.86 −0.117495
\(760\) 0 0
\(761\) −14688.6 −0.699686 −0.349843 0.936808i \(-0.613765\pi\)
−0.349843 + 0.936808i \(0.613765\pi\)
\(762\) 0 0
\(763\) −11122.8 −0.527750
\(764\) 0 0
\(765\) 3544.02 0.167496
\(766\) 0 0
\(767\) 811.466 0.0382012
\(768\) 0 0
\(769\) −15519.7 −0.727769 −0.363885 0.931444i \(-0.618550\pi\)
−0.363885 + 0.931444i \(0.618550\pi\)
\(770\) 0 0
\(771\) −18101.3 −0.845529
\(772\) 0 0
\(773\) −9956.57 −0.463277 −0.231638 0.972802i \(-0.574409\pi\)
−0.231638 + 0.972802i \(0.574409\pi\)
\(774\) 0 0
\(775\) −8131.36 −0.376887
\(776\) 0 0
\(777\) 12674.7 0.585201
\(778\) 0 0
\(779\) 42435.3 1.95173
\(780\) 0 0
\(781\) 2278.13 0.104376
\(782\) 0 0
\(783\) −4998.74 −0.228149
\(784\) 0 0
\(785\) 17988.2 0.817866
\(786\) 0 0
\(787\) −24811.8 −1.12382 −0.561910 0.827199i \(-0.689933\pi\)
−0.561910 + 0.827199i \(0.689933\pi\)
\(788\) 0 0
\(789\) 361.876 0.0163284
\(790\) 0 0
\(791\) 7939.21 0.356872
\(792\) 0 0
\(793\) 5500.93 0.246335
\(794\) 0 0
\(795\) −351.553 −0.0156834
\(796\) 0 0
\(797\) −12326.4 −0.547836 −0.273918 0.961753i \(-0.588320\pi\)
−0.273918 + 0.961753i \(0.588320\pi\)
\(798\) 0 0
\(799\) 2830.92 0.125345
\(800\) 0 0
\(801\) 5774.19 0.254708
\(802\) 0 0
\(803\) 6897.23 0.303111
\(804\) 0 0
\(805\) 8173.46 0.357859
\(806\) 0 0
\(807\) −3621.02 −0.157950
\(808\) 0 0
\(809\) 16164.0 0.702468 0.351234 0.936288i \(-0.385762\pi\)
0.351234 + 0.936288i \(0.385762\pi\)
\(810\) 0 0
\(811\) −17158.8 −0.742944 −0.371472 0.928444i \(-0.621147\pi\)
−0.371472 + 0.928444i \(0.621147\pi\)
\(812\) 0 0
\(813\) −14908.2 −0.643115
\(814\) 0 0
\(815\) −1394.87 −0.0599512
\(816\) 0 0
\(817\) −6442.68 −0.275889
\(818\) 0 0
\(819\) −1449.90 −0.0618603
\(820\) 0 0
\(821\) −28545.0 −1.21343 −0.606716 0.794919i \(-0.707513\pi\)
−0.606716 + 0.794919i \(0.707513\pi\)
\(822\) 0 0
\(823\) 6976.67 0.295494 0.147747 0.989025i \(-0.452798\pi\)
0.147747 + 0.989025i \(0.452798\pi\)
\(824\) 0 0
\(825\) −1936.54 −0.0817231
\(826\) 0 0
\(827\) 21024.3 0.884022 0.442011 0.897010i \(-0.354265\pi\)
0.442011 + 0.897010i \(0.354265\pi\)
\(828\) 0 0
\(829\) −29235.9 −1.22485 −0.612427 0.790527i \(-0.709807\pi\)
−0.612427 + 0.790527i \(0.709807\pi\)
\(830\) 0 0
\(831\) −25496.3 −1.06433
\(832\) 0 0
\(833\) −13651.6 −0.567829
\(834\) 0 0
\(835\) 18762.0 0.777587
\(836\) 0 0
\(837\) −2307.53 −0.0952926
\(838\) 0 0
\(839\) −17066.4 −0.702261 −0.351131 0.936326i \(-0.614203\pi\)
−0.351131 + 0.936326i \(0.614203\pi\)
\(840\) 0 0
\(841\) 9887.24 0.405398
\(842\) 0 0
\(843\) 5347.81 0.218491
\(844\) 0 0
\(845\) 923.433 0.0375942
\(846\) 0 0
\(847\) 15923.7 0.645981
\(848\) 0 0
\(849\) 6358.72 0.257044
\(850\) 0 0
\(851\) −41152.6 −1.65769
\(852\) 0 0
\(853\) 37910.5 1.52172 0.760862 0.648913i \(-0.224776\pi\)
0.760862 + 0.648913i \(0.224776\pi\)
\(854\) 0 0
\(855\) −4880.49 −0.195216
\(856\) 0 0
\(857\) −25489.3 −1.01598 −0.507991 0.861362i \(-0.669612\pi\)
−0.507991 + 0.861362i \(0.669612\pi\)
\(858\) 0 0
\(859\) −10266.7 −0.407796 −0.203898 0.978992i \(-0.565361\pi\)
−0.203898 + 0.978992i \(0.565361\pi\)
\(860\) 0 0
\(861\) −15896.4 −0.629206
\(862\) 0 0
\(863\) 15681.1 0.618529 0.309265 0.950976i \(-0.399917\pi\)
0.309265 + 0.950976i \(0.399917\pi\)
\(864\) 0 0
\(865\) −1899.01 −0.0746454
\(866\) 0 0
\(867\) −841.803 −0.0329748
\(868\) 0 0
\(869\) −2702.92 −0.105512
\(870\) 0 0
\(871\) 5871.36 0.228408
\(872\) 0 0
\(873\) 12435.4 0.482100
\(874\) 0 0
\(875\) 14906.5 0.575924
\(876\) 0 0
\(877\) −19487.6 −0.750341 −0.375171 0.926956i \(-0.622416\pi\)
−0.375171 + 0.926956i \(0.622416\pi\)
\(878\) 0 0
\(879\) −10279.8 −0.394457
\(880\) 0 0
\(881\) −24792.5 −0.948104 −0.474052 0.880497i \(-0.657209\pi\)
−0.474052 + 0.880497i \(0.657209\pi\)
\(882\) 0 0
\(883\) −21275.9 −0.810861 −0.405430 0.914126i \(-0.632878\pi\)
−0.405430 + 0.914126i \(0.632878\pi\)
\(884\) 0 0
\(885\) −1023.22 −0.0388644
\(886\) 0 0
\(887\) −39291.8 −1.48736 −0.743682 0.668534i \(-0.766922\pi\)
−0.743682 + 0.668534i \(0.766922\pi\)
\(888\) 0 0
\(889\) 12384.5 0.467224
\(890\) 0 0
\(891\) −549.553 −0.0206630
\(892\) 0 0
\(893\) −3898.49 −0.146090
\(894\) 0 0
\(895\) 12390.1 0.462742
\(896\) 0 0
\(897\) 4707.60 0.175231
\(898\) 0 0
\(899\) 15822.7 0.587004
\(900\) 0 0
\(901\) 1545.56 0.0571476
\(902\) 0 0
\(903\) 2413.45 0.0889418
\(904\) 0 0
\(905\) −3664.25 −0.134590
\(906\) 0 0
\(907\) 40944.8 1.49895 0.749477 0.662031i \(-0.230305\pi\)
0.749477 + 0.662031i \(0.230305\pi\)
\(908\) 0 0
\(909\) −8393.95 −0.306282
\(910\) 0 0
\(911\) 23017.5 0.837104 0.418552 0.908193i \(-0.362538\pi\)
0.418552 + 0.908193i \(0.362538\pi\)
\(912\) 0 0
\(913\) 5873.24 0.212898
\(914\) 0 0
\(915\) −6936.38 −0.250612
\(916\) 0 0
\(917\) −32701.8 −1.17765
\(918\) 0 0
\(919\) −29694.7 −1.06587 −0.532936 0.846155i \(-0.678911\pi\)
−0.532936 + 0.846155i \(0.678911\pi\)
\(920\) 0 0
\(921\) −18986.4 −0.679287
\(922\) 0 0
\(923\) −4365.13 −0.155666
\(924\) 0 0
\(925\) −32437.1 −1.15300
\(926\) 0 0
\(927\) −632.999 −0.0224276
\(928\) 0 0
\(929\) 24057.2 0.849613 0.424807 0.905284i \(-0.360342\pi\)
0.424807 + 0.905284i \(0.360342\pi\)
\(930\) 0 0
\(931\) 18799.8 0.661802
\(932\) 0 0
\(933\) −18769.9 −0.658626
\(934\) 0 0
\(935\) −2671.64 −0.0934460
\(936\) 0 0
\(937\) 39359.6 1.37228 0.686138 0.727472i \(-0.259305\pi\)
0.686138 + 0.727472i \(0.259305\pi\)
\(938\) 0 0
\(939\) −15820.3 −0.549814
\(940\) 0 0
\(941\) −20967.7 −0.726384 −0.363192 0.931714i \(-0.618313\pi\)
−0.363192 + 0.931714i \(0.618313\pi\)
\(942\) 0 0
\(943\) 51613.0 1.78235
\(944\) 0 0
\(945\) 1828.25 0.0629342
\(946\) 0 0
\(947\) 28580.9 0.980733 0.490366 0.871516i \(-0.336863\pi\)
0.490366 + 0.871516i \(0.336863\pi\)
\(948\) 0 0
\(949\) −13215.8 −0.452058
\(950\) 0 0
\(951\) 5091.70 0.173617
\(952\) 0 0
\(953\) −21949.5 −0.746081 −0.373041 0.927815i \(-0.621685\pi\)
−0.373041 + 0.927815i \(0.621685\pi\)
\(954\) 0 0
\(955\) −7905.91 −0.267884
\(956\) 0 0
\(957\) 3768.28 0.127284
\(958\) 0 0
\(959\) −22926.7 −0.771993
\(960\) 0 0
\(961\) −22486.9 −0.754822
\(962\) 0 0
\(963\) −2553.04 −0.0854317
\(964\) 0 0
\(965\) −9921.69 −0.330974
\(966\) 0 0
\(967\) −12955.2 −0.430829 −0.215415 0.976523i \(-0.569110\pi\)
−0.215415 + 0.976523i \(0.569110\pi\)
\(968\) 0 0
\(969\) 21456.4 0.711332
\(970\) 0 0
\(971\) 36777.4 1.21549 0.607745 0.794132i \(-0.292074\pi\)
0.607745 + 0.794132i \(0.292074\pi\)
\(972\) 0 0
\(973\) 5907.25 0.194633
\(974\) 0 0
\(975\) 3710.60 0.121881
\(976\) 0 0
\(977\) −23701.7 −0.776136 −0.388068 0.921631i \(-0.626857\pi\)
−0.388068 + 0.921631i \(0.626857\pi\)
\(978\) 0 0
\(979\) −4352.85 −0.142102
\(980\) 0 0
\(981\) 8078.03 0.262907
\(982\) 0 0
\(983\) −9338.35 −0.302998 −0.151499 0.988457i \(-0.548410\pi\)
−0.151499 + 0.988457i \(0.548410\pi\)
\(984\) 0 0
\(985\) −10563.7 −0.341714
\(986\) 0 0
\(987\) 1460.38 0.0470968
\(988\) 0 0
\(989\) −7836.09 −0.251944
\(990\) 0 0
\(991\) 35647.5 1.14267 0.571333 0.820719i \(-0.306427\pi\)
0.571333 + 0.820719i \(0.306427\pi\)
\(992\) 0 0
\(993\) −3354.41 −0.107199
\(994\) 0 0
\(995\) 1407.53 0.0448458
\(996\) 0 0
\(997\) −32855.1 −1.04366 −0.521832 0.853048i \(-0.674751\pi\)
−0.521832 + 0.853048i \(0.674751\pi\)
\(998\) 0 0
\(999\) −9205.06 −0.291527
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.z.1.2 2
4.3 odd 2 2496.4.a.bg.1.2 2
8.3 odd 2 312.4.a.a.1.1 2
8.5 even 2 624.4.a.o.1.1 2
24.5 odd 2 1872.4.a.be.1.2 2
24.11 even 2 936.4.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.a.1.1 2 8.3 odd 2
624.4.a.o.1.1 2 8.5 even 2
936.4.a.g.1.2 2 24.11 even 2
1872.4.a.be.1.2 2 24.5 odd 2
2496.4.a.z.1.2 2 1.1 even 1 trivial
2496.4.a.bg.1.2 2 4.3 odd 2