Properties

Label 2496.4.a.z.1.1
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -1.46410 q^{5} +8.39230 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} -1.46410 q^{5} +8.39230 q^{7} +9.00000 q^{9} +34.7846 q^{11} +13.0000 q^{13} +4.39230 q^{15} -108.067 q^{17} +143.244 q^{19} -25.1769 q^{21} +128.708 q^{23} -122.856 q^{25} -27.0000 q^{27} +18.8616 q^{29} +78.5359 q^{31} -104.354 q^{33} -12.2872 q^{35} +327.072 q^{37} -39.0000 q^{39} +327.587 q^{41} -336.918 q^{43} -13.1769 q^{45} -99.2820 q^{47} -272.569 q^{49} +324.200 q^{51} +686.554 q^{53} -50.9282 q^{55} -429.731 q^{57} -242.420 q^{59} +644.851 q^{61} +75.5307 q^{63} -19.0333 q^{65} -871.643 q^{67} -386.123 q^{69} -100.221 q^{71} +604.600 q^{73} +368.569 q^{75} +291.923 q^{77} -1070.39 q^{79} +81.0000 q^{81} +741.672 q^{83} +158.221 q^{85} -56.5847 q^{87} -501.577 q^{89} +109.100 q^{91} -235.608 q^{93} -209.723 q^{95} -1569.71 q^{97} +313.061 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 4 q^{5} - 4 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} + 4 q^{5} - 4 q^{7} + 18 q^{9} + 28 q^{11} + 26 q^{13} - 12 q^{15} - 36 q^{17} + 44 q^{19} + 12 q^{21} + 8 q^{23} - 218 q^{25} - 54 q^{27} + 204 q^{29} + 164 q^{31} - 84 q^{33} - 80 q^{35} + 668 q^{37} - 78 q^{39} - 100 q^{41} - 272 q^{43} + 36 q^{45} - 60 q^{47} - 462 q^{49} + 108 q^{51} + 708 q^{53} - 88 q^{55} - 132 q^{57} - 180 q^{59} + 1068 q^{61} - 36 q^{63} + 52 q^{65} - 420 q^{67} - 24 q^{69} - 436 q^{71} - 412 q^{73} + 654 q^{75} + 376 q^{77} - 672 q^{79} + 162 q^{81} - 124 q^{83} + 552 q^{85} - 612 q^{87} + 140 q^{89} - 52 q^{91} - 492 q^{93} - 752 q^{95} - 188 q^{97} + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −1.46410 −0.130953 −0.0654766 0.997854i \(-0.520857\pi\)
−0.0654766 + 0.997854i \(0.520857\pi\)
\(6\) 0 0
\(7\) 8.39230 0.453142 0.226571 0.973995i \(-0.427248\pi\)
0.226571 + 0.973995i \(0.427248\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 34.7846 0.953450 0.476725 0.879052i \(-0.341824\pi\)
0.476725 + 0.879052i \(0.341824\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 4.39230 0.0756059
\(16\) 0 0
\(17\) −108.067 −1.54177 −0.770883 0.636977i \(-0.780185\pi\)
−0.770883 + 0.636977i \(0.780185\pi\)
\(18\) 0 0
\(19\) 143.244 1.72960 0.864798 0.502120i \(-0.167446\pi\)
0.864798 + 0.502120i \(0.167446\pi\)
\(20\) 0 0
\(21\) −25.1769 −0.261622
\(22\) 0 0
\(23\) 128.708 1.16684 0.583422 0.812169i \(-0.301713\pi\)
0.583422 + 0.812169i \(0.301713\pi\)
\(24\) 0 0
\(25\) −122.856 −0.982851
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 18.8616 0.120776 0.0603880 0.998175i \(-0.480766\pi\)
0.0603880 + 0.998175i \(0.480766\pi\)
\(30\) 0 0
\(31\) 78.5359 0.455015 0.227507 0.973776i \(-0.426942\pi\)
0.227507 + 0.973776i \(0.426942\pi\)
\(32\) 0 0
\(33\) −104.354 −0.550475
\(34\) 0 0
\(35\) −12.2872 −0.0593404
\(36\) 0 0
\(37\) 327.072 1.45325 0.726625 0.687034i \(-0.241088\pi\)
0.726625 + 0.687034i \(0.241088\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) 327.587 1.24782 0.623909 0.781497i \(-0.285544\pi\)
0.623909 + 0.781497i \(0.285544\pi\)
\(42\) 0 0
\(43\) −336.918 −1.19487 −0.597436 0.801917i \(-0.703814\pi\)
−0.597436 + 0.801917i \(0.703814\pi\)
\(44\) 0 0
\(45\) −13.1769 −0.0436511
\(46\) 0 0
\(47\) −99.2820 −0.308123 −0.154061 0.988061i \(-0.549235\pi\)
−0.154061 + 0.988061i \(0.549235\pi\)
\(48\) 0 0
\(49\) −272.569 −0.794662
\(50\) 0 0
\(51\) 324.200 0.890139
\(52\) 0 0
\(53\) 686.554 1.77935 0.889674 0.456597i \(-0.150932\pi\)
0.889674 + 0.456597i \(0.150932\pi\)
\(54\) 0 0
\(55\) −50.9282 −0.124857
\(56\) 0 0
\(57\) −429.731 −0.998583
\(58\) 0 0
\(59\) −242.420 −0.534923 −0.267462 0.963569i \(-0.586185\pi\)
−0.267462 + 0.963569i \(0.586185\pi\)
\(60\) 0 0
\(61\) 644.851 1.35352 0.676760 0.736204i \(-0.263383\pi\)
0.676760 + 0.736204i \(0.263383\pi\)
\(62\) 0 0
\(63\) 75.5307 0.151047
\(64\) 0 0
\(65\) −19.0333 −0.0363199
\(66\) 0 0
\(67\) −871.643 −1.58938 −0.794688 0.607018i \(-0.792366\pi\)
−0.794688 + 0.607018i \(0.792366\pi\)
\(68\) 0 0
\(69\) −386.123 −0.673677
\(70\) 0 0
\(71\) −100.221 −0.167521 −0.0837605 0.996486i \(-0.526693\pi\)
−0.0837605 + 0.996486i \(0.526693\pi\)
\(72\) 0 0
\(73\) 604.600 0.969357 0.484678 0.874692i \(-0.338937\pi\)
0.484678 + 0.874692i \(0.338937\pi\)
\(74\) 0 0
\(75\) 368.569 0.567449
\(76\) 0 0
\(77\) 291.923 0.432048
\(78\) 0 0
\(79\) −1070.39 −1.52441 −0.762204 0.647337i \(-0.775883\pi\)
−0.762204 + 0.647337i \(0.775883\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 741.672 0.980832 0.490416 0.871489i \(-0.336845\pi\)
0.490416 + 0.871489i \(0.336845\pi\)
\(84\) 0 0
\(85\) 158.221 0.201899
\(86\) 0 0
\(87\) −56.5847 −0.0697301
\(88\) 0 0
\(89\) −501.577 −0.597382 −0.298691 0.954350i \(-0.596550\pi\)
−0.298691 + 0.954350i \(0.596550\pi\)
\(90\) 0 0
\(91\) 109.100 0.125679
\(92\) 0 0
\(93\) −235.608 −0.262703
\(94\) 0 0
\(95\) −209.723 −0.226496
\(96\) 0 0
\(97\) −1569.71 −1.64309 −0.821544 0.570144i \(-0.806887\pi\)
−0.821544 + 0.570144i \(0.806887\pi\)
\(98\) 0 0
\(99\) 313.061 0.317817
\(100\) 0 0
\(101\) −1639.34 −1.61505 −0.807526 0.589832i \(-0.799194\pi\)
−0.807526 + 0.589832i \(0.799194\pi\)
\(102\) 0 0
\(103\) 830.333 0.794322 0.397161 0.917749i \(-0.369995\pi\)
0.397161 + 0.917749i \(0.369995\pi\)
\(104\) 0 0
\(105\) 36.8616 0.0342602
\(106\) 0 0
\(107\) 1323.67 1.19593 0.597963 0.801523i \(-0.295977\pi\)
0.597963 + 0.801523i \(0.295977\pi\)
\(108\) 0 0
\(109\) 426.441 0.374731 0.187365 0.982290i \(-0.440005\pi\)
0.187365 + 0.982290i \(0.440005\pi\)
\(110\) 0 0
\(111\) −981.215 −0.839035
\(112\) 0 0
\(113\) 1548.66 1.28925 0.644625 0.764499i \(-0.277013\pi\)
0.644625 + 0.764499i \(0.277013\pi\)
\(114\) 0 0
\(115\) −188.441 −0.152802
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) −906.928 −0.698638
\(120\) 0 0
\(121\) −121.031 −0.0909323
\(122\) 0 0
\(123\) −982.761 −0.720428
\(124\) 0 0
\(125\) 362.887 0.259661
\(126\) 0 0
\(127\) −1456.63 −1.01776 −0.508878 0.860839i \(-0.669940\pi\)
−0.508878 + 0.860839i \(0.669940\pi\)
\(128\) 0 0
\(129\) 1010.75 0.689860
\(130\) 0 0
\(131\) −1822.88 −1.21577 −0.607885 0.794025i \(-0.707982\pi\)
−0.607885 + 0.794025i \(0.707982\pi\)
\(132\) 0 0
\(133\) 1202.14 0.783752
\(134\) 0 0
\(135\) 39.5307 0.0252020
\(136\) 0 0
\(137\) 609.926 0.380361 0.190181 0.981749i \(-0.439093\pi\)
0.190181 + 0.981749i \(0.439093\pi\)
\(138\) 0 0
\(139\) 548.687 0.334813 0.167407 0.985888i \(-0.446461\pi\)
0.167407 + 0.985888i \(0.446461\pi\)
\(140\) 0 0
\(141\) 297.846 0.177895
\(142\) 0 0
\(143\) 452.200 0.264440
\(144\) 0 0
\(145\) −27.6152 −0.0158160
\(146\) 0 0
\(147\) 817.708 0.458799
\(148\) 0 0
\(149\) −1863.89 −1.02480 −0.512402 0.858746i \(-0.671244\pi\)
−0.512402 + 0.858746i \(0.671244\pi\)
\(150\) 0 0
\(151\) 194.418 0.104778 0.0523890 0.998627i \(-0.483316\pi\)
0.0523890 + 0.998627i \(0.483316\pi\)
\(152\) 0 0
\(153\) −972.600 −0.513922
\(154\) 0 0
\(155\) −114.985 −0.0595857
\(156\) 0 0
\(157\) 215.939 0.109769 0.0548847 0.998493i \(-0.482521\pi\)
0.0548847 + 0.998493i \(0.482521\pi\)
\(158\) 0 0
\(159\) −2059.66 −1.02731
\(160\) 0 0
\(161\) 1080.15 0.528746
\(162\) 0 0
\(163\) 1331.28 0.639717 0.319858 0.947465i \(-0.396365\pi\)
0.319858 + 0.947465i \(0.396365\pi\)
\(164\) 0 0
\(165\) 152.785 0.0720865
\(166\) 0 0
\(167\) −3189.68 −1.47799 −0.738997 0.673709i \(-0.764700\pi\)
−0.738997 + 0.673709i \(0.764700\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 1289.19 0.576532
\(172\) 0 0
\(173\) 3407.54 1.49752 0.748759 0.662842i \(-0.230650\pi\)
0.748759 + 0.662842i \(0.230650\pi\)
\(174\) 0 0
\(175\) −1031.05 −0.445371
\(176\) 0 0
\(177\) 727.261 0.308838
\(178\) 0 0
\(179\) 1020.46 0.426106 0.213053 0.977041i \(-0.431659\pi\)
0.213053 + 0.977041i \(0.431659\pi\)
\(180\) 0 0
\(181\) 3458.60 1.42031 0.710155 0.704046i \(-0.248625\pi\)
0.710155 + 0.704046i \(0.248625\pi\)
\(182\) 0 0
\(183\) −1934.55 −0.781455
\(184\) 0 0
\(185\) −478.866 −0.190308
\(186\) 0 0
\(187\) −3759.06 −1.47000
\(188\) 0 0
\(189\) −226.592 −0.0872072
\(190\) 0 0
\(191\) 3014.88 1.14214 0.571071 0.820901i \(-0.306528\pi\)
0.571071 + 0.820901i \(0.306528\pi\)
\(192\) 0 0
\(193\) 539.795 0.201323 0.100661 0.994921i \(-0.467904\pi\)
0.100661 + 0.994921i \(0.467904\pi\)
\(194\) 0 0
\(195\) 57.1000 0.0209693
\(196\) 0 0
\(197\) −3630.70 −1.31308 −0.656541 0.754291i \(-0.727981\pi\)
−0.656541 + 0.754291i \(0.727981\pi\)
\(198\) 0 0
\(199\) 3846.40 1.37017 0.685086 0.728462i \(-0.259764\pi\)
0.685086 + 0.728462i \(0.259764\pi\)
\(200\) 0 0
\(201\) 2614.93 0.917627
\(202\) 0 0
\(203\) 158.292 0.0547287
\(204\) 0 0
\(205\) −479.621 −0.163406
\(206\) 0 0
\(207\) 1158.37 0.388948
\(208\) 0 0
\(209\) 4982.67 1.64908
\(210\) 0 0
\(211\) 993.169 0.324041 0.162020 0.986787i \(-0.448199\pi\)
0.162020 + 0.986787i \(0.448199\pi\)
\(212\) 0 0
\(213\) 300.662 0.0967183
\(214\) 0 0
\(215\) 493.282 0.156472
\(216\) 0 0
\(217\) 659.097 0.206186
\(218\) 0 0
\(219\) −1813.80 −0.559658
\(220\) 0 0
\(221\) −1404.87 −0.427609
\(222\) 0 0
\(223\) −3813.70 −1.14522 −0.572610 0.819828i \(-0.694069\pi\)
−0.572610 + 0.819828i \(0.694069\pi\)
\(224\) 0 0
\(225\) −1105.71 −0.327617
\(226\) 0 0
\(227\) −3002.36 −0.877859 −0.438929 0.898522i \(-0.644642\pi\)
−0.438929 + 0.898522i \(0.644642\pi\)
\(228\) 0 0
\(229\) 3848.06 1.11042 0.555212 0.831709i \(-0.312637\pi\)
0.555212 + 0.831709i \(0.312637\pi\)
\(230\) 0 0
\(231\) −875.769 −0.249443
\(232\) 0 0
\(233\) 2014.59 0.566438 0.283219 0.959055i \(-0.408598\pi\)
0.283219 + 0.959055i \(0.408598\pi\)
\(234\) 0 0
\(235\) 145.359 0.0403497
\(236\) 0 0
\(237\) 3211.17 0.880117
\(238\) 0 0
\(239\) 5499.39 1.48839 0.744196 0.667961i \(-0.232833\pi\)
0.744196 + 0.667961i \(0.232833\pi\)
\(240\) 0 0
\(241\) 197.872 0.0528883 0.0264441 0.999650i \(-0.491582\pi\)
0.0264441 + 0.999650i \(0.491582\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 399.069 0.104064
\(246\) 0 0
\(247\) 1862.17 0.479704
\(248\) 0 0
\(249\) −2225.01 −0.566283
\(250\) 0 0
\(251\) −1708.87 −0.429733 −0.214867 0.976643i \(-0.568932\pi\)
−0.214867 + 0.976643i \(0.568932\pi\)
\(252\) 0 0
\(253\) 4477.05 1.11253
\(254\) 0 0
\(255\) −474.662 −0.116567
\(256\) 0 0
\(257\) 5410.23 1.31316 0.656578 0.754258i \(-0.272003\pi\)
0.656578 + 0.754258i \(0.272003\pi\)
\(258\) 0 0
\(259\) 2744.89 0.658529
\(260\) 0 0
\(261\) 169.754 0.0402587
\(262\) 0 0
\(263\) 3232.63 0.757917 0.378959 0.925414i \(-0.376282\pi\)
0.378959 + 0.925414i \(0.376282\pi\)
\(264\) 0 0
\(265\) −1005.18 −0.233011
\(266\) 0 0
\(267\) 1504.73 0.344899
\(268\) 0 0
\(269\) 6804.99 1.54241 0.771204 0.636588i \(-0.219655\pi\)
0.771204 + 0.636588i \(0.219655\pi\)
\(270\) 0 0
\(271\) 7650.61 1.71491 0.857456 0.514557i \(-0.172044\pi\)
0.857456 + 0.514557i \(0.172044\pi\)
\(272\) 0 0
\(273\) −327.300 −0.0725608
\(274\) 0 0
\(275\) −4273.51 −0.937100
\(276\) 0 0
\(277\) −5246.78 −1.13808 −0.569040 0.822310i \(-0.692685\pi\)
−0.569040 + 0.822310i \(0.692685\pi\)
\(278\) 0 0
\(279\) 706.823 0.151672
\(280\) 0 0
\(281\) 3794.60 0.805576 0.402788 0.915293i \(-0.368041\pi\)
0.402788 + 0.915293i \(0.368041\pi\)
\(282\) 0 0
\(283\) 471.574 0.0990536 0.0495268 0.998773i \(-0.484229\pi\)
0.0495268 + 0.998773i \(0.484229\pi\)
\(284\) 0 0
\(285\) 629.169 0.130768
\(286\) 0 0
\(287\) 2749.21 0.565438
\(288\) 0 0
\(289\) 6765.40 1.37704
\(290\) 0 0
\(291\) 4709.12 0.948638
\(292\) 0 0
\(293\) −30.5867 −0.00609862 −0.00304931 0.999995i \(-0.500971\pi\)
−0.00304931 + 0.999995i \(0.500971\pi\)
\(294\) 0 0
\(295\) 354.928 0.0700499
\(296\) 0 0
\(297\) −939.184 −0.183492
\(298\) 0 0
\(299\) 1673.20 0.323624
\(300\) 0 0
\(301\) −2827.52 −0.541447
\(302\) 0 0
\(303\) 4918.02 0.932451
\(304\) 0 0
\(305\) −944.128 −0.177248
\(306\) 0 0
\(307\) −7700.81 −1.43162 −0.715811 0.698294i \(-0.753943\pi\)
−0.715811 + 0.698294i \(0.753943\pi\)
\(308\) 0 0
\(309\) −2491.00 −0.458602
\(310\) 0 0
\(311\) 2903.37 0.529374 0.264687 0.964334i \(-0.414731\pi\)
0.264687 + 0.964334i \(0.414731\pi\)
\(312\) 0 0
\(313\) −5645.42 −1.01948 −0.509742 0.860328i \(-0.670259\pi\)
−0.509742 + 0.860328i \(0.670259\pi\)
\(314\) 0 0
\(315\) −110.585 −0.0197801
\(316\) 0 0
\(317\) −1066.77 −0.189008 −0.0945041 0.995524i \(-0.530127\pi\)
−0.0945041 + 0.995524i \(0.530127\pi\)
\(318\) 0 0
\(319\) 656.092 0.115154
\(320\) 0 0
\(321\) −3971.01 −0.690469
\(322\) 0 0
\(323\) −15479.9 −2.66663
\(324\) 0 0
\(325\) −1597.13 −0.272594
\(326\) 0 0
\(327\) −1279.32 −0.216351
\(328\) 0 0
\(329\) −833.205 −0.139623
\(330\) 0 0
\(331\) 2205.86 0.366300 0.183150 0.983085i \(-0.441371\pi\)
0.183150 + 0.983085i \(0.441371\pi\)
\(332\) 0 0
\(333\) 2943.65 0.484417
\(334\) 0 0
\(335\) 1276.17 0.208134
\(336\) 0 0
\(337\) −439.466 −0.0710363 −0.0355182 0.999369i \(-0.511308\pi\)
−0.0355182 + 0.999369i \(0.511308\pi\)
\(338\) 0 0
\(339\) −4645.97 −0.744349
\(340\) 0 0
\(341\) 2731.84 0.433834
\(342\) 0 0
\(343\) −5166.04 −0.813237
\(344\) 0 0
\(345\) 565.323 0.0882202
\(346\) 0 0
\(347\) 5767.97 0.892336 0.446168 0.894949i \(-0.352788\pi\)
0.446168 + 0.894949i \(0.352788\pi\)
\(348\) 0 0
\(349\) 2582.12 0.396039 0.198020 0.980198i \(-0.436549\pi\)
0.198020 + 0.980198i \(0.436549\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) 8065.93 1.21616 0.608082 0.793874i \(-0.291939\pi\)
0.608082 + 0.793874i \(0.291939\pi\)
\(354\) 0 0
\(355\) 146.733 0.0219374
\(356\) 0 0
\(357\) 2720.78 0.403359
\(358\) 0 0
\(359\) −315.815 −0.0464292 −0.0232146 0.999731i \(-0.507390\pi\)
−0.0232146 + 0.999731i \(0.507390\pi\)
\(360\) 0 0
\(361\) 13659.7 1.99150
\(362\) 0 0
\(363\) 363.093 0.0524998
\(364\) 0 0
\(365\) −885.196 −0.126940
\(366\) 0 0
\(367\) −5183.06 −0.737203 −0.368601 0.929588i \(-0.620163\pi\)
−0.368601 + 0.929588i \(0.620163\pi\)
\(368\) 0 0
\(369\) 2948.28 0.415939
\(370\) 0 0
\(371\) 5761.77 0.806297
\(372\) 0 0
\(373\) 1691.00 0.234737 0.117368 0.993088i \(-0.462554\pi\)
0.117368 + 0.993088i \(0.462554\pi\)
\(374\) 0 0
\(375\) −1088.66 −0.149915
\(376\) 0 0
\(377\) 245.200 0.0334972
\(378\) 0 0
\(379\) 4562.78 0.618402 0.309201 0.950997i \(-0.399938\pi\)
0.309201 + 0.950997i \(0.399938\pi\)
\(380\) 0 0
\(381\) 4369.89 0.587602
\(382\) 0 0
\(383\) 4896.69 0.653287 0.326644 0.945148i \(-0.394082\pi\)
0.326644 + 0.945148i \(0.394082\pi\)
\(384\) 0 0
\(385\) −427.405 −0.0565781
\(386\) 0 0
\(387\) −3032.26 −0.398291
\(388\) 0 0
\(389\) −1611.91 −0.210096 −0.105048 0.994467i \(-0.533500\pi\)
−0.105048 + 0.994467i \(0.533500\pi\)
\(390\) 0 0
\(391\) −13909.0 −1.79900
\(392\) 0 0
\(393\) 5468.64 0.701925
\(394\) 0 0
\(395\) 1567.16 0.199626
\(396\) 0 0
\(397\) −1744.95 −0.220595 −0.110298 0.993899i \(-0.535180\pi\)
−0.110298 + 0.993899i \(0.535180\pi\)
\(398\) 0 0
\(399\) −3606.43 −0.452500
\(400\) 0 0
\(401\) −283.494 −0.0353042 −0.0176521 0.999844i \(-0.505619\pi\)
−0.0176521 + 0.999844i \(0.505619\pi\)
\(402\) 0 0
\(403\) 1020.97 0.126198
\(404\) 0 0
\(405\) −118.592 −0.0145504
\(406\) 0 0
\(407\) 11377.1 1.38560
\(408\) 0 0
\(409\) 8619.44 1.04206 0.521032 0.853537i \(-0.325547\pi\)
0.521032 + 0.853537i \(0.325547\pi\)
\(410\) 0 0
\(411\) −1829.78 −0.219602
\(412\) 0 0
\(413\) −2034.47 −0.242396
\(414\) 0 0
\(415\) −1085.88 −0.128443
\(416\) 0 0
\(417\) −1646.06 −0.193304
\(418\) 0 0
\(419\) 10146.0 1.18297 0.591483 0.806318i \(-0.298543\pi\)
0.591483 + 0.806318i \(0.298543\pi\)
\(420\) 0 0
\(421\) 5435.09 0.629193 0.314597 0.949225i \(-0.398131\pi\)
0.314597 + 0.949225i \(0.398131\pi\)
\(422\) 0 0
\(423\) −893.538 −0.102708
\(424\) 0 0
\(425\) 13276.7 1.51533
\(426\) 0 0
\(427\) 5411.79 0.613337
\(428\) 0 0
\(429\) −1356.60 −0.152674
\(430\) 0 0
\(431\) 4851.97 0.542253 0.271127 0.962544i \(-0.412604\pi\)
0.271127 + 0.962544i \(0.412604\pi\)
\(432\) 0 0
\(433\) −14096.0 −1.56446 −0.782230 0.622990i \(-0.785918\pi\)
−0.782230 + 0.622990i \(0.785918\pi\)
\(434\) 0 0
\(435\) 82.8457 0.00913138
\(436\) 0 0
\(437\) 18436.5 2.01817
\(438\) 0 0
\(439\) −6431.04 −0.699173 −0.349586 0.936904i \(-0.613678\pi\)
−0.349586 + 0.936904i \(0.613678\pi\)
\(440\) 0 0
\(441\) −2453.12 −0.264887
\(442\) 0 0
\(443\) 13281.3 1.42441 0.712205 0.701972i \(-0.247697\pi\)
0.712205 + 0.701972i \(0.247697\pi\)
\(444\) 0 0
\(445\) 734.359 0.0782292
\(446\) 0 0
\(447\) 5591.67 0.591671
\(448\) 0 0
\(449\) 2227.04 0.234077 0.117038 0.993127i \(-0.462660\pi\)
0.117038 + 0.993127i \(0.462660\pi\)
\(450\) 0 0
\(451\) 11395.0 1.18973
\(452\) 0 0
\(453\) −583.253 −0.0604936
\(454\) 0 0
\(455\) −159.733 −0.0164581
\(456\) 0 0
\(457\) 14683.2 1.50295 0.751477 0.659759i \(-0.229342\pi\)
0.751477 + 0.659759i \(0.229342\pi\)
\(458\) 0 0
\(459\) 2917.80 0.296713
\(460\) 0 0
\(461\) −3622.75 −0.366005 −0.183003 0.983112i \(-0.558582\pi\)
−0.183003 + 0.983112i \(0.558582\pi\)
\(462\) 0 0
\(463\) −15517.0 −1.55753 −0.778766 0.627314i \(-0.784154\pi\)
−0.778766 + 0.627314i \(0.784154\pi\)
\(464\) 0 0
\(465\) 344.954 0.0344018
\(466\) 0 0
\(467\) 14315.1 1.41847 0.709235 0.704973i \(-0.249041\pi\)
0.709235 + 0.704973i \(0.249041\pi\)
\(468\) 0 0
\(469\) −7315.10 −0.720213
\(470\) 0 0
\(471\) −647.817 −0.0633754
\(472\) 0 0
\(473\) −11719.6 −1.13925
\(474\) 0 0
\(475\) −17598.4 −1.69994
\(476\) 0 0
\(477\) 6178.98 0.593116
\(478\) 0 0
\(479\) 6601.85 0.629742 0.314871 0.949135i \(-0.398039\pi\)
0.314871 + 0.949135i \(0.398039\pi\)
\(480\) 0 0
\(481\) 4251.93 0.403059
\(482\) 0 0
\(483\) −3240.46 −0.305271
\(484\) 0 0
\(485\) 2298.21 0.215168
\(486\) 0 0
\(487\) 616.770 0.0573892 0.0286946 0.999588i \(-0.490865\pi\)
0.0286946 + 0.999588i \(0.490865\pi\)
\(488\) 0 0
\(489\) −3993.84 −0.369341
\(490\) 0 0
\(491\) 1565.75 0.143913 0.0719567 0.997408i \(-0.477076\pi\)
0.0719567 + 0.997408i \(0.477076\pi\)
\(492\) 0 0
\(493\) −2038.31 −0.186208
\(494\) 0 0
\(495\) −458.354 −0.0416191
\(496\) 0 0
\(497\) −841.081 −0.0759108
\(498\) 0 0
\(499\) 2449.31 0.219732 0.109866 0.993946i \(-0.464958\pi\)
0.109866 + 0.993946i \(0.464958\pi\)
\(500\) 0 0
\(501\) 9569.04 0.853320
\(502\) 0 0
\(503\) 7106.77 0.629970 0.314985 0.949097i \(-0.398000\pi\)
0.314985 + 0.949097i \(0.398000\pi\)
\(504\) 0 0
\(505\) 2400.16 0.211496
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) −7657.22 −0.666798 −0.333399 0.942786i \(-0.608196\pi\)
−0.333399 + 0.942786i \(0.608196\pi\)
\(510\) 0 0
\(511\) 5073.99 0.439256
\(512\) 0 0
\(513\) −3867.58 −0.332861
\(514\) 0 0
\(515\) −1215.69 −0.104019
\(516\) 0 0
\(517\) −3453.49 −0.293780
\(518\) 0 0
\(519\) −10222.6 −0.864593
\(520\) 0 0
\(521\) 3616.82 0.304138 0.152069 0.988370i \(-0.451406\pi\)
0.152069 + 0.988370i \(0.451406\pi\)
\(522\) 0 0
\(523\) 14089.9 1.17803 0.589014 0.808123i \(-0.299516\pi\)
0.589014 + 0.808123i \(0.299516\pi\)
\(524\) 0 0
\(525\) 3093.15 0.257135
\(526\) 0 0
\(527\) −8487.11 −0.701526
\(528\) 0 0
\(529\) 4398.66 0.361524
\(530\) 0 0
\(531\) −2181.78 −0.178308
\(532\) 0 0
\(533\) 4258.63 0.346082
\(534\) 0 0
\(535\) −1937.99 −0.156610
\(536\) 0 0
\(537\) −3061.39 −0.246012
\(538\) 0 0
\(539\) −9481.21 −0.757671
\(540\) 0 0
\(541\) 16786.5 1.33403 0.667013 0.745046i \(-0.267572\pi\)
0.667013 + 0.745046i \(0.267572\pi\)
\(542\) 0 0
\(543\) −10375.8 −0.820016
\(544\) 0 0
\(545\) −624.353 −0.0490722
\(546\) 0 0
\(547\) 19055.0 1.48946 0.744729 0.667368i \(-0.232579\pi\)
0.744729 + 0.667368i \(0.232579\pi\)
\(548\) 0 0
\(549\) 5803.66 0.451173
\(550\) 0 0
\(551\) 2701.80 0.208894
\(552\) 0 0
\(553\) −8983.04 −0.690773
\(554\) 0 0
\(555\) 1436.60 0.109874
\(556\) 0 0
\(557\) 13217.4 1.00546 0.502729 0.864444i \(-0.332329\pi\)
0.502729 + 0.864444i \(0.332329\pi\)
\(558\) 0 0
\(559\) −4379.93 −0.331398
\(560\) 0 0
\(561\) 11277.2 0.848703
\(562\) 0 0
\(563\) −24946.0 −1.86741 −0.933703 0.358048i \(-0.883442\pi\)
−0.933703 + 0.358048i \(0.883442\pi\)
\(564\) 0 0
\(565\) −2267.39 −0.168832
\(566\) 0 0
\(567\) 679.777 0.0503491
\(568\) 0 0
\(569\) −15102.5 −1.11270 −0.556352 0.830947i \(-0.687799\pi\)
−0.556352 + 0.830947i \(0.687799\pi\)
\(570\) 0 0
\(571\) −16747.0 −1.22739 −0.613697 0.789542i \(-0.710318\pi\)
−0.613697 + 0.789542i \(0.710318\pi\)
\(572\) 0 0
\(573\) −9044.64 −0.659416
\(574\) 0 0
\(575\) −15812.6 −1.14683
\(576\) 0 0
\(577\) 19788.9 1.42777 0.713885 0.700263i \(-0.246934\pi\)
0.713885 + 0.700263i \(0.246934\pi\)
\(578\) 0 0
\(579\) −1619.38 −0.116234
\(580\) 0 0
\(581\) 6224.33 0.444456
\(582\) 0 0
\(583\) 23881.5 1.69652
\(584\) 0 0
\(585\) −171.300 −0.0121066
\(586\) 0 0
\(587\) 23658.3 1.66351 0.831756 0.555141i \(-0.187336\pi\)
0.831756 + 0.555141i \(0.187336\pi\)
\(588\) 0 0
\(589\) 11249.8 0.786992
\(590\) 0 0
\(591\) 10892.1 0.758108
\(592\) 0 0
\(593\) −17388.5 −1.20415 −0.602074 0.798441i \(-0.705659\pi\)
−0.602074 + 0.798441i \(0.705659\pi\)
\(594\) 0 0
\(595\) 1327.84 0.0914890
\(596\) 0 0
\(597\) −11539.2 −0.791070
\(598\) 0 0
\(599\) −9053.40 −0.617549 −0.308774 0.951135i \(-0.599919\pi\)
−0.308774 + 0.951135i \(0.599919\pi\)
\(600\) 0 0
\(601\) −13531.6 −0.918414 −0.459207 0.888329i \(-0.651866\pi\)
−0.459207 + 0.888329i \(0.651866\pi\)
\(602\) 0 0
\(603\) −7844.79 −0.529792
\(604\) 0 0
\(605\) 177.202 0.0119079
\(606\) 0 0
\(607\) −2841.08 −0.189977 −0.0949884 0.995478i \(-0.530281\pi\)
−0.0949884 + 0.995478i \(0.530281\pi\)
\(608\) 0 0
\(609\) −474.876 −0.0315976
\(610\) 0 0
\(611\) −1290.67 −0.0854579
\(612\) 0 0
\(613\) 23429.1 1.54371 0.771854 0.635800i \(-0.219330\pi\)
0.771854 + 0.635800i \(0.219330\pi\)
\(614\) 0 0
\(615\) 1438.86 0.0943423
\(616\) 0 0
\(617\) −17303.8 −1.12905 −0.564526 0.825415i \(-0.690941\pi\)
−0.564526 + 0.825415i \(0.690941\pi\)
\(618\) 0 0
\(619\) −2669.38 −0.173330 −0.0866652 0.996237i \(-0.527621\pi\)
−0.0866652 + 0.996237i \(0.527621\pi\)
\(620\) 0 0
\(621\) −3475.11 −0.224559
\(622\) 0 0
\(623\) −4209.39 −0.270699
\(624\) 0 0
\(625\) 14825.7 0.948848
\(626\) 0 0
\(627\) −14948.0 −0.952099
\(628\) 0 0
\(629\) −35345.6 −2.24057
\(630\) 0 0
\(631\) −12671.5 −0.799439 −0.399720 0.916637i \(-0.630893\pi\)
−0.399720 + 0.916637i \(0.630893\pi\)
\(632\) 0 0
\(633\) −2979.51 −0.187085
\(634\) 0 0
\(635\) 2132.66 0.133278
\(636\) 0 0
\(637\) −3543.40 −0.220400
\(638\) 0 0
\(639\) −901.985 −0.0558403
\(640\) 0 0
\(641\) 6148.11 0.378839 0.189420 0.981896i \(-0.439339\pi\)
0.189420 + 0.981896i \(0.439339\pi\)
\(642\) 0 0
\(643\) −21495.1 −1.31833 −0.659164 0.752000i \(-0.729090\pi\)
−0.659164 + 0.752000i \(0.729090\pi\)
\(644\) 0 0
\(645\) −1479.85 −0.0903394
\(646\) 0 0
\(647\) −20055.9 −1.21867 −0.609335 0.792913i \(-0.708564\pi\)
−0.609335 + 0.792913i \(0.708564\pi\)
\(648\) 0 0
\(649\) −8432.50 −0.510023
\(650\) 0 0
\(651\) −1977.29 −0.119042
\(652\) 0 0
\(653\) −13667.9 −0.819091 −0.409546 0.912290i \(-0.634313\pi\)
−0.409546 + 0.912290i \(0.634313\pi\)
\(654\) 0 0
\(655\) 2668.88 0.159209
\(656\) 0 0
\(657\) 5441.40 0.323119
\(658\) 0 0
\(659\) 14754.7 0.872173 0.436087 0.899905i \(-0.356364\pi\)
0.436087 + 0.899905i \(0.356364\pi\)
\(660\) 0 0
\(661\) 27222.0 1.60184 0.800918 0.598774i \(-0.204345\pi\)
0.800918 + 0.598774i \(0.204345\pi\)
\(662\) 0 0
\(663\) 4214.60 0.246880
\(664\) 0 0
\(665\) −1760.06 −0.102635
\(666\) 0 0
\(667\) 2427.63 0.140927
\(668\) 0 0
\(669\) 11441.1 0.661193
\(670\) 0 0
\(671\) 22430.9 1.29051
\(672\) 0 0
\(673\) 9635.48 0.551888 0.275944 0.961174i \(-0.411010\pi\)
0.275944 + 0.961174i \(0.411010\pi\)
\(674\) 0 0
\(675\) 3317.12 0.189150
\(676\) 0 0
\(677\) 16897.8 0.959286 0.479643 0.877464i \(-0.340766\pi\)
0.479643 + 0.877464i \(0.340766\pi\)
\(678\) 0 0
\(679\) −13173.5 −0.744552
\(680\) 0 0
\(681\) 9007.09 0.506832
\(682\) 0 0
\(683\) −30252.7 −1.69486 −0.847429 0.530908i \(-0.821851\pi\)
−0.847429 + 0.530908i \(0.821851\pi\)
\(684\) 0 0
\(685\) −892.993 −0.0498095
\(686\) 0 0
\(687\) −11544.2 −0.641103
\(688\) 0 0
\(689\) 8925.20 0.493502
\(690\) 0 0
\(691\) −9471.02 −0.521410 −0.260705 0.965418i \(-0.583955\pi\)
−0.260705 + 0.965418i \(0.583955\pi\)
\(692\) 0 0
\(693\) 2627.31 0.144016
\(694\) 0 0
\(695\) −803.334 −0.0438449
\(696\) 0 0
\(697\) −35401.2 −1.92384
\(698\) 0 0
\(699\) −6043.77 −0.327033
\(700\) 0 0
\(701\) 21733.2 1.17097 0.585485 0.810683i \(-0.300904\pi\)
0.585485 + 0.810683i \(0.300904\pi\)
\(702\) 0 0
\(703\) 46850.9 2.51354
\(704\) 0 0
\(705\) −436.077 −0.0232959
\(706\) 0 0
\(707\) −13757.8 −0.731848
\(708\) 0 0
\(709\) −14647.9 −0.775901 −0.387950 0.921680i \(-0.626817\pi\)
−0.387950 + 0.921680i \(0.626817\pi\)
\(710\) 0 0
\(711\) −9633.51 −0.508136
\(712\) 0 0
\(713\) 10108.2 0.530931
\(714\) 0 0
\(715\) −662.067 −0.0346292
\(716\) 0 0
\(717\) −16498.2 −0.859324
\(718\) 0 0
\(719\) 15330.7 0.795187 0.397594 0.917562i \(-0.369845\pi\)
0.397594 + 0.917562i \(0.369845\pi\)
\(720\) 0 0
\(721\) 6968.41 0.359941
\(722\) 0 0
\(723\) −593.617 −0.0305351
\(724\) 0 0
\(725\) −2317.26 −0.118705
\(726\) 0 0
\(727\) −23367.4 −1.19209 −0.596045 0.802951i \(-0.703262\pi\)
−0.596045 + 0.802951i \(0.703262\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 36409.6 1.84221
\(732\) 0 0
\(733\) 18192.0 0.916694 0.458347 0.888773i \(-0.348442\pi\)
0.458347 + 0.888773i \(0.348442\pi\)
\(734\) 0 0
\(735\) −1197.21 −0.0600812
\(736\) 0 0
\(737\) −30319.8 −1.51539
\(738\) 0 0
\(739\) −19762.7 −0.983741 −0.491870 0.870668i \(-0.663687\pi\)
−0.491870 + 0.870668i \(0.663687\pi\)
\(740\) 0 0
\(741\) −5586.50 −0.276957
\(742\) 0 0
\(743\) 13400.8 0.661677 0.330839 0.943687i \(-0.392668\pi\)
0.330839 + 0.943687i \(0.392668\pi\)
\(744\) 0 0
\(745\) 2728.92 0.134201
\(746\) 0 0
\(747\) 6675.04 0.326944
\(748\) 0 0
\(749\) 11108.7 0.541924
\(750\) 0 0
\(751\) 9368.29 0.455198 0.227599 0.973755i \(-0.426912\pi\)
0.227599 + 0.973755i \(0.426912\pi\)
\(752\) 0 0
\(753\) 5126.62 0.248107
\(754\) 0 0
\(755\) −284.647 −0.0137210
\(756\) 0 0
\(757\) −5851.52 −0.280947 −0.140474 0.990084i \(-0.544863\pi\)
−0.140474 + 0.990084i \(0.544863\pi\)
\(758\) 0 0
\(759\) −13431.1 −0.642318
\(760\) 0 0
\(761\) 28716.6 1.36791 0.683953 0.729526i \(-0.260260\pi\)
0.683953 + 0.729526i \(0.260260\pi\)
\(762\) 0 0
\(763\) 3578.82 0.169806
\(764\) 0 0
\(765\) 1423.98 0.0672997
\(766\) 0 0
\(767\) −3151.47 −0.148361
\(768\) 0 0
\(769\) 38963.7 1.82713 0.913567 0.406687i \(-0.133316\pi\)
0.913567 + 0.406687i \(0.133316\pi\)
\(770\) 0 0
\(771\) −16230.7 −0.758151
\(772\) 0 0
\(773\) 7592.57 0.353280 0.176640 0.984275i \(-0.443477\pi\)
0.176640 + 0.984275i \(0.443477\pi\)
\(774\) 0 0
\(775\) −9648.64 −0.447212
\(776\) 0 0
\(777\) −8234.66 −0.380202
\(778\) 0 0
\(779\) 46924.7 2.15822
\(780\) 0 0
\(781\) −3486.13 −0.159723
\(782\) 0 0
\(783\) −509.262 −0.0232434
\(784\) 0 0
\(785\) −316.156 −0.0143747
\(786\) 0 0
\(787\) −35488.2 −1.60739 −0.803696 0.595041i \(-0.797136\pi\)
−0.803696 + 0.595041i \(0.797136\pi\)
\(788\) 0 0
\(789\) −9697.88 −0.437584
\(790\) 0 0
\(791\) 12996.8 0.584213
\(792\) 0 0
\(793\) 8383.07 0.375399
\(794\) 0 0
\(795\) 3015.55 0.134529
\(796\) 0 0
\(797\) 43362.4 1.92720 0.963599 0.267352i \(-0.0861486\pi\)
0.963599 + 0.267352i \(0.0861486\pi\)
\(798\) 0 0
\(799\) 10729.1 0.475053
\(800\) 0 0
\(801\) −4514.19 −0.199127
\(802\) 0 0
\(803\) 21030.8 0.924234
\(804\) 0 0
\(805\) −1581.46 −0.0692410
\(806\) 0 0
\(807\) −20415.0 −0.890510
\(808\) 0 0
\(809\) −42504.0 −1.84717 −0.923586 0.383392i \(-0.874756\pi\)
−0.923586 + 0.383392i \(0.874756\pi\)
\(810\) 0 0
\(811\) −28029.2 −1.21361 −0.606805 0.794851i \(-0.707549\pi\)
−0.606805 + 0.794851i \(0.707549\pi\)
\(812\) 0 0
\(813\) −22951.8 −0.990105
\(814\) 0 0
\(815\) −1949.13 −0.0837730
\(816\) 0 0
\(817\) −48261.3 −2.06665
\(818\) 0 0
\(819\) 981.900 0.0418930
\(820\) 0 0
\(821\) −21499.0 −0.913911 −0.456955 0.889490i \(-0.651060\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(822\) 0 0
\(823\) 29687.3 1.25739 0.628697 0.777650i \(-0.283589\pi\)
0.628697 + 0.777650i \(0.283589\pi\)
\(824\) 0 0
\(825\) 12820.5 0.541035
\(826\) 0 0
\(827\) 18571.7 0.780897 0.390448 0.920625i \(-0.372320\pi\)
0.390448 + 0.920625i \(0.372320\pi\)
\(828\) 0 0
\(829\) −2576.14 −0.107929 −0.0539644 0.998543i \(-0.517186\pi\)
−0.0539644 + 0.998543i \(0.517186\pi\)
\(830\) 0 0
\(831\) 15740.3 0.657071
\(832\) 0 0
\(833\) 29455.6 1.22518
\(834\) 0 0
\(835\) 4670.02 0.193548
\(836\) 0 0
\(837\) −2120.47 −0.0875677
\(838\) 0 0
\(839\) −13089.6 −0.538621 −0.269311 0.963053i \(-0.586796\pi\)
−0.269311 + 0.963053i \(0.586796\pi\)
\(840\) 0 0
\(841\) −24033.2 −0.985413
\(842\) 0 0
\(843\) −11383.8 −0.465100
\(844\) 0 0
\(845\) −247.433 −0.0100733
\(846\) 0 0
\(847\) −1015.73 −0.0412052
\(848\) 0 0
\(849\) −1414.72 −0.0571886
\(850\) 0 0
\(851\) 42096.6 1.69572
\(852\) 0 0
\(853\) −37066.5 −1.48785 −0.743923 0.668265i \(-0.767037\pi\)
−0.743923 + 0.668265i \(0.767037\pi\)
\(854\) 0 0
\(855\) −1887.51 −0.0754987
\(856\) 0 0
\(857\) 20389.3 0.812701 0.406350 0.913717i \(-0.366801\pi\)
0.406350 + 0.913717i \(0.366801\pi\)
\(858\) 0 0
\(859\) 32050.7 1.27306 0.636529 0.771253i \(-0.280370\pi\)
0.636529 + 0.771253i \(0.280370\pi\)
\(860\) 0 0
\(861\) −8247.63 −0.326456
\(862\) 0 0
\(863\) −23477.1 −0.926037 −0.463018 0.886349i \(-0.653234\pi\)
−0.463018 + 0.886349i \(0.653234\pi\)
\(864\) 0 0
\(865\) −4988.99 −0.196105
\(866\) 0 0
\(867\) −20296.2 −0.795035
\(868\) 0 0
\(869\) −37233.1 −1.45345
\(870\) 0 0
\(871\) −11331.4 −0.440814
\(872\) 0 0
\(873\) −14127.4 −0.547696
\(874\) 0 0
\(875\) 3045.46 0.117663
\(876\) 0 0
\(877\) −44692.4 −1.72082 −0.860408 0.509606i \(-0.829791\pi\)
−0.860408 + 0.509606i \(0.829791\pi\)
\(878\) 0 0
\(879\) 91.7601 0.00352104
\(880\) 0 0
\(881\) 8892.46 0.340062 0.170031 0.985439i \(-0.445613\pi\)
0.170031 + 0.985439i \(0.445613\pi\)
\(882\) 0 0
\(883\) −40356.1 −1.53804 −0.769022 0.639223i \(-0.779256\pi\)
−0.769022 + 0.639223i \(0.779256\pi\)
\(884\) 0 0
\(885\) −1064.78 −0.0404433
\(886\) 0 0
\(887\) 30987.8 1.17302 0.586511 0.809941i \(-0.300501\pi\)
0.586511 + 0.809941i \(0.300501\pi\)
\(888\) 0 0
\(889\) −12224.5 −0.461188
\(890\) 0 0
\(891\) 2817.55 0.105939
\(892\) 0 0
\(893\) −14221.5 −0.532928
\(894\) 0 0
\(895\) −1494.06 −0.0557999
\(896\) 0 0
\(897\) −5019.60 −0.186845
\(898\) 0 0
\(899\) 1481.31 0.0549549
\(900\) 0 0
\(901\) −74193.6 −2.74334
\(902\) 0 0
\(903\) 8482.55 0.312604
\(904\) 0 0
\(905\) −5063.75 −0.185994
\(906\) 0 0
\(907\) −11584.8 −0.424110 −0.212055 0.977258i \(-0.568016\pi\)
−0.212055 + 0.977258i \(0.568016\pi\)
\(908\) 0 0
\(909\) −14754.0 −0.538351
\(910\) 0 0
\(911\) −19161.5 −0.696868 −0.348434 0.937333i \(-0.613287\pi\)
−0.348434 + 0.937333i \(0.613287\pi\)
\(912\) 0 0
\(913\) 25798.8 0.935174
\(914\) 0 0
\(915\) 2832.38 0.102334
\(916\) 0 0
\(917\) −15298.2 −0.550916
\(918\) 0 0
\(919\) −39089.3 −1.40309 −0.701544 0.712626i \(-0.747506\pi\)
−0.701544 + 0.712626i \(0.747506\pi\)
\(920\) 0 0
\(921\) 23102.4 0.826548
\(922\) 0 0
\(923\) −1302.87 −0.0464620
\(924\) 0 0
\(925\) −40182.9 −1.42833
\(926\) 0 0
\(927\) 7473.00 0.264774
\(928\) 0 0
\(929\) 258.811 0.00914027 0.00457014 0.999990i \(-0.498545\pi\)
0.00457014 + 0.999990i \(0.498545\pi\)
\(930\) 0 0
\(931\) −39043.8 −1.37445
\(932\) 0 0
\(933\) −8710.12 −0.305634
\(934\) 0 0
\(935\) 5503.64 0.192501
\(936\) 0 0
\(937\) −29811.6 −1.03938 −0.519692 0.854354i \(-0.673953\pi\)
−0.519692 + 0.854354i \(0.673953\pi\)
\(938\) 0 0
\(939\) 16936.3 0.588599
\(940\) 0 0
\(941\) 39979.7 1.38502 0.692509 0.721410i \(-0.256506\pi\)
0.692509 + 0.721410i \(0.256506\pi\)
\(942\) 0 0
\(943\) 42163.0 1.45601
\(944\) 0 0
\(945\) 331.754 0.0114201
\(946\) 0 0
\(947\) 8295.11 0.284641 0.142320 0.989821i \(-0.454544\pi\)
0.142320 + 0.989821i \(0.454544\pi\)
\(948\) 0 0
\(949\) 7859.80 0.268851
\(950\) 0 0
\(951\) 3200.30 0.109124
\(952\) 0 0
\(953\) 19633.5 0.667359 0.333679 0.942687i \(-0.391710\pi\)
0.333679 + 0.942687i \(0.391710\pi\)
\(954\) 0 0
\(955\) −4414.09 −0.149567
\(956\) 0 0
\(957\) −1968.28 −0.0664841
\(958\) 0 0
\(959\) 5118.68 0.172358
\(960\) 0 0
\(961\) −23623.1 −0.792961
\(962\) 0 0
\(963\) 11913.0 0.398642
\(964\) 0 0
\(965\) −790.314 −0.0263638
\(966\) 0 0
\(967\) −11936.8 −0.396961 −0.198480 0.980105i \(-0.563601\pi\)
−0.198480 + 0.980105i \(0.563601\pi\)
\(968\) 0 0
\(969\) 46439.6 1.53958
\(970\) 0 0
\(971\) −3489.36 −0.115323 −0.0576616 0.998336i \(-0.518364\pi\)
−0.0576616 + 0.998336i \(0.518364\pi\)
\(972\) 0 0
\(973\) 4604.75 0.151718
\(974\) 0 0
\(975\) 4791.40 0.157382
\(976\) 0 0
\(977\) 28945.7 0.947856 0.473928 0.880564i \(-0.342836\pi\)
0.473928 + 0.880564i \(0.342836\pi\)
\(978\) 0 0
\(979\) −17447.2 −0.569574
\(980\) 0 0
\(981\) 3837.97 0.124910
\(982\) 0 0
\(983\) −41249.7 −1.33841 −0.669206 0.743077i \(-0.733366\pi\)
−0.669206 + 0.743077i \(0.733366\pi\)
\(984\) 0 0
\(985\) 5315.72 0.171952
\(986\) 0 0
\(987\) 2499.62 0.0806116
\(988\) 0 0
\(989\) −43363.9 −1.39423
\(990\) 0 0
\(991\) −30447.5 −0.975981 −0.487991 0.872849i \(-0.662270\pi\)
−0.487991 + 0.872849i \(0.662270\pi\)
\(992\) 0 0
\(993\) −6617.59 −0.211483
\(994\) 0 0
\(995\) −5631.53 −0.179429
\(996\) 0 0
\(997\) 31771.1 1.00923 0.504615 0.863345i \(-0.331634\pi\)
0.504615 + 0.863345i \(0.331634\pi\)
\(998\) 0 0
\(999\) −8830.94 −0.279678
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.z.1.1 2
4.3 odd 2 2496.4.a.bg.1.1 2
8.3 odd 2 312.4.a.a.1.2 2
8.5 even 2 624.4.a.o.1.2 2
24.5 odd 2 1872.4.a.be.1.1 2
24.11 even 2 936.4.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.a.1.2 2 8.3 odd 2
624.4.a.o.1.2 2 8.5 even 2
936.4.a.g.1.1 2 24.11 even 2
1872.4.a.be.1.1 2 24.5 odd 2
2496.4.a.z.1.1 2 1.1 even 1 trivial
2496.4.a.bg.1.1 2 4.3 odd 2