Properties

Label 2496.4.a.t
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + (\beta - 12) q^{5} + (3 \beta + 4) q^{7} + 9 q^{9} + (8 \beta - 18) q^{11} + 13 q^{13} + ( - 3 \beta + 36) q^{15} + (18 \beta - 6) q^{17} + ( - 9 \beta - 60) q^{19} + ( - 9 \beta - 12) q^{21}+ \cdots + (72 \beta - 162) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 24 q^{5} + 8 q^{7} + 18 q^{9} - 36 q^{11} + 26 q^{13} + 72 q^{15} - 12 q^{17} - 120 q^{19} - 24 q^{21} + 72 q^{23} + 118 q^{25} - 54 q^{27} - 84 q^{29} + 368 q^{31} + 108 q^{33} + 144 q^{35}+ \cdots - 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.16228
3.16228
0 −3.00000 0 −18.3246 0 −14.9737 0 9.00000 0
1.2 0 −3.00000 0 −5.67544 0 22.9737 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.t 2
4.b odd 2 1 2496.4.a.bb 2
8.b even 2 1 156.4.a.d 2
8.d odd 2 1 624.4.a.m 2
24.f even 2 1 1872.4.a.s 2
24.h odd 2 1 468.4.a.d 2
104.e even 2 1 2028.4.a.e 2
104.j odd 4 2 2028.4.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.4.a.d 2 8.b even 2 1
468.4.a.d 2 24.h odd 2 1
624.4.a.m 2 8.d odd 2 1
1872.4.a.s 2 24.f even 2 1
2028.4.a.e 2 104.e even 2 1
2028.4.b.f 4 104.j odd 4 2
2496.4.a.t 2 1.a even 1 1 trivial
2496.4.a.bb 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5}^{2} + 24T_{5} + 104 \) Copy content Toggle raw display
\( T_{7}^{2} - 8T_{7} - 344 \) Copy content Toggle raw display
\( T_{11}^{2} + 36T_{11} - 2236 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 24T + 104 \) Copy content Toggle raw display
$7$ \( T^{2} - 8T - 344 \) Copy content Toggle raw display
$11$ \( T^{2} + 36T - 2236 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 12T - 12924 \) Copy content Toggle raw display
$19$ \( T^{2} + 120T + 360 \) Copy content Toggle raw display
$23$ \( T^{2} - 72T - 8944 \) Copy content Toggle raw display
$29$ \( T^{2} + 84T - 796 \) Copy content Toggle raw display
$31$ \( T^{2} - 368T + 16216 \) Copy content Toggle raw display
$37$ \( T^{2} + 156T - 29916 \) Copy content Toggle raw display
$41$ \( T^{2} + 216T - 69336 \) Copy content Toggle raw display
$43$ \( T^{2} + 104T - 67856 \) Copy content Toggle raw display
$47$ \( T^{2} + 660T + 62660 \) Copy content Toggle raw display
$53$ \( (T - 618)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 468T - 79804 \) Copy content Toggle raw display
$61$ \( T^{2} - 652T - 175964 \) Copy content Toggle raw display
$67$ \( T^{2} - 256T - 286376 \) Copy content Toggle raw display
$71$ \( T^{2} + 756T + 140324 \) Copy content Toggle raw display
$73$ \( T^{2} + 1124 T + 199204 \) Copy content Toggle raw display
$79$ \( T^{2} + 320T + 19840 \) Copy content Toggle raw display
$83$ \( T^{2} + 660T + 38340 \) Copy content Toggle raw display
$89$ \( T^{2} + 2112 T + 1114776 \) Copy content Toggle raw display
$97$ \( T^{2} + 116T - 412796 \) Copy content Toggle raw display
show more
show less