Properties

Label 2496.4.a.k
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,4,Mod(1,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,3,0,-6,0,20,0,9,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 6 q^{5} + 20 q^{7} + 9 q^{9} - 24 q^{11} - 13 q^{13} - 18 q^{15} - 30 q^{17} + 16 q^{19} + 60 q^{21} - 72 q^{23} - 89 q^{25} + 27 q^{27} + 282 q^{29} + 164 q^{31} - 72 q^{33} - 120 q^{35}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −6.00000 0 20.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.k 1
4.b odd 2 1 2496.4.a.b 1
8.b even 2 1 78.4.a.e 1
8.d odd 2 1 624.4.a.i 1
24.f even 2 1 1872.4.a.e 1
24.h odd 2 1 234.4.a.b 1
40.f even 2 1 1950.4.a.c 1
104.e even 2 1 1014.4.a.b 1
104.j odd 4 2 1014.4.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.e 1 8.b even 2 1
234.4.a.b 1 24.h odd 2 1
624.4.a.i 1 8.d odd 2 1
1014.4.a.b 1 104.e even 2 1
1014.4.b.c 2 104.j odd 4 2
1872.4.a.e 1 24.f even 2 1
1950.4.a.c 1 40.f even 2 1
2496.4.a.b 1 4.b odd 2 1
2496.4.a.k 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5} + 6 \) Copy content Toggle raw display
\( T_{7} - 20 \) Copy content Toggle raw display
\( T_{11} + 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 6 \) Copy content Toggle raw display
$7$ \( T - 20 \) Copy content Toggle raw display
$11$ \( T + 24 \) Copy content Toggle raw display
$13$ \( T + 13 \) Copy content Toggle raw display
$17$ \( T + 30 \) Copy content Toggle raw display
$19$ \( T - 16 \) Copy content Toggle raw display
$23$ \( T + 72 \) Copy content Toggle raw display
$29$ \( T - 282 \) Copy content Toggle raw display
$31$ \( T - 164 \) Copy content Toggle raw display
$37$ \( T + 110 \) Copy content Toggle raw display
$41$ \( T + 126 \) Copy content Toggle raw display
$43$ \( T + 164 \) Copy content Toggle raw display
$47$ \( T + 204 \) Copy content Toggle raw display
$53$ \( T - 738 \) Copy content Toggle raw display
$59$ \( T + 120 \) Copy content Toggle raw display
$61$ \( T + 614 \) Copy content Toggle raw display
$67$ \( T + 848 \) Copy content Toggle raw display
$71$ \( T - 132 \) Copy content Toggle raw display
$73$ \( T - 218 \) Copy content Toggle raw display
$79$ \( T + 1096 \) Copy content Toggle raw display
$83$ \( T + 552 \) Copy content Toggle raw display
$89$ \( T - 210 \) Copy content Toggle raw display
$97$ \( T + 1726 \) Copy content Toggle raw display
show more
show less