Properties

Label 2496.4.a.g.1.1
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2496.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +16.0000 q^{5} -28.0000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +16.0000 q^{5} -28.0000 q^{7} +9.00000 q^{9} +34.0000 q^{11} +13.0000 q^{13} -48.0000 q^{15} +138.000 q^{17} +108.000 q^{19} +84.0000 q^{21} +52.0000 q^{23} +131.000 q^{25} -27.0000 q^{27} +190.000 q^{29} +176.000 q^{31} -102.000 q^{33} -448.000 q^{35} -342.000 q^{37} -39.0000 q^{39} +240.000 q^{41} -140.000 q^{43} +144.000 q^{45} -454.000 q^{47} +441.000 q^{49} -414.000 q^{51} -198.000 q^{53} +544.000 q^{55} -324.000 q^{57} -154.000 q^{59} -34.0000 q^{61} -252.000 q^{63} +208.000 q^{65} -656.000 q^{67} -156.000 q^{69} -550.000 q^{71} +614.000 q^{73} -393.000 q^{75} -952.000 q^{77} -8.00000 q^{79} +81.0000 q^{81} +762.000 q^{83} +2208.00 q^{85} -570.000 q^{87} -444.000 q^{89} -364.000 q^{91} -528.000 q^{93} +1728.00 q^{95} +1022.00 q^{97} +306.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 16.0000 1.43108 0.715542 0.698570i \(-0.246180\pi\)
0.715542 + 0.698570i \(0.246180\pi\)
\(6\) 0 0
\(7\) −28.0000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 34.0000 0.931944 0.465972 0.884799i \(-0.345705\pi\)
0.465972 + 0.884799i \(0.345705\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −48.0000 −0.826236
\(16\) 0 0
\(17\) 138.000 1.96882 0.984409 0.175893i \(-0.0562813\pi\)
0.984409 + 0.175893i \(0.0562813\pi\)
\(18\) 0 0
\(19\) 108.000 1.30405 0.652024 0.758199i \(-0.273920\pi\)
0.652024 + 0.758199i \(0.273920\pi\)
\(20\) 0 0
\(21\) 84.0000 0.872872
\(22\) 0 0
\(23\) 52.0000 0.471424 0.235712 0.971823i \(-0.424258\pi\)
0.235712 + 0.971823i \(0.424258\pi\)
\(24\) 0 0
\(25\) 131.000 1.04800
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 190.000 1.21662 0.608312 0.793698i \(-0.291847\pi\)
0.608312 + 0.793698i \(0.291847\pi\)
\(30\) 0 0
\(31\) 176.000 1.01969 0.509847 0.860265i \(-0.329702\pi\)
0.509847 + 0.860265i \(0.329702\pi\)
\(32\) 0 0
\(33\) −102.000 −0.538058
\(34\) 0 0
\(35\) −448.000 −2.16359
\(36\) 0 0
\(37\) −342.000 −1.51958 −0.759790 0.650169i \(-0.774698\pi\)
−0.759790 + 0.650169i \(0.774698\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) 240.000 0.914188 0.457094 0.889418i \(-0.348890\pi\)
0.457094 + 0.889418i \(0.348890\pi\)
\(42\) 0 0
\(43\) −140.000 −0.496507 −0.248253 0.968695i \(-0.579857\pi\)
−0.248253 + 0.968695i \(0.579857\pi\)
\(44\) 0 0
\(45\) 144.000 0.477028
\(46\) 0 0
\(47\) −454.000 −1.40899 −0.704497 0.709707i \(-0.748827\pi\)
−0.704497 + 0.709707i \(0.748827\pi\)
\(48\) 0 0
\(49\) 441.000 1.28571
\(50\) 0 0
\(51\) −414.000 −1.13670
\(52\) 0 0
\(53\) −198.000 −0.513158 −0.256579 0.966523i \(-0.582595\pi\)
−0.256579 + 0.966523i \(0.582595\pi\)
\(54\) 0 0
\(55\) 544.000 1.33369
\(56\) 0 0
\(57\) −324.000 −0.752892
\(58\) 0 0
\(59\) −154.000 −0.339815 −0.169908 0.985460i \(-0.554347\pi\)
−0.169908 + 0.985460i \(0.554347\pi\)
\(60\) 0 0
\(61\) −34.0000 −0.0713648 −0.0356824 0.999363i \(-0.511360\pi\)
−0.0356824 + 0.999363i \(0.511360\pi\)
\(62\) 0 0
\(63\) −252.000 −0.503953
\(64\) 0 0
\(65\) 208.000 0.396911
\(66\) 0 0
\(67\) −656.000 −1.19617 −0.598083 0.801434i \(-0.704071\pi\)
−0.598083 + 0.801434i \(0.704071\pi\)
\(68\) 0 0
\(69\) −156.000 −0.272177
\(70\) 0 0
\(71\) −550.000 −0.919338 −0.459669 0.888090i \(-0.652032\pi\)
−0.459669 + 0.888090i \(0.652032\pi\)
\(72\) 0 0
\(73\) 614.000 0.984428 0.492214 0.870474i \(-0.336188\pi\)
0.492214 + 0.870474i \(0.336188\pi\)
\(74\) 0 0
\(75\) −393.000 −0.605063
\(76\) 0 0
\(77\) −952.000 −1.40897
\(78\) 0 0
\(79\) −8.00000 −0.0113933 −0.00569665 0.999984i \(-0.501813\pi\)
−0.00569665 + 0.999984i \(0.501813\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 762.000 1.00772 0.503858 0.863787i \(-0.331914\pi\)
0.503858 + 0.863787i \(0.331914\pi\)
\(84\) 0 0
\(85\) 2208.00 2.81754
\(86\) 0 0
\(87\) −570.000 −0.702419
\(88\) 0 0
\(89\) −444.000 −0.528808 −0.264404 0.964412i \(-0.585175\pi\)
−0.264404 + 0.964412i \(0.585175\pi\)
\(90\) 0 0
\(91\) −364.000 −0.419314
\(92\) 0 0
\(93\) −528.000 −0.588721
\(94\) 0 0
\(95\) 1728.00 1.86620
\(96\) 0 0
\(97\) 1022.00 1.06978 0.534889 0.844923i \(-0.320354\pi\)
0.534889 + 0.844923i \(0.320354\pi\)
\(98\) 0 0
\(99\) 306.000 0.310648
\(100\) 0 0
\(101\) 1190.00 1.17237 0.586185 0.810177i \(-0.300629\pi\)
0.586185 + 0.810177i \(0.300629\pi\)
\(102\) 0 0
\(103\) 224.000 0.214285 0.107143 0.994244i \(-0.465830\pi\)
0.107143 + 0.994244i \(0.465830\pi\)
\(104\) 0 0
\(105\) 1344.00 1.24915
\(106\) 0 0
\(107\) −640.000 −0.578235 −0.289117 0.957294i \(-0.593362\pi\)
−0.289117 + 0.957294i \(0.593362\pi\)
\(108\) 0 0
\(109\) 1934.00 1.69948 0.849741 0.527200i \(-0.176758\pi\)
0.849741 + 0.527200i \(0.176758\pi\)
\(110\) 0 0
\(111\) 1026.00 0.877330
\(112\) 0 0
\(113\) −418.000 −0.347983 −0.173992 0.984747i \(-0.555667\pi\)
−0.173992 + 0.984747i \(0.555667\pi\)
\(114\) 0 0
\(115\) 832.000 0.674647
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) −3864.00 −2.97657
\(120\) 0 0
\(121\) −175.000 −0.131480
\(122\) 0 0
\(123\) −720.000 −0.527807
\(124\) 0 0
\(125\) 96.0000 0.0686920
\(126\) 0 0
\(127\) 1040.00 0.726654 0.363327 0.931662i \(-0.381641\pi\)
0.363327 + 0.931662i \(0.381641\pi\)
\(128\) 0 0
\(129\) 420.000 0.286658
\(130\) 0 0
\(131\) −568.000 −0.378827 −0.189414 0.981897i \(-0.560659\pi\)
−0.189414 + 0.981897i \(0.560659\pi\)
\(132\) 0 0
\(133\) −3024.00 −1.97153
\(134\) 0 0
\(135\) −432.000 −0.275412
\(136\) 0 0
\(137\) 528.000 0.329271 0.164635 0.986355i \(-0.447355\pi\)
0.164635 + 0.986355i \(0.447355\pi\)
\(138\) 0 0
\(139\) −1556.00 −0.949483 −0.474742 0.880125i \(-0.657459\pi\)
−0.474742 + 0.880125i \(0.657459\pi\)
\(140\) 0 0
\(141\) 1362.00 0.813483
\(142\) 0 0
\(143\) 442.000 0.258475
\(144\) 0 0
\(145\) 3040.00 1.74109
\(146\) 0 0
\(147\) −1323.00 −0.742307
\(148\) 0 0
\(149\) −1524.00 −0.837926 −0.418963 0.908003i \(-0.637606\pi\)
−0.418963 + 0.908003i \(0.637606\pi\)
\(150\) 0 0
\(151\) 3024.00 1.62973 0.814866 0.579649i \(-0.196810\pi\)
0.814866 + 0.579649i \(0.196810\pi\)
\(152\) 0 0
\(153\) 1242.00 0.656273
\(154\) 0 0
\(155\) 2816.00 1.45927
\(156\) 0 0
\(157\) −2198.00 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 594.000 0.296272
\(160\) 0 0
\(161\) −1456.00 −0.712726
\(162\) 0 0
\(163\) −268.000 −0.128781 −0.0643907 0.997925i \(-0.520510\pi\)
−0.0643907 + 0.997925i \(0.520510\pi\)
\(164\) 0 0
\(165\) −1632.00 −0.770006
\(166\) 0 0
\(167\) −702.000 −0.325284 −0.162642 0.986685i \(-0.552002\pi\)
−0.162642 + 0.986685i \(0.552002\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 972.000 0.434682
\(172\) 0 0
\(173\) −2066.00 −0.907948 −0.453974 0.891015i \(-0.649994\pi\)
−0.453974 + 0.891015i \(0.649994\pi\)
\(174\) 0 0
\(175\) −3668.00 −1.58443
\(176\) 0 0
\(177\) 462.000 0.196192
\(178\) 0 0
\(179\) −276.000 −0.115247 −0.0576235 0.998338i \(-0.518352\pi\)
−0.0576235 + 0.998338i \(0.518352\pi\)
\(180\) 0 0
\(181\) 3474.00 1.42663 0.713316 0.700843i \(-0.247192\pi\)
0.713316 + 0.700843i \(0.247192\pi\)
\(182\) 0 0
\(183\) 102.000 0.0412025
\(184\) 0 0
\(185\) −5472.00 −2.17465
\(186\) 0 0
\(187\) 4692.00 1.83483
\(188\) 0 0
\(189\) 756.000 0.290957
\(190\) 0 0
\(191\) 3920.00 1.48503 0.742516 0.669828i \(-0.233632\pi\)
0.742516 + 0.669828i \(0.233632\pi\)
\(192\) 0 0
\(193\) 2186.00 0.815294 0.407647 0.913140i \(-0.366349\pi\)
0.407647 + 0.913140i \(0.366349\pi\)
\(194\) 0 0
\(195\) −624.000 −0.229157
\(196\) 0 0
\(197\) 1368.00 0.494751 0.247376 0.968920i \(-0.420432\pi\)
0.247376 + 0.968920i \(0.420432\pi\)
\(198\) 0 0
\(199\) 1072.00 0.381870 0.190935 0.981603i \(-0.438848\pi\)
0.190935 + 0.981603i \(0.438848\pi\)
\(200\) 0 0
\(201\) 1968.00 0.690607
\(202\) 0 0
\(203\) −5320.00 −1.83936
\(204\) 0 0
\(205\) 3840.00 1.30828
\(206\) 0 0
\(207\) 468.000 0.157141
\(208\) 0 0
\(209\) 3672.00 1.21530
\(210\) 0 0
\(211\) 5444.00 1.77621 0.888105 0.459640i \(-0.152022\pi\)
0.888105 + 0.459640i \(0.152022\pi\)
\(212\) 0 0
\(213\) 1650.00 0.530780
\(214\) 0 0
\(215\) −2240.00 −0.710543
\(216\) 0 0
\(217\) −4928.00 −1.54163
\(218\) 0 0
\(219\) −1842.00 −0.568360
\(220\) 0 0
\(221\) 1794.00 0.546052
\(222\) 0 0
\(223\) −96.0000 −0.0288280 −0.0144140 0.999896i \(-0.504588\pi\)
−0.0144140 + 0.999896i \(0.504588\pi\)
\(224\) 0 0
\(225\) 1179.00 0.349333
\(226\) 0 0
\(227\) 198.000 0.0578930 0.0289465 0.999581i \(-0.490785\pi\)
0.0289465 + 0.999581i \(0.490785\pi\)
\(228\) 0 0
\(229\) −5922.00 −1.70889 −0.854447 0.519538i \(-0.826104\pi\)
−0.854447 + 0.519538i \(0.826104\pi\)
\(230\) 0 0
\(231\) 2856.00 0.813468
\(232\) 0 0
\(233\) −5114.00 −1.43789 −0.718947 0.695065i \(-0.755376\pi\)
−0.718947 + 0.695065i \(0.755376\pi\)
\(234\) 0 0
\(235\) −7264.00 −2.01639
\(236\) 0 0
\(237\) 24.0000 0.00657792
\(238\) 0 0
\(239\) 5226.00 1.41440 0.707200 0.707013i \(-0.249958\pi\)
0.707200 + 0.707013i \(0.249958\pi\)
\(240\) 0 0
\(241\) −762.000 −0.203671 −0.101836 0.994801i \(-0.532472\pi\)
−0.101836 + 0.994801i \(0.532472\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 7056.00 1.83996
\(246\) 0 0
\(247\) 1404.00 0.361678
\(248\) 0 0
\(249\) −2286.00 −0.581805
\(250\) 0 0
\(251\) 3240.00 0.814769 0.407384 0.913257i \(-0.366441\pi\)
0.407384 + 0.913257i \(0.366441\pi\)
\(252\) 0 0
\(253\) 1768.00 0.439341
\(254\) 0 0
\(255\) −6624.00 −1.62671
\(256\) 0 0
\(257\) −1386.00 −0.336406 −0.168203 0.985752i \(-0.553796\pi\)
−0.168203 + 0.985752i \(0.553796\pi\)
\(258\) 0 0
\(259\) 9576.00 2.29739
\(260\) 0 0
\(261\) 1710.00 0.405542
\(262\) 0 0
\(263\) −3300.00 −0.773714 −0.386857 0.922140i \(-0.626439\pi\)
−0.386857 + 0.922140i \(0.626439\pi\)
\(264\) 0 0
\(265\) −3168.00 −0.734372
\(266\) 0 0
\(267\) 1332.00 0.305307
\(268\) 0 0
\(269\) −4290.00 −0.972364 −0.486182 0.873858i \(-0.661611\pi\)
−0.486182 + 0.873858i \(0.661611\pi\)
\(270\) 0 0
\(271\) −2452.00 −0.549625 −0.274813 0.961498i \(-0.588616\pi\)
−0.274813 + 0.961498i \(0.588616\pi\)
\(272\) 0 0
\(273\) 1092.00 0.242091
\(274\) 0 0
\(275\) 4454.00 0.976677
\(276\) 0 0
\(277\) 42.0000 0.00911024 0.00455512 0.999990i \(-0.498550\pi\)
0.00455512 + 0.999990i \(0.498550\pi\)
\(278\) 0 0
\(279\) 1584.00 0.339898
\(280\) 0 0
\(281\) −2288.00 −0.485732 −0.242866 0.970060i \(-0.578088\pi\)
−0.242866 + 0.970060i \(0.578088\pi\)
\(282\) 0 0
\(283\) 1156.00 0.242816 0.121408 0.992603i \(-0.461259\pi\)
0.121408 + 0.992603i \(0.461259\pi\)
\(284\) 0 0
\(285\) −5184.00 −1.07745
\(286\) 0 0
\(287\) −6720.00 −1.38212
\(288\) 0 0
\(289\) 14131.0 2.87625
\(290\) 0 0
\(291\) −3066.00 −0.617636
\(292\) 0 0
\(293\) 8684.00 1.73148 0.865742 0.500491i \(-0.166847\pi\)
0.865742 + 0.500491i \(0.166847\pi\)
\(294\) 0 0
\(295\) −2464.00 −0.486304
\(296\) 0 0
\(297\) −918.000 −0.179353
\(298\) 0 0
\(299\) 676.000 0.130749
\(300\) 0 0
\(301\) 3920.00 0.750648
\(302\) 0 0
\(303\) −3570.00 −0.676868
\(304\) 0 0
\(305\) −544.000 −0.102129
\(306\) 0 0
\(307\) −7552.00 −1.40396 −0.701979 0.712197i \(-0.747700\pi\)
−0.701979 + 0.712197i \(0.747700\pi\)
\(308\) 0 0
\(309\) −672.000 −0.123718
\(310\) 0 0
\(311\) −2652.00 −0.483541 −0.241770 0.970334i \(-0.577728\pi\)
−0.241770 + 0.970334i \(0.577728\pi\)
\(312\) 0 0
\(313\) −4426.00 −0.799273 −0.399636 0.916674i \(-0.630864\pi\)
−0.399636 + 0.916674i \(0.630864\pi\)
\(314\) 0 0
\(315\) −4032.00 −0.721198
\(316\) 0 0
\(317\) 4944.00 0.875971 0.437985 0.898982i \(-0.355692\pi\)
0.437985 + 0.898982i \(0.355692\pi\)
\(318\) 0 0
\(319\) 6460.00 1.13383
\(320\) 0 0
\(321\) 1920.00 0.333844
\(322\) 0 0
\(323\) 14904.0 2.56743
\(324\) 0 0
\(325\) 1703.00 0.290663
\(326\) 0 0
\(327\) −5802.00 −0.981197
\(328\) 0 0
\(329\) 12712.0 2.13020
\(330\) 0 0
\(331\) −6088.00 −1.01096 −0.505478 0.862839i \(-0.668684\pi\)
−0.505478 + 0.862839i \(0.668684\pi\)
\(332\) 0 0
\(333\) −3078.00 −0.506527
\(334\) 0 0
\(335\) −10496.0 −1.71181
\(336\) 0 0
\(337\) 6638.00 1.07298 0.536491 0.843906i \(-0.319750\pi\)
0.536491 + 0.843906i \(0.319750\pi\)
\(338\) 0 0
\(339\) 1254.00 0.200908
\(340\) 0 0
\(341\) 5984.00 0.950298
\(342\) 0 0
\(343\) −2744.00 −0.431959
\(344\) 0 0
\(345\) −2496.00 −0.389508
\(346\) 0 0
\(347\) −2292.00 −0.354585 −0.177293 0.984158i \(-0.556734\pi\)
−0.177293 + 0.984158i \(0.556734\pi\)
\(348\) 0 0
\(349\) 9866.00 1.51322 0.756612 0.653865i \(-0.226853\pi\)
0.756612 + 0.653865i \(0.226853\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) 2368.00 0.357042 0.178521 0.983936i \(-0.442869\pi\)
0.178521 + 0.983936i \(0.442869\pi\)
\(354\) 0 0
\(355\) −8800.00 −1.31565
\(356\) 0 0
\(357\) 11592.0 1.71853
\(358\) 0 0
\(359\) −5070.00 −0.745360 −0.372680 0.927960i \(-0.621561\pi\)
−0.372680 + 0.927960i \(0.621561\pi\)
\(360\) 0 0
\(361\) 4805.00 0.700539
\(362\) 0 0
\(363\) 525.000 0.0759101
\(364\) 0 0
\(365\) 9824.00 1.40880
\(366\) 0 0
\(367\) 8584.00 1.22093 0.610465 0.792043i \(-0.290983\pi\)
0.610465 + 0.792043i \(0.290983\pi\)
\(368\) 0 0
\(369\) 2160.00 0.304729
\(370\) 0 0
\(371\) 5544.00 0.775822
\(372\) 0 0
\(373\) −4994.00 −0.693243 −0.346621 0.938005i \(-0.612671\pi\)
−0.346621 + 0.938005i \(0.612671\pi\)
\(374\) 0 0
\(375\) −288.000 −0.0396593
\(376\) 0 0
\(377\) 2470.00 0.337431
\(378\) 0 0
\(379\) 1300.00 0.176191 0.0880957 0.996112i \(-0.471922\pi\)
0.0880957 + 0.996112i \(0.471922\pi\)
\(380\) 0 0
\(381\) −3120.00 −0.419534
\(382\) 0 0
\(383\) 4590.00 0.612371 0.306185 0.951972i \(-0.400947\pi\)
0.306185 + 0.951972i \(0.400947\pi\)
\(384\) 0 0
\(385\) −15232.0 −2.01635
\(386\) 0 0
\(387\) −1260.00 −0.165502
\(388\) 0 0
\(389\) −3510.00 −0.457491 −0.228746 0.973486i \(-0.573462\pi\)
−0.228746 + 0.973486i \(0.573462\pi\)
\(390\) 0 0
\(391\) 7176.00 0.928148
\(392\) 0 0
\(393\) 1704.00 0.218716
\(394\) 0 0
\(395\) −128.000 −0.0163048
\(396\) 0 0
\(397\) −6230.00 −0.787594 −0.393797 0.919197i \(-0.628839\pi\)
−0.393797 + 0.919197i \(0.628839\pi\)
\(398\) 0 0
\(399\) 9072.00 1.13827
\(400\) 0 0
\(401\) −7500.00 −0.933995 −0.466998 0.884259i \(-0.654664\pi\)
−0.466998 + 0.884259i \(0.654664\pi\)
\(402\) 0 0
\(403\) 2288.00 0.282812
\(404\) 0 0
\(405\) 1296.00 0.159009
\(406\) 0 0
\(407\) −11628.0 −1.41616
\(408\) 0 0
\(409\) 8254.00 0.997883 0.498941 0.866636i \(-0.333722\pi\)
0.498941 + 0.866636i \(0.333722\pi\)
\(410\) 0 0
\(411\) −1584.00 −0.190105
\(412\) 0 0
\(413\) 4312.00 0.513752
\(414\) 0 0
\(415\) 12192.0 1.44212
\(416\) 0 0
\(417\) 4668.00 0.548185
\(418\) 0 0
\(419\) −14808.0 −1.72653 −0.863267 0.504747i \(-0.831586\pi\)
−0.863267 + 0.504747i \(0.831586\pi\)
\(420\) 0 0
\(421\) −10354.0 −1.19863 −0.599315 0.800513i \(-0.704560\pi\)
−0.599315 + 0.800513i \(0.704560\pi\)
\(422\) 0 0
\(423\) −4086.00 −0.469665
\(424\) 0 0
\(425\) 18078.0 2.06332
\(426\) 0 0
\(427\) 952.000 0.107893
\(428\) 0 0
\(429\) −1326.00 −0.149230
\(430\) 0 0
\(431\) 15486.0 1.73071 0.865353 0.501163i \(-0.167094\pi\)
0.865353 + 0.501163i \(0.167094\pi\)
\(432\) 0 0
\(433\) −2018.00 −0.223970 −0.111985 0.993710i \(-0.535721\pi\)
−0.111985 + 0.993710i \(0.535721\pi\)
\(434\) 0 0
\(435\) −9120.00 −1.00522
\(436\) 0 0
\(437\) 5616.00 0.614759
\(438\) 0 0
\(439\) −8792.00 −0.955853 −0.477926 0.878400i \(-0.658611\pi\)
−0.477926 + 0.878400i \(0.658611\pi\)
\(440\) 0 0
\(441\) 3969.00 0.428571
\(442\) 0 0
\(443\) −2760.00 −0.296008 −0.148004 0.988987i \(-0.547285\pi\)
−0.148004 + 0.988987i \(0.547285\pi\)
\(444\) 0 0
\(445\) −7104.00 −0.756768
\(446\) 0 0
\(447\) 4572.00 0.483777
\(448\) 0 0
\(449\) 9532.00 1.00188 0.500939 0.865483i \(-0.332988\pi\)
0.500939 + 0.865483i \(0.332988\pi\)
\(450\) 0 0
\(451\) 8160.00 0.851972
\(452\) 0 0
\(453\) −9072.00 −0.940927
\(454\) 0 0
\(455\) −5824.00 −0.600073
\(456\) 0 0
\(457\) 12862.0 1.31654 0.658270 0.752782i \(-0.271288\pi\)
0.658270 + 0.752782i \(0.271288\pi\)
\(458\) 0 0
\(459\) −3726.00 −0.378899
\(460\) 0 0
\(461\) 6744.00 0.681344 0.340672 0.940182i \(-0.389346\pi\)
0.340672 + 0.940182i \(0.389346\pi\)
\(462\) 0 0
\(463\) 9572.00 0.960796 0.480398 0.877051i \(-0.340492\pi\)
0.480398 + 0.877051i \(0.340492\pi\)
\(464\) 0 0
\(465\) −8448.00 −0.842509
\(466\) 0 0
\(467\) 9104.00 0.902105 0.451052 0.892498i \(-0.351049\pi\)
0.451052 + 0.892498i \(0.351049\pi\)
\(468\) 0 0
\(469\) 18368.0 1.80843
\(470\) 0 0
\(471\) 6594.00 0.645086
\(472\) 0 0
\(473\) −4760.00 −0.462717
\(474\) 0 0
\(475\) 14148.0 1.36664
\(476\) 0 0
\(477\) −1782.00 −0.171053
\(478\) 0 0
\(479\) 18870.0 1.79998 0.899992 0.435906i \(-0.143572\pi\)
0.899992 + 0.435906i \(0.143572\pi\)
\(480\) 0 0
\(481\) −4446.00 −0.421456
\(482\) 0 0
\(483\) 4368.00 0.411493
\(484\) 0 0
\(485\) 16352.0 1.53094
\(486\) 0 0
\(487\) 1744.00 0.162276 0.0811378 0.996703i \(-0.474145\pi\)
0.0811378 + 0.996703i \(0.474145\pi\)
\(488\) 0 0
\(489\) 804.000 0.0743520
\(490\) 0 0
\(491\) 13360.0 1.22796 0.613980 0.789322i \(-0.289568\pi\)
0.613980 + 0.789322i \(0.289568\pi\)
\(492\) 0 0
\(493\) 26220.0 2.39531
\(494\) 0 0
\(495\) 4896.00 0.444563
\(496\) 0 0
\(497\) 15400.0 1.38991
\(498\) 0 0
\(499\) 17368.0 1.55811 0.779057 0.626954i \(-0.215698\pi\)
0.779057 + 0.626954i \(0.215698\pi\)
\(500\) 0 0
\(501\) 2106.00 0.187803
\(502\) 0 0
\(503\) 5828.00 0.516616 0.258308 0.966063i \(-0.416835\pi\)
0.258308 + 0.966063i \(0.416835\pi\)
\(504\) 0 0
\(505\) 19040.0 1.67776
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) −10744.0 −0.935598 −0.467799 0.883835i \(-0.654953\pi\)
−0.467799 + 0.883835i \(0.654953\pi\)
\(510\) 0 0
\(511\) −17192.0 −1.48832
\(512\) 0 0
\(513\) −2916.00 −0.250964
\(514\) 0 0
\(515\) 3584.00 0.306660
\(516\) 0 0
\(517\) −15436.0 −1.31310
\(518\) 0 0
\(519\) 6198.00 0.524204
\(520\) 0 0
\(521\) −12234.0 −1.02875 −0.514377 0.857564i \(-0.671977\pi\)
−0.514377 + 0.857564i \(0.671977\pi\)
\(522\) 0 0
\(523\) 1812.00 0.151498 0.0757488 0.997127i \(-0.475865\pi\)
0.0757488 + 0.997127i \(0.475865\pi\)
\(524\) 0 0
\(525\) 11004.0 0.914769
\(526\) 0 0
\(527\) 24288.0 2.00759
\(528\) 0 0
\(529\) −9463.00 −0.777760
\(530\) 0 0
\(531\) −1386.00 −0.113272
\(532\) 0 0
\(533\) 3120.00 0.253550
\(534\) 0 0
\(535\) −10240.0 −0.827502
\(536\) 0 0
\(537\) 828.000 0.0665379
\(538\) 0 0
\(539\) 14994.0 1.19821
\(540\) 0 0
\(541\) −6098.00 −0.484609 −0.242305 0.970200i \(-0.577903\pi\)
−0.242305 + 0.970200i \(0.577903\pi\)
\(542\) 0 0
\(543\) −10422.0 −0.823666
\(544\) 0 0
\(545\) 30944.0 2.43210
\(546\) 0 0
\(547\) −18332.0 −1.43294 −0.716471 0.697616i \(-0.754244\pi\)
−0.716471 + 0.697616i \(0.754244\pi\)
\(548\) 0 0
\(549\) −306.000 −0.0237883
\(550\) 0 0
\(551\) 20520.0 1.58654
\(552\) 0 0
\(553\) 224.000 0.0172250
\(554\) 0 0
\(555\) 16416.0 1.25553
\(556\) 0 0
\(557\) 20004.0 1.52172 0.760859 0.648917i \(-0.224778\pi\)
0.760859 + 0.648917i \(0.224778\pi\)
\(558\) 0 0
\(559\) −1820.00 −0.137706
\(560\) 0 0
\(561\) −14076.0 −1.05934
\(562\) 0 0
\(563\) 10988.0 0.822538 0.411269 0.911514i \(-0.365086\pi\)
0.411269 + 0.911514i \(0.365086\pi\)
\(564\) 0 0
\(565\) −6688.00 −0.497993
\(566\) 0 0
\(567\) −2268.00 −0.167984
\(568\) 0 0
\(569\) 11062.0 0.815014 0.407507 0.913202i \(-0.366398\pi\)
0.407507 + 0.913202i \(0.366398\pi\)
\(570\) 0 0
\(571\) −708.000 −0.0518895 −0.0259447 0.999663i \(-0.508259\pi\)
−0.0259447 + 0.999663i \(0.508259\pi\)
\(572\) 0 0
\(573\) −11760.0 −0.857384
\(574\) 0 0
\(575\) 6812.00 0.494052
\(576\) 0 0
\(577\) −2094.00 −0.151082 −0.0755410 0.997143i \(-0.524068\pi\)
−0.0755410 + 0.997143i \(0.524068\pi\)
\(578\) 0 0
\(579\) −6558.00 −0.470710
\(580\) 0 0
\(581\) −21336.0 −1.52352
\(582\) 0 0
\(583\) −6732.00 −0.478235
\(584\) 0 0
\(585\) 1872.00 0.132304
\(586\) 0 0
\(587\) −17854.0 −1.25539 −0.627695 0.778460i \(-0.716001\pi\)
−0.627695 + 0.778460i \(0.716001\pi\)
\(588\) 0 0
\(589\) 19008.0 1.32973
\(590\) 0 0
\(591\) −4104.00 −0.285645
\(592\) 0 0
\(593\) 23948.0 1.65839 0.829196 0.558958i \(-0.188799\pi\)
0.829196 + 0.558958i \(0.188799\pi\)
\(594\) 0 0
\(595\) −61824.0 −4.25973
\(596\) 0 0
\(597\) −3216.00 −0.220473
\(598\) 0 0
\(599\) 18068.0 1.23245 0.616226 0.787570i \(-0.288661\pi\)
0.616226 + 0.787570i \(0.288661\pi\)
\(600\) 0 0
\(601\) 19942.0 1.35350 0.676748 0.736215i \(-0.263389\pi\)
0.676748 + 0.736215i \(0.263389\pi\)
\(602\) 0 0
\(603\) −5904.00 −0.398722
\(604\) 0 0
\(605\) −2800.00 −0.188159
\(606\) 0 0
\(607\) −26376.0 −1.76370 −0.881852 0.471526i \(-0.843704\pi\)
−0.881852 + 0.471526i \(0.843704\pi\)
\(608\) 0 0
\(609\) 15960.0 1.06196
\(610\) 0 0
\(611\) −5902.00 −0.390785
\(612\) 0 0
\(613\) 19426.0 1.27995 0.639975 0.768396i \(-0.278945\pi\)
0.639975 + 0.768396i \(0.278945\pi\)
\(614\) 0 0
\(615\) −11520.0 −0.755335
\(616\) 0 0
\(617\) −8024.00 −0.523556 −0.261778 0.965128i \(-0.584309\pi\)
−0.261778 + 0.965128i \(0.584309\pi\)
\(618\) 0 0
\(619\) −20648.0 −1.34073 −0.670366 0.742031i \(-0.733863\pi\)
−0.670366 + 0.742031i \(0.733863\pi\)
\(620\) 0 0
\(621\) −1404.00 −0.0907256
\(622\) 0 0
\(623\) 12432.0 0.799482
\(624\) 0 0
\(625\) −14839.0 −0.949696
\(626\) 0 0
\(627\) −11016.0 −0.701653
\(628\) 0 0
\(629\) −47196.0 −2.99178
\(630\) 0 0
\(631\) −12280.0 −0.774737 −0.387369 0.921925i \(-0.626616\pi\)
−0.387369 + 0.921925i \(0.626616\pi\)
\(632\) 0 0
\(633\) −16332.0 −1.02550
\(634\) 0 0
\(635\) 16640.0 1.03990
\(636\) 0 0
\(637\) 5733.00 0.356593
\(638\) 0 0
\(639\) −4950.00 −0.306446
\(640\) 0 0
\(641\) −15878.0 −0.978383 −0.489191 0.872176i \(-0.662708\pi\)
−0.489191 + 0.872176i \(0.662708\pi\)
\(642\) 0 0
\(643\) −21520.0 −1.31985 −0.659927 0.751330i \(-0.729413\pi\)
−0.659927 + 0.751330i \(0.729413\pi\)
\(644\) 0 0
\(645\) 6720.00 0.410232
\(646\) 0 0
\(647\) −7312.00 −0.444304 −0.222152 0.975012i \(-0.571308\pi\)
−0.222152 + 0.975012i \(0.571308\pi\)
\(648\) 0 0
\(649\) −5236.00 −0.316689
\(650\) 0 0
\(651\) 14784.0 0.890062
\(652\) 0 0
\(653\) −3090.00 −0.185178 −0.0925889 0.995704i \(-0.529514\pi\)
−0.0925889 + 0.995704i \(0.529514\pi\)
\(654\) 0 0
\(655\) −9088.00 −0.542134
\(656\) 0 0
\(657\) 5526.00 0.328143
\(658\) 0 0
\(659\) −13428.0 −0.793749 −0.396875 0.917873i \(-0.629905\pi\)
−0.396875 + 0.917873i \(0.629905\pi\)
\(660\) 0 0
\(661\) −22598.0 −1.32974 −0.664872 0.746958i \(-0.731514\pi\)
−0.664872 + 0.746958i \(0.731514\pi\)
\(662\) 0 0
\(663\) −5382.00 −0.315263
\(664\) 0 0
\(665\) −48384.0 −2.82143
\(666\) 0 0
\(667\) 9880.00 0.573546
\(668\) 0 0
\(669\) 288.000 0.0166438
\(670\) 0 0
\(671\) −1156.00 −0.0665080
\(672\) 0 0
\(673\) 6178.00 0.353855 0.176927 0.984224i \(-0.443384\pi\)
0.176927 + 0.984224i \(0.443384\pi\)
\(674\) 0 0
\(675\) −3537.00 −0.201688
\(676\) 0 0
\(677\) −22398.0 −1.27153 −0.635764 0.771883i \(-0.719315\pi\)
−0.635764 + 0.771883i \(0.719315\pi\)
\(678\) 0 0
\(679\) −28616.0 −1.61735
\(680\) 0 0
\(681\) −594.000 −0.0334246
\(682\) 0 0
\(683\) 11410.0 0.639226 0.319613 0.947548i \(-0.396447\pi\)
0.319613 + 0.947548i \(0.396447\pi\)
\(684\) 0 0
\(685\) 8448.00 0.471214
\(686\) 0 0
\(687\) 17766.0 0.986631
\(688\) 0 0
\(689\) −2574.00 −0.142325
\(690\) 0 0
\(691\) 32488.0 1.78857 0.894285 0.447498i \(-0.147685\pi\)
0.894285 + 0.447498i \(0.147685\pi\)
\(692\) 0 0
\(693\) −8568.00 −0.469656
\(694\) 0 0
\(695\) −24896.0 −1.35879
\(696\) 0 0
\(697\) 33120.0 1.79987
\(698\) 0 0
\(699\) 15342.0 0.830168
\(700\) 0 0
\(701\) −5094.00 −0.274462 −0.137231 0.990539i \(-0.543820\pi\)
−0.137231 + 0.990539i \(0.543820\pi\)
\(702\) 0 0
\(703\) −36936.0 −1.98160
\(704\) 0 0
\(705\) 21792.0 1.16416
\(706\) 0 0
\(707\) −33320.0 −1.77246
\(708\) 0 0
\(709\) −25418.0 −1.34639 −0.673197 0.739463i \(-0.735079\pi\)
−0.673197 + 0.739463i \(0.735079\pi\)
\(710\) 0 0
\(711\) −72.0000 −0.00379777
\(712\) 0 0
\(713\) 9152.00 0.480708
\(714\) 0 0
\(715\) 7072.00 0.369899
\(716\) 0 0
\(717\) −15678.0 −0.816605
\(718\) 0 0
\(719\) 20428.0 1.05958 0.529788 0.848130i \(-0.322271\pi\)
0.529788 + 0.848130i \(0.322271\pi\)
\(720\) 0 0
\(721\) −6272.00 −0.323969
\(722\) 0 0
\(723\) 2286.00 0.117590
\(724\) 0 0
\(725\) 24890.0 1.27502
\(726\) 0 0
\(727\) 38336.0 1.95571 0.977857 0.209276i \(-0.0671107\pi\)
0.977857 + 0.209276i \(0.0671107\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −19320.0 −0.977532
\(732\) 0 0
\(733\) 166.000 0.00836473 0.00418237 0.999991i \(-0.498669\pi\)
0.00418237 + 0.999991i \(0.498669\pi\)
\(734\) 0 0
\(735\) −21168.0 −1.06230
\(736\) 0 0
\(737\) −22304.0 −1.11476
\(738\) 0 0
\(739\) −25248.0 −1.25678 −0.628392 0.777897i \(-0.716286\pi\)
−0.628392 + 0.777897i \(0.716286\pi\)
\(740\) 0 0
\(741\) −4212.00 −0.208815
\(742\) 0 0
\(743\) 4442.00 0.219329 0.109664 0.993969i \(-0.465022\pi\)
0.109664 + 0.993969i \(0.465022\pi\)
\(744\) 0 0
\(745\) −24384.0 −1.19914
\(746\) 0 0
\(747\) 6858.00 0.335905
\(748\) 0 0
\(749\) 17920.0 0.874209
\(750\) 0 0
\(751\) 19848.0 0.964399 0.482200 0.876061i \(-0.339838\pi\)
0.482200 + 0.876061i \(0.339838\pi\)
\(752\) 0 0
\(753\) −9720.00 −0.470407
\(754\) 0 0
\(755\) 48384.0 2.33228
\(756\) 0 0
\(757\) 29166.0 1.40034 0.700169 0.713977i \(-0.253108\pi\)
0.700169 + 0.713977i \(0.253108\pi\)
\(758\) 0 0
\(759\) −5304.00 −0.253653
\(760\) 0 0
\(761\) −6240.00 −0.297240 −0.148620 0.988894i \(-0.547483\pi\)
−0.148620 + 0.988894i \(0.547483\pi\)
\(762\) 0 0
\(763\) −54152.0 −2.56938
\(764\) 0 0
\(765\) 19872.0 0.939181
\(766\) 0 0
\(767\) −2002.00 −0.0942478
\(768\) 0 0
\(769\) −39750.0 −1.86401 −0.932004 0.362449i \(-0.881941\pi\)
−0.932004 + 0.362449i \(0.881941\pi\)
\(770\) 0 0
\(771\) 4158.00 0.194224
\(772\) 0 0
\(773\) −9764.00 −0.454317 −0.227158 0.973858i \(-0.572943\pi\)
−0.227158 + 0.973858i \(0.572943\pi\)
\(774\) 0 0
\(775\) 23056.0 1.06864
\(776\) 0 0
\(777\) −28728.0 −1.32640
\(778\) 0 0
\(779\) 25920.0 1.19214
\(780\) 0 0
\(781\) −18700.0 −0.856772
\(782\) 0 0
\(783\) −5130.00 −0.234140
\(784\) 0 0
\(785\) −35168.0 −1.59898
\(786\) 0 0
\(787\) −36016.0 −1.63130 −0.815649 0.578547i \(-0.803620\pi\)
−0.815649 + 0.578547i \(0.803620\pi\)
\(788\) 0 0
\(789\) 9900.00 0.446704
\(790\) 0 0
\(791\) 11704.0 0.526102
\(792\) 0 0
\(793\) −442.000 −0.0197930
\(794\) 0 0
\(795\) 9504.00 0.423990
\(796\) 0 0
\(797\) 22290.0 0.990655 0.495328 0.868706i \(-0.335048\pi\)
0.495328 + 0.868706i \(0.335048\pi\)
\(798\) 0 0
\(799\) −62652.0 −2.77405
\(800\) 0 0
\(801\) −3996.00 −0.176269
\(802\) 0 0
\(803\) 20876.0 0.917432
\(804\) 0 0
\(805\) −23296.0 −1.01997
\(806\) 0 0
\(807\) 12870.0 0.561395
\(808\) 0 0
\(809\) −25578.0 −1.11159 −0.555794 0.831320i \(-0.687586\pi\)
−0.555794 + 0.831320i \(0.687586\pi\)
\(810\) 0 0
\(811\) 29900.0 1.29461 0.647306 0.762230i \(-0.275895\pi\)
0.647306 + 0.762230i \(0.275895\pi\)
\(812\) 0 0
\(813\) 7356.00 0.317326
\(814\) 0 0
\(815\) −4288.00 −0.184297
\(816\) 0 0
\(817\) −15120.0 −0.647469
\(818\) 0 0
\(819\) −3276.00 −0.139771
\(820\) 0 0
\(821\) −16412.0 −0.697665 −0.348832 0.937185i \(-0.613422\pi\)
−0.348832 + 0.937185i \(0.613422\pi\)
\(822\) 0 0
\(823\) −18552.0 −0.785762 −0.392881 0.919589i \(-0.628522\pi\)
−0.392881 + 0.919589i \(0.628522\pi\)
\(824\) 0 0
\(825\) −13362.0 −0.563885
\(826\) 0 0
\(827\) −28662.0 −1.20517 −0.602585 0.798055i \(-0.705863\pi\)
−0.602585 + 0.798055i \(0.705863\pi\)
\(828\) 0 0
\(829\) 3686.00 0.154427 0.0772136 0.997015i \(-0.475398\pi\)
0.0772136 + 0.997015i \(0.475398\pi\)
\(830\) 0 0
\(831\) −126.000 −0.00525980
\(832\) 0 0
\(833\) 60858.0 2.53134
\(834\) 0 0
\(835\) −11232.0 −0.465508
\(836\) 0 0
\(837\) −4752.00 −0.196240
\(838\) 0 0
\(839\) −13370.0 −0.550159 −0.275080 0.961421i \(-0.588704\pi\)
−0.275080 + 0.961421i \(0.588704\pi\)
\(840\) 0 0
\(841\) 11711.0 0.480175
\(842\) 0 0
\(843\) 6864.00 0.280437
\(844\) 0 0
\(845\) 2704.00 0.110083
\(846\) 0 0
\(847\) 4900.00 0.198779
\(848\) 0 0
\(849\) −3468.00 −0.140190
\(850\) 0 0
\(851\) −17784.0 −0.716366
\(852\) 0 0
\(853\) −11398.0 −0.457515 −0.228757 0.973483i \(-0.573466\pi\)
−0.228757 + 0.973483i \(0.573466\pi\)
\(854\) 0 0
\(855\) 15552.0 0.622067
\(856\) 0 0
\(857\) 7990.00 0.318475 0.159238 0.987240i \(-0.449096\pi\)
0.159238 + 0.987240i \(0.449096\pi\)
\(858\) 0 0
\(859\) 7652.00 0.303938 0.151969 0.988385i \(-0.451439\pi\)
0.151969 + 0.988385i \(0.451439\pi\)
\(860\) 0 0
\(861\) 20160.0 0.797969
\(862\) 0 0
\(863\) 1022.00 0.0403120 0.0201560 0.999797i \(-0.493584\pi\)
0.0201560 + 0.999797i \(0.493584\pi\)
\(864\) 0 0
\(865\) −33056.0 −1.29935
\(866\) 0 0
\(867\) −42393.0 −1.66060
\(868\) 0 0
\(869\) −272.000 −0.0106179
\(870\) 0 0
\(871\) −8528.00 −0.331757
\(872\) 0 0
\(873\) 9198.00 0.356592
\(874\) 0 0
\(875\) −2688.00 −0.103853
\(876\) 0 0
\(877\) 15546.0 0.598576 0.299288 0.954163i \(-0.403251\pi\)
0.299288 + 0.954163i \(0.403251\pi\)
\(878\) 0 0
\(879\) −26052.0 −0.999673
\(880\) 0 0
\(881\) 11310.0 0.432513 0.216256 0.976337i \(-0.430615\pi\)
0.216256 + 0.976337i \(0.430615\pi\)
\(882\) 0 0
\(883\) 17260.0 0.657809 0.328904 0.944363i \(-0.393321\pi\)
0.328904 + 0.944363i \(0.393321\pi\)
\(884\) 0 0
\(885\) 7392.00 0.280768
\(886\) 0 0
\(887\) −832.000 −0.0314947 −0.0157474 0.999876i \(-0.505013\pi\)
−0.0157474 + 0.999876i \(0.505013\pi\)
\(888\) 0 0
\(889\) −29120.0 −1.09860
\(890\) 0 0
\(891\) 2754.00 0.103549
\(892\) 0 0
\(893\) −49032.0 −1.83739
\(894\) 0 0
\(895\) −4416.00 −0.164928
\(896\) 0 0
\(897\) −2028.00 −0.0754882
\(898\) 0 0
\(899\) 33440.0 1.24059
\(900\) 0 0
\(901\) −27324.0 −1.01032
\(902\) 0 0
\(903\) −11760.0 −0.433387
\(904\) 0 0
\(905\) 55584.0 2.04163
\(906\) 0 0
\(907\) 31740.0 1.16197 0.580986 0.813913i \(-0.302667\pi\)
0.580986 + 0.813913i \(0.302667\pi\)
\(908\) 0 0
\(909\) 10710.0 0.390790
\(910\) 0 0
\(911\) 23568.0 0.857127 0.428563 0.903512i \(-0.359020\pi\)
0.428563 + 0.903512i \(0.359020\pi\)
\(912\) 0 0
\(913\) 25908.0 0.939134
\(914\) 0 0
\(915\) 1632.00 0.0589642
\(916\) 0 0
\(917\) 15904.0 0.572733
\(918\) 0 0
\(919\) 18864.0 0.677112 0.338556 0.940946i \(-0.390062\pi\)
0.338556 + 0.940946i \(0.390062\pi\)
\(920\) 0 0
\(921\) 22656.0 0.810576
\(922\) 0 0
\(923\) −7150.00 −0.254978
\(924\) 0 0
\(925\) −44802.0 −1.59252
\(926\) 0 0
\(927\) 2016.00 0.0714284
\(928\) 0 0
\(929\) −19536.0 −0.689941 −0.344971 0.938613i \(-0.612111\pi\)
−0.344971 + 0.938613i \(0.612111\pi\)
\(930\) 0 0
\(931\) 47628.0 1.67663
\(932\) 0 0
\(933\) 7956.00 0.279172
\(934\) 0 0
\(935\) 75072.0 2.62579
\(936\) 0 0
\(937\) 18174.0 0.633638 0.316819 0.948486i \(-0.397385\pi\)
0.316819 + 0.948486i \(0.397385\pi\)
\(938\) 0 0
\(939\) 13278.0 0.461460
\(940\) 0 0
\(941\) −51172.0 −1.77275 −0.886376 0.462966i \(-0.846785\pi\)
−0.886376 + 0.462966i \(0.846785\pi\)
\(942\) 0 0
\(943\) 12480.0 0.430970
\(944\) 0 0
\(945\) 12096.0 0.416384
\(946\) 0 0
\(947\) 3726.00 0.127855 0.0639275 0.997955i \(-0.479637\pi\)
0.0639275 + 0.997955i \(0.479637\pi\)
\(948\) 0 0
\(949\) 7982.00 0.273031
\(950\) 0 0
\(951\) −14832.0 −0.505742
\(952\) 0 0
\(953\) −40498.0 −1.37656 −0.688279 0.725447i \(-0.741633\pi\)
−0.688279 + 0.725447i \(0.741633\pi\)
\(954\) 0 0
\(955\) 62720.0 2.12521
\(956\) 0 0
\(957\) −19380.0 −0.654615
\(958\) 0 0
\(959\) −14784.0 −0.497810
\(960\) 0 0
\(961\) 1185.00 0.0397771
\(962\) 0 0
\(963\) −5760.00 −0.192745
\(964\) 0 0
\(965\) 34976.0 1.16675
\(966\) 0 0
\(967\) −28568.0 −0.950036 −0.475018 0.879976i \(-0.657558\pi\)
−0.475018 + 0.879976i \(0.657558\pi\)
\(968\) 0 0
\(969\) −44712.0 −1.48231
\(970\) 0 0
\(971\) −8676.00 −0.286742 −0.143371 0.989669i \(-0.545794\pi\)
−0.143371 + 0.989669i \(0.545794\pi\)
\(972\) 0 0
\(973\) 43568.0 1.43548
\(974\) 0 0
\(975\) −5109.00 −0.167814
\(976\) 0 0
\(977\) −2796.00 −0.0915578 −0.0457789 0.998952i \(-0.514577\pi\)
−0.0457789 + 0.998952i \(0.514577\pi\)
\(978\) 0 0
\(979\) −15096.0 −0.492819
\(980\) 0 0
\(981\) 17406.0 0.566494
\(982\) 0 0
\(983\) 406.000 0.0131733 0.00658667 0.999978i \(-0.497903\pi\)
0.00658667 + 0.999978i \(0.497903\pi\)
\(984\) 0 0
\(985\) 21888.0 0.708030
\(986\) 0 0
\(987\) −38136.0 −1.22987
\(988\) 0 0
\(989\) −7280.00 −0.234065
\(990\) 0 0
\(991\) 23232.0 0.744691 0.372346 0.928094i \(-0.378554\pi\)
0.372346 + 0.928094i \(0.378554\pi\)
\(992\) 0 0
\(993\) 18264.0 0.583676
\(994\) 0 0
\(995\) 17152.0 0.546487
\(996\) 0 0
\(997\) −6110.00 −0.194088 −0.0970440 0.995280i \(-0.530939\pi\)
−0.0970440 + 0.995280i \(0.530939\pi\)
\(998\) 0 0
\(999\) 9234.00 0.292443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.g.1.1 1
4.3 odd 2 2496.4.a.q.1.1 1
8.3 odd 2 78.4.a.a.1.1 1
8.5 even 2 624.4.a.f.1.1 1
24.5 odd 2 1872.4.a.o.1.1 1
24.11 even 2 234.4.a.k.1.1 1
40.19 odd 2 1950.4.a.o.1.1 1
104.51 odd 2 1014.4.a.i.1.1 1
104.83 even 4 1014.4.b.a.337.2 2
104.99 even 4 1014.4.b.a.337.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.a.1.1 1 8.3 odd 2
234.4.a.k.1.1 1 24.11 even 2
624.4.a.f.1.1 1 8.5 even 2
1014.4.a.i.1.1 1 104.51 odd 2
1014.4.b.a.337.1 2 104.99 even 4
1014.4.b.a.337.2 2 104.83 even 4
1872.4.a.o.1.1 1 24.5 odd 2
1950.4.a.o.1.1 1 40.19 odd 2
2496.4.a.g.1.1 1 1.1 even 1 trivial
2496.4.a.q.1.1 1 4.3 odd 2