Properties

Label 2496.4.a.ca.1.4
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 20x^{3} - 33x^{2} + 17x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.52754\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +4.16805 q^{5} -28.4346 q^{7} +9.00000 q^{9} -19.3149 q^{11} +13.0000 q^{13} -12.5041 q^{15} +57.1862 q^{17} -40.1726 q^{19} +85.3039 q^{21} +203.259 q^{23} -107.627 q^{25} -27.0000 q^{27} -163.622 q^{29} -143.802 q^{31} +57.9447 q^{33} -118.517 q^{35} +345.752 q^{37} -39.0000 q^{39} +334.327 q^{41} -179.620 q^{43} +37.5124 q^{45} -506.595 q^{47} +465.528 q^{49} -171.559 q^{51} +606.740 q^{53} -80.5054 q^{55} +120.518 q^{57} +785.475 q^{59} +458.960 q^{61} -255.912 q^{63} +54.1846 q^{65} -96.9382 q^{67} -609.777 q^{69} +403.353 q^{71} -893.467 q^{73} +322.882 q^{75} +549.212 q^{77} -139.564 q^{79} +81.0000 q^{81} +988.603 q^{83} +238.355 q^{85} +490.867 q^{87} +165.627 q^{89} -369.650 q^{91} +431.407 q^{93} -167.441 q^{95} -1506.76 q^{97} -173.834 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} + 10 q^{5} - 14 q^{7} + 45 q^{9} + 22 q^{11} + 65 q^{13} - 30 q^{15} - 34 q^{17} - 90 q^{19} + 42 q^{21} - 96 q^{23} + 107 q^{25} - 135 q^{27} + 54 q^{29} - 378 q^{31} - 66 q^{33} + 84 q^{35}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 4.16805 0.372802 0.186401 0.982474i \(-0.440318\pi\)
0.186401 + 0.982474i \(0.440318\pi\)
\(6\) 0 0
\(7\) −28.4346 −1.53533 −0.767663 0.640854i \(-0.778580\pi\)
−0.767663 + 0.640854i \(0.778580\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −19.3149 −0.529424 −0.264712 0.964328i \(-0.585277\pi\)
−0.264712 + 0.964328i \(0.585277\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −12.5041 −0.215237
\(16\) 0 0
\(17\) 57.1862 0.815864 0.407932 0.913012i \(-0.366250\pi\)
0.407932 + 0.913012i \(0.366250\pi\)
\(18\) 0 0
\(19\) −40.1726 −0.485064 −0.242532 0.970143i \(-0.577978\pi\)
−0.242532 + 0.970143i \(0.577978\pi\)
\(20\) 0 0
\(21\) 85.3039 0.886421
\(22\) 0 0
\(23\) 203.259 1.84271 0.921357 0.388717i \(-0.127082\pi\)
0.921357 + 0.388717i \(0.127082\pi\)
\(24\) 0 0
\(25\) −107.627 −0.861019
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −163.622 −1.04772 −0.523861 0.851804i \(-0.675509\pi\)
−0.523861 + 0.851804i \(0.675509\pi\)
\(30\) 0 0
\(31\) −143.802 −0.833150 −0.416575 0.909101i \(-0.636770\pi\)
−0.416575 + 0.909101i \(0.636770\pi\)
\(32\) 0 0
\(33\) 57.9447 0.305663
\(34\) 0 0
\(35\) −118.517 −0.572372
\(36\) 0 0
\(37\) 345.752 1.53625 0.768126 0.640299i \(-0.221190\pi\)
0.768126 + 0.640299i \(0.221190\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) 334.327 1.27349 0.636746 0.771074i \(-0.280280\pi\)
0.636746 + 0.771074i \(0.280280\pi\)
\(42\) 0 0
\(43\) −179.620 −0.637019 −0.318509 0.947920i \(-0.603182\pi\)
−0.318509 + 0.947920i \(0.603182\pi\)
\(44\) 0 0
\(45\) 37.5124 0.124267
\(46\) 0 0
\(47\) −506.595 −1.57222 −0.786111 0.618085i \(-0.787909\pi\)
−0.786111 + 0.618085i \(0.787909\pi\)
\(48\) 0 0
\(49\) 465.528 1.35722
\(50\) 0 0
\(51\) −171.559 −0.471039
\(52\) 0 0
\(53\) 606.740 1.57249 0.786247 0.617913i \(-0.212022\pi\)
0.786247 + 0.617913i \(0.212022\pi\)
\(54\) 0 0
\(55\) −80.5054 −0.197370
\(56\) 0 0
\(57\) 120.518 0.280052
\(58\) 0 0
\(59\) 785.475 1.73322 0.866611 0.498984i \(-0.166294\pi\)
0.866611 + 0.498984i \(0.166294\pi\)
\(60\) 0 0
\(61\) 458.960 0.963340 0.481670 0.876353i \(-0.340030\pi\)
0.481670 + 0.876353i \(0.340030\pi\)
\(62\) 0 0
\(63\) −255.912 −0.511775
\(64\) 0 0
\(65\) 54.1846 0.103397
\(66\) 0 0
\(67\) −96.9382 −0.176759 −0.0883797 0.996087i \(-0.528169\pi\)
−0.0883797 + 0.996087i \(0.528169\pi\)
\(68\) 0 0
\(69\) −609.777 −1.06389
\(70\) 0 0
\(71\) 403.353 0.674214 0.337107 0.941466i \(-0.390552\pi\)
0.337107 + 0.941466i \(0.390552\pi\)
\(72\) 0 0
\(73\) −893.467 −1.43250 −0.716249 0.697844i \(-0.754143\pi\)
−0.716249 + 0.697844i \(0.754143\pi\)
\(74\) 0 0
\(75\) 322.882 0.497110
\(76\) 0 0
\(77\) 549.212 0.812838
\(78\) 0 0
\(79\) −139.564 −0.198761 −0.0993805 0.995050i \(-0.531686\pi\)
−0.0993805 + 0.995050i \(0.531686\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 988.603 1.30739 0.653695 0.756759i \(-0.273218\pi\)
0.653695 + 0.756759i \(0.273218\pi\)
\(84\) 0 0
\(85\) 238.355 0.304155
\(86\) 0 0
\(87\) 490.867 0.604902
\(88\) 0 0
\(89\) 165.627 0.197264 0.0986318 0.995124i \(-0.468553\pi\)
0.0986318 + 0.995124i \(0.468553\pi\)
\(90\) 0 0
\(91\) −369.650 −0.425823
\(92\) 0 0
\(93\) 431.407 0.481019
\(94\) 0 0
\(95\) −167.441 −0.180833
\(96\) 0 0
\(97\) −1506.76 −1.57720 −0.788599 0.614908i \(-0.789193\pi\)
−0.788599 + 0.614908i \(0.789193\pi\)
\(98\) 0 0
\(99\) −173.834 −0.176475
\(100\) 0 0
\(101\) −193.102 −0.190241 −0.0951207 0.995466i \(-0.530324\pi\)
−0.0951207 + 0.995466i \(0.530324\pi\)
\(102\) 0 0
\(103\) −1973.16 −1.88759 −0.943794 0.330534i \(-0.892771\pi\)
−0.943794 + 0.330534i \(0.892771\pi\)
\(104\) 0 0
\(105\) 355.551 0.330459
\(106\) 0 0
\(107\) −732.944 −0.662209 −0.331104 0.943594i \(-0.607421\pi\)
−0.331104 + 0.943594i \(0.607421\pi\)
\(108\) 0 0
\(109\) 837.449 0.735900 0.367950 0.929846i \(-0.380060\pi\)
0.367950 + 0.929846i \(0.380060\pi\)
\(110\) 0 0
\(111\) −1037.26 −0.886955
\(112\) 0 0
\(113\) −574.885 −0.478589 −0.239295 0.970947i \(-0.576916\pi\)
−0.239295 + 0.970947i \(0.576916\pi\)
\(114\) 0 0
\(115\) 847.193 0.686967
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) −1626.07 −1.25262
\(120\) 0 0
\(121\) −957.935 −0.719711
\(122\) 0 0
\(123\) −1002.98 −0.735251
\(124\) 0 0
\(125\) −969.602 −0.693791
\(126\) 0 0
\(127\) 2053.37 1.43470 0.717350 0.696713i \(-0.245355\pi\)
0.717350 + 0.696713i \(0.245355\pi\)
\(128\) 0 0
\(129\) 538.860 0.367783
\(130\) 0 0
\(131\) −217.920 −0.145341 −0.0726707 0.997356i \(-0.523152\pi\)
−0.0726707 + 0.997356i \(0.523152\pi\)
\(132\) 0 0
\(133\) 1142.29 0.744732
\(134\) 0 0
\(135\) −112.537 −0.0717457
\(136\) 0 0
\(137\) −24.0095 −0.0149728 −0.00748638 0.999972i \(-0.502383\pi\)
−0.00748638 + 0.999972i \(0.502383\pi\)
\(138\) 0 0
\(139\) −2117.71 −1.29224 −0.646121 0.763235i \(-0.723610\pi\)
−0.646121 + 0.763235i \(0.723610\pi\)
\(140\) 0 0
\(141\) 1519.79 0.907723
\(142\) 0 0
\(143\) −251.094 −0.146836
\(144\) 0 0
\(145\) −681.986 −0.390592
\(146\) 0 0
\(147\) −1396.58 −0.783594
\(148\) 0 0
\(149\) 1567.38 0.861776 0.430888 0.902405i \(-0.358200\pi\)
0.430888 + 0.902405i \(0.358200\pi\)
\(150\) 0 0
\(151\) 2563.06 1.38132 0.690659 0.723181i \(-0.257321\pi\)
0.690659 + 0.723181i \(0.257321\pi\)
\(152\) 0 0
\(153\) 514.676 0.271955
\(154\) 0 0
\(155\) −599.374 −0.310599
\(156\) 0 0
\(157\) 1371.47 0.697166 0.348583 0.937278i \(-0.386663\pi\)
0.348583 + 0.937278i \(0.386663\pi\)
\(158\) 0 0
\(159\) −1820.22 −0.907879
\(160\) 0 0
\(161\) −5779.59 −2.82917
\(162\) 0 0
\(163\) −2487.37 −1.19525 −0.597625 0.801776i \(-0.703889\pi\)
−0.597625 + 0.801776i \(0.703889\pi\)
\(164\) 0 0
\(165\) 241.516 0.113952
\(166\) 0 0
\(167\) 2645.80 1.22598 0.612988 0.790092i \(-0.289967\pi\)
0.612988 + 0.790092i \(0.289967\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −361.553 −0.161688
\(172\) 0 0
\(173\) 3808.37 1.67367 0.836836 0.547454i \(-0.184403\pi\)
0.836836 + 0.547454i \(0.184403\pi\)
\(174\) 0 0
\(175\) 3060.34 1.32194
\(176\) 0 0
\(177\) −2356.42 −1.00068
\(178\) 0 0
\(179\) −1204.70 −0.503035 −0.251517 0.967853i \(-0.580930\pi\)
−0.251517 + 0.967853i \(0.580930\pi\)
\(180\) 0 0
\(181\) −3524.03 −1.44718 −0.723589 0.690231i \(-0.757509\pi\)
−0.723589 + 0.690231i \(0.757509\pi\)
\(182\) 0 0
\(183\) −1376.88 −0.556185
\(184\) 0 0
\(185\) 1441.11 0.572717
\(186\) 0 0
\(187\) −1104.55 −0.431938
\(188\) 0 0
\(189\) 767.735 0.295474
\(190\) 0 0
\(191\) 1319.77 0.499975 0.249987 0.968249i \(-0.419574\pi\)
0.249987 + 0.968249i \(0.419574\pi\)
\(192\) 0 0
\(193\) 1624.93 0.606036 0.303018 0.952985i \(-0.402006\pi\)
0.303018 + 0.952985i \(0.402006\pi\)
\(194\) 0 0
\(195\) −162.554 −0.0596960
\(196\) 0 0
\(197\) −3366.18 −1.21741 −0.608707 0.793395i \(-0.708312\pi\)
−0.608707 + 0.793395i \(0.708312\pi\)
\(198\) 0 0
\(199\) −3072.12 −1.09435 −0.547177 0.837017i \(-0.684298\pi\)
−0.547177 + 0.837017i \(0.684298\pi\)
\(200\) 0 0
\(201\) 290.815 0.102052
\(202\) 0 0
\(203\) 4652.54 1.60859
\(204\) 0 0
\(205\) 1393.49 0.474760
\(206\) 0 0
\(207\) 1829.33 0.614238
\(208\) 0 0
\(209\) 775.929 0.256805
\(210\) 0 0
\(211\) 2689.84 0.877614 0.438807 0.898581i \(-0.355401\pi\)
0.438807 + 0.898581i \(0.355401\pi\)
\(212\) 0 0
\(213\) −1210.06 −0.389258
\(214\) 0 0
\(215\) −748.665 −0.237482
\(216\) 0 0
\(217\) 4088.96 1.27916
\(218\) 0 0
\(219\) 2680.40 0.827054
\(220\) 0 0
\(221\) 743.420 0.226280
\(222\) 0 0
\(223\) −4427.48 −1.32953 −0.664767 0.747051i \(-0.731469\pi\)
−0.664767 + 0.747051i \(0.731469\pi\)
\(224\) 0 0
\(225\) −968.646 −0.287006
\(226\) 0 0
\(227\) −4345.30 −1.27052 −0.635260 0.772299i \(-0.719107\pi\)
−0.635260 + 0.772299i \(0.719107\pi\)
\(228\) 0 0
\(229\) 966.407 0.278873 0.139437 0.990231i \(-0.455471\pi\)
0.139437 + 0.990231i \(0.455471\pi\)
\(230\) 0 0
\(231\) −1647.64 −0.469292
\(232\) 0 0
\(233\) −5764.75 −1.62086 −0.810432 0.585833i \(-0.800767\pi\)
−0.810432 + 0.585833i \(0.800767\pi\)
\(234\) 0 0
\(235\) −2111.51 −0.586127
\(236\) 0 0
\(237\) 418.691 0.114755
\(238\) 0 0
\(239\) 1248.65 0.337942 0.168971 0.985621i \(-0.445956\pi\)
0.168971 + 0.985621i \(0.445956\pi\)
\(240\) 0 0
\(241\) −6121.62 −1.63622 −0.818108 0.575065i \(-0.804977\pi\)
−0.818108 + 0.575065i \(0.804977\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1940.34 0.505975
\(246\) 0 0
\(247\) −522.244 −0.134533
\(248\) 0 0
\(249\) −2965.81 −0.754821
\(250\) 0 0
\(251\) 2295.82 0.577335 0.288667 0.957429i \(-0.406788\pi\)
0.288667 + 0.957429i \(0.406788\pi\)
\(252\) 0 0
\(253\) −3925.93 −0.975577
\(254\) 0 0
\(255\) −715.064 −0.175604
\(256\) 0 0
\(257\) −447.329 −0.108574 −0.0542871 0.998525i \(-0.517289\pi\)
−0.0542871 + 0.998525i \(0.517289\pi\)
\(258\) 0 0
\(259\) −9831.33 −2.35865
\(260\) 0 0
\(261\) −1472.60 −0.349240
\(262\) 0 0
\(263\) −6253.75 −1.46625 −0.733124 0.680095i \(-0.761938\pi\)
−0.733124 + 0.680095i \(0.761938\pi\)
\(264\) 0 0
\(265\) 2528.92 0.586228
\(266\) 0 0
\(267\) −496.882 −0.113890
\(268\) 0 0
\(269\) 8274.78 1.87555 0.937774 0.347247i \(-0.112884\pi\)
0.937774 + 0.347247i \(0.112884\pi\)
\(270\) 0 0
\(271\) −8010.21 −1.79552 −0.897760 0.440485i \(-0.854806\pi\)
−0.897760 + 0.440485i \(0.854806\pi\)
\(272\) 0 0
\(273\) 1108.95 0.245849
\(274\) 0 0
\(275\) 2078.81 0.455844
\(276\) 0 0
\(277\) 5517.01 1.19670 0.598348 0.801236i \(-0.295824\pi\)
0.598348 + 0.801236i \(0.295824\pi\)
\(278\) 0 0
\(279\) −1294.22 −0.277717
\(280\) 0 0
\(281\) −1533.33 −0.325518 −0.162759 0.986666i \(-0.552039\pi\)
−0.162759 + 0.986666i \(0.552039\pi\)
\(282\) 0 0
\(283\) −8486.53 −1.78259 −0.891293 0.453429i \(-0.850201\pi\)
−0.891293 + 0.453429i \(0.850201\pi\)
\(284\) 0 0
\(285\) 502.324 0.104404
\(286\) 0 0
\(287\) −9506.47 −1.95522
\(288\) 0 0
\(289\) −1642.74 −0.334366
\(290\) 0 0
\(291\) 4520.28 0.910596
\(292\) 0 0
\(293\) −2388.22 −0.476182 −0.238091 0.971243i \(-0.576522\pi\)
−0.238091 + 0.971243i \(0.576522\pi\)
\(294\) 0 0
\(295\) 3273.90 0.646148
\(296\) 0 0
\(297\) 521.502 0.101888
\(298\) 0 0
\(299\) 2642.37 0.511077
\(300\) 0 0
\(301\) 5107.43 0.978031
\(302\) 0 0
\(303\) 579.306 0.109836
\(304\) 0 0
\(305\) 1912.97 0.359135
\(306\) 0 0
\(307\) 4487.43 0.834238 0.417119 0.908852i \(-0.363040\pi\)
0.417119 + 0.908852i \(0.363040\pi\)
\(308\) 0 0
\(309\) 5919.49 1.08980
\(310\) 0 0
\(311\) 9390.66 1.71220 0.856102 0.516806i \(-0.172879\pi\)
0.856102 + 0.516806i \(0.172879\pi\)
\(312\) 0 0
\(313\) 5881.72 1.06215 0.531077 0.847323i \(-0.321787\pi\)
0.531077 + 0.847323i \(0.321787\pi\)
\(314\) 0 0
\(315\) −1066.65 −0.190791
\(316\) 0 0
\(317\) −1628.91 −0.288607 −0.144304 0.989533i \(-0.546094\pi\)
−0.144304 + 0.989533i \(0.546094\pi\)
\(318\) 0 0
\(319\) 3160.35 0.554689
\(320\) 0 0
\(321\) 2198.83 0.382326
\(322\) 0 0
\(323\) −2297.32 −0.395747
\(324\) 0 0
\(325\) −1399.16 −0.238804
\(326\) 0 0
\(327\) −2512.35 −0.424872
\(328\) 0 0
\(329\) 14404.8 2.41387
\(330\) 0 0
\(331\) −6570.00 −1.09100 −0.545498 0.838112i \(-0.683660\pi\)
−0.545498 + 0.838112i \(0.683660\pi\)
\(332\) 0 0
\(333\) 3111.77 0.512084
\(334\) 0 0
\(335\) −404.043 −0.0658962
\(336\) 0 0
\(337\) −6499.74 −1.05063 −0.525317 0.850907i \(-0.676053\pi\)
−0.525317 + 0.850907i \(0.676053\pi\)
\(338\) 0 0
\(339\) 1724.65 0.276314
\(340\) 0 0
\(341\) 2777.52 0.441089
\(342\) 0 0
\(343\) −3484.03 −0.548455
\(344\) 0 0
\(345\) −2541.58 −0.396620
\(346\) 0 0
\(347\) −337.205 −0.0521675 −0.0260838 0.999660i \(-0.508304\pi\)
−0.0260838 + 0.999660i \(0.508304\pi\)
\(348\) 0 0
\(349\) −8949.55 −1.37266 −0.686330 0.727290i \(-0.740779\pi\)
−0.686330 + 0.727290i \(0.740779\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) −8207.17 −1.23746 −0.618730 0.785604i \(-0.712353\pi\)
−0.618730 + 0.785604i \(0.712353\pi\)
\(354\) 0 0
\(355\) 1681.19 0.251348
\(356\) 0 0
\(357\) 4878.20 0.723199
\(358\) 0 0
\(359\) −4959.16 −0.729065 −0.364532 0.931191i \(-0.618771\pi\)
−0.364532 + 0.931191i \(0.618771\pi\)
\(360\) 0 0
\(361\) −5245.16 −0.764713
\(362\) 0 0
\(363\) 2873.80 0.415525
\(364\) 0 0
\(365\) −3724.01 −0.534038
\(366\) 0 0
\(367\) 115.538 0.0164334 0.00821669 0.999966i \(-0.497385\pi\)
0.00821669 + 0.999966i \(0.497385\pi\)
\(368\) 0 0
\(369\) 3008.95 0.424497
\(370\) 0 0
\(371\) −17252.4 −2.41429
\(372\) 0 0
\(373\) −1150.57 −0.159717 −0.0798583 0.996806i \(-0.525447\pi\)
−0.0798583 + 0.996806i \(0.525447\pi\)
\(374\) 0 0
\(375\) 2908.81 0.400560
\(376\) 0 0
\(377\) −2127.09 −0.290586
\(378\) 0 0
\(379\) −1151.03 −0.156001 −0.0780006 0.996953i \(-0.524854\pi\)
−0.0780006 + 0.996953i \(0.524854\pi\)
\(380\) 0 0
\(381\) −6160.10 −0.828325
\(382\) 0 0
\(383\) −8185.19 −1.09202 −0.546010 0.837779i \(-0.683854\pi\)
−0.546010 + 0.837779i \(0.683854\pi\)
\(384\) 0 0
\(385\) 2289.14 0.303027
\(386\) 0 0
\(387\) −1616.58 −0.212340
\(388\) 0 0
\(389\) −3063.00 −0.399230 −0.199615 0.979874i \(-0.563969\pi\)
−0.199615 + 0.979874i \(0.563969\pi\)
\(390\) 0 0
\(391\) 11623.6 1.50340
\(392\) 0 0
\(393\) 653.759 0.0839129
\(394\) 0 0
\(395\) −581.707 −0.0740984
\(396\) 0 0
\(397\) −6264.17 −0.791913 −0.395957 0.918269i \(-0.629587\pi\)
−0.395957 + 0.918269i \(0.629587\pi\)
\(398\) 0 0
\(399\) −3426.88 −0.429971
\(400\) 0 0
\(401\) −2035.40 −0.253473 −0.126737 0.991936i \(-0.540450\pi\)
−0.126737 + 0.991936i \(0.540450\pi\)
\(402\) 0 0
\(403\) −1869.43 −0.231074
\(404\) 0 0
\(405\) 337.612 0.0414224
\(406\) 0 0
\(407\) −6678.17 −0.813328
\(408\) 0 0
\(409\) −5386.56 −0.651218 −0.325609 0.945505i \(-0.605569\pi\)
−0.325609 + 0.945505i \(0.605569\pi\)
\(410\) 0 0
\(411\) 72.0284 0.00864452
\(412\) 0 0
\(413\) −22334.7 −2.66106
\(414\) 0 0
\(415\) 4120.55 0.487397
\(416\) 0 0
\(417\) 6353.12 0.746076
\(418\) 0 0
\(419\) 4899.94 0.571308 0.285654 0.958333i \(-0.407789\pi\)
0.285654 + 0.958333i \(0.407789\pi\)
\(420\) 0 0
\(421\) 10054.7 1.16398 0.581992 0.813194i \(-0.302273\pi\)
0.581992 + 0.813194i \(0.302273\pi\)
\(422\) 0 0
\(423\) −4559.36 −0.524074
\(424\) 0 0
\(425\) −6154.80 −0.702474
\(426\) 0 0
\(427\) −13050.3 −1.47904
\(428\) 0 0
\(429\) 753.281 0.0847756
\(430\) 0 0
\(431\) −12428.5 −1.38900 −0.694500 0.719493i \(-0.744374\pi\)
−0.694500 + 0.719493i \(0.744374\pi\)
\(432\) 0 0
\(433\) −852.216 −0.0945841 −0.0472920 0.998881i \(-0.515059\pi\)
−0.0472920 + 0.998881i \(0.515059\pi\)
\(434\) 0 0
\(435\) 2045.96 0.225508
\(436\) 0 0
\(437\) −8165.44 −0.893835
\(438\) 0 0
\(439\) 4624.92 0.502814 0.251407 0.967881i \(-0.419107\pi\)
0.251407 + 0.967881i \(0.419107\pi\)
\(440\) 0 0
\(441\) 4189.75 0.452408
\(442\) 0 0
\(443\) 700.492 0.0751273 0.0375636 0.999294i \(-0.488040\pi\)
0.0375636 + 0.999294i \(0.488040\pi\)
\(444\) 0 0
\(445\) 690.343 0.0735402
\(446\) 0 0
\(447\) −4702.14 −0.497547
\(448\) 0 0
\(449\) −225.522 −0.0237039 −0.0118519 0.999930i \(-0.503773\pi\)
−0.0118519 + 0.999930i \(0.503773\pi\)
\(450\) 0 0
\(451\) −6457.50 −0.674217
\(452\) 0 0
\(453\) −7689.18 −0.797504
\(454\) 0 0
\(455\) −1540.72 −0.158747
\(456\) 0 0
\(457\) 2656.86 0.271953 0.135976 0.990712i \(-0.456583\pi\)
0.135976 + 0.990712i \(0.456583\pi\)
\(458\) 0 0
\(459\) −1544.03 −0.157013
\(460\) 0 0
\(461\) 11577.8 1.16970 0.584851 0.811141i \(-0.301153\pi\)
0.584851 + 0.811141i \(0.301153\pi\)
\(462\) 0 0
\(463\) −16475.9 −1.65378 −0.826889 0.562366i \(-0.809891\pi\)
−0.826889 + 0.562366i \(0.809891\pi\)
\(464\) 0 0
\(465\) 1798.12 0.179325
\(466\) 0 0
\(467\) 2939.46 0.291267 0.145634 0.989339i \(-0.453478\pi\)
0.145634 + 0.989339i \(0.453478\pi\)
\(468\) 0 0
\(469\) 2756.40 0.271383
\(470\) 0 0
\(471\) −4114.40 −0.402509
\(472\) 0 0
\(473\) 3469.34 0.337253
\(474\) 0 0
\(475\) 4323.67 0.417650
\(476\) 0 0
\(477\) 5460.66 0.524164
\(478\) 0 0
\(479\) −17274.2 −1.64776 −0.823882 0.566761i \(-0.808196\pi\)
−0.823882 + 0.566761i \(0.808196\pi\)
\(480\) 0 0
\(481\) 4494.78 0.426079
\(482\) 0 0
\(483\) 17338.8 1.63342
\(484\) 0 0
\(485\) −6280.24 −0.587982
\(486\) 0 0
\(487\) 6256.38 0.582143 0.291072 0.956701i \(-0.405988\pi\)
0.291072 + 0.956701i \(0.405988\pi\)
\(488\) 0 0
\(489\) 7462.11 0.690078
\(490\) 0 0
\(491\) −11644.8 −1.07031 −0.535156 0.844753i \(-0.679747\pi\)
−0.535156 + 0.844753i \(0.679747\pi\)
\(492\) 0 0
\(493\) −9356.94 −0.854798
\(494\) 0 0
\(495\) −724.549 −0.0657900
\(496\) 0 0
\(497\) −11469.2 −1.03514
\(498\) 0 0
\(499\) −6903.82 −0.619354 −0.309677 0.950842i \(-0.600221\pi\)
−0.309677 + 0.950842i \(0.600221\pi\)
\(500\) 0 0
\(501\) −7937.40 −0.707818
\(502\) 0 0
\(503\) 4303.25 0.381456 0.190728 0.981643i \(-0.438915\pi\)
0.190728 + 0.981643i \(0.438915\pi\)
\(504\) 0 0
\(505\) −804.859 −0.0709223
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) −13723.9 −1.19509 −0.597547 0.801834i \(-0.703858\pi\)
−0.597547 + 0.801834i \(0.703858\pi\)
\(510\) 0 0
\(511\) 25405.4 2.19935
\(512\) 0 0
\(513\) 1084.66 0.0933507
\(514\) 0 0
\(515\) −8224.24 −0.703696
\(516\) 0 0
\(517\) 9784.83 0.832372
\(518\) 0 0
\(519\) −11425.1 −0.966295
\(520\) 0 0
\(521\) −9220.39 −0.775341 −0.387671 0.921798i \(-0.626720\pi\)
−0.387671 + 0.921798i \(0.626720\pi\)
\(522\) 0 0
\(523\) −2527.06 −0.211282 −0.105641 0.994404i \(-0.533689\pi\)
−0.105641 + 0.994404i \(0.533689\pi\)
\(524\) 0 0
\(525\) −9181.03 −0.763225
\(526\) 0 0
\(527\) −8223.50 −0.679737
\(528\) 0 0
\(529\) 29147.2 2.39560
\(530\) 0 0
\(531\) 7069.27 0.577741
\(532\) 0 0
\(533\) 4346.25 0.353203
\(534\) 0 0
\(535\) −3054.95 −0.246873
\(536\) 0 0
\(537\) 3614.09 0.290427
\(538\) 0 0
\(539\) −8991.62 −0.718547
\(540\) 0 0
\(541\) −6684.92 −0.531251 −0.265626 0.964076i \(-0.585579\pi\)
−0.265626 + 0.964076i \(0.585579\pi\)
\(542\) 0 0
\(543\) 10572.1 0.835529
\(544\) 0 0
\(545\) 3490.53 0.274345
\(546\) 0 0
\(547\) 10787.0 0.843177 0.421589 0.906787i \(-0.361473\pi\)
0.421589 + 0.906787i \(0.361473\pi\)
\(548\) 0 0
\(549\) 4130.64 0.321113
\(550\) 0 0
\(551\) 6573.14 0.508212
\(552\) 0 0
\(553\) 3968.44 0.305163
\(554\) 0 0
\(555\) −4323.33 −0.330658
\(556\) 0 0
\(557\) −20131.1 −1.53139 −0.765694 0.643205i \(-0.777604\pi\)
−0.765694 + 0.643205i \(0.777604\pi\)
\(558\) 0 0
\(559\) −2335.06 −0.176677
\(560\) 0 0
\(561\) 3313.64 0.249379
\(562\) 0 0
\(563\) −2190.13 −0.163948 −0.0819741 0.996634i \(-0.526122\pi\)
−0.0819741 + 0.996634i \(0.526122\pi\)
\(564\) 0 0
\(565\) −2396.15 −0.178419
\(566\) 0 0
\(567\) −2303.20 −0.170592
\(568\) 0 0
\(569\) 12391.7 0.912982 0.456491 0.889728i \(-0.349106\pi\)
0.456491 + 0.889728i \(0.349106\pi\)
\(570\) 0 0
\(571\) −2375.87 −0.174128 −0.0870638 0.996203i \(-0.527748\pi\)
−0.0870638 + 0.996203i \(0.527748\pi\)
\(572\) 0 0
\(573\) −3959.31 −0.288661
\(574\) 0 0
\(575\) −21876.2 −1.58661
\(576\) 0 0
\(577\) −16750.3 −1.20853 −0.604267 0.796782i \(-0.706534\pi\)
−0.604267 + 0.796782i \(0.706534\pi\)
\(578\) 0 0
\(579\) −4874.79 −0.349895
\(580\) 0 0
\(581\) −28110.6 −2.00727
\(582\) 0 0
\(583\) −11719.1 −0.832515
\(584\) 0 0
\(585\) 487.662 0.0344655
\(586\) 0 0
\(587\) 4709.53 0.331147 0.165573 0.986197i \(-0.447053\pi\)
0.165573 + 0.986197i \(0.447053\pi\)
\(588\) 0 0
\(589\) 5776.91 0.404131
\(590\) 0 0
\(591\) 10098.6 0.702875
\(592\) 0 0
\(593\) 1608.81 0.111410 0.0557048 0.998447i \(-0.482259\pi\)
0.0557048 + 0.998447i \(0.482259\pi\)
\(594\) 0 0
\(595\) −6777.53 −0.466977
\(596\) 0 0
\(597\) 9216.35 0.631826
\(598\) 0 0
\(599\) −7017.34 −0.478665 −0.239333 0.970938i \(-0.576929\pi\)
−0.239333 + 0.970938i \(0.576929\pi\)
\(600\) 0 0
\(601\) 19124.5 1.29801 0.649005 0.760784i \(-0.275186\pi\)
0.649005 + 0.760784i \(0.275186\pi\)
\(602\) 0 0
\(603\) −872.444 −0.0589198
\(604\) 0 0
\(605\) −3992.72 −0.268309
\(606\) 0 0
\(607\) 22042.4 1.47392 0.736962 0.675934i \(-0.236260\pi\)
0.736962 + 0.675934i \(0.236260\pi\)
\(608\) 0 0
\(609\) −13957.6 −0.928722
\(610\) 0 0
\(611\) −6585.74 −0.436056
\(612\) 0 0
\(613\) 5797.39 0.381981 0.190991 0.981592i \(-0.438830\pi\)
0.190991 + 0.981592i \(0.438830\pi\)
\(614\) 0 0
\(615\) −4180.48 −0.274103
\(616\) 0 0
\(617\) 11262.6 0.734871 0.367435 0.930049i \(-0.380236\pi\)
0.367435 + 0.930049i \(0.380236\pi\)
\(618\) 0 0
\(619\) −14224.3 −0.923621 −0.461810 0.886979i \(-0.652800\pi\)
−0.461810 + 0.886979i \(0.652800\pi\)
\(620\) 0 0
\(621\) −5487.99 −0.354631
\(622\) 0 0
\(623\) −4709.55 −0.302864
\(624\) 0 0
\(625\) 9412.07 0.602373
\(626\) 0 0
\(627\) −2327.79 −0.148266
\(628\) 0 0
\(629\) 19772.2 1.25337
\(630\) 0 0
\(631\) 16541.9 1.04362 0.521809 0.853062i \(-0.325257\pi\)
0.521809 + 0.853062i \(0.325257\pi\)
\(632\) 0 0
\(633\) −8069.53 −0.506691
\(634\) 0 0
\(635\) 8558.54 0.534859
\(636\) 0 0
\(637\) 6051.86 0.376426
\(638\) 0 0
\(639\) 3630.18 0.224738
\(640\) 0 0
\(641\) 4089.63 0.251998 0.125999 0.992030i \(-0.459786\pi\)
0.125999 + 0.992030i \(0.459786\pi\)
\(642\) 0 0
\(643\) 5156.76 0.316272 0.158136 0.987417i \(-0.449452\pi\)
0.158136 + 0.987417i \(0.449452\pi\)
\(644\) 0 0
\(645\) 2246.00 0.137110
\(646\) 0 0
\(647\) 10997.9 0.668271 0.334135 0.942525i \(-0.391556\pi\)
0.334135 + 0.942525i \(0.391556\pi\)
\(648\) 0 0
\(649\) −15171.4 −0.917609
\(650\) 0 0
\(651\) −12266.9 −0.738521
\(652\) 0 0
\(653\) −10824.3 −0.648680 −0.324340 0.945940i \(-0.605142\pi\)
−0.324340 + 0.945940i \(0.605142\pi\)
\(654\) 0 0
\(655\) −908.299 −0.0541835
\(656\) 0 0
\(657\) −8041.20 −0.477500
\(658\) 0 0
\(659\) 12526.7 0.740470 0.370235 0.928938i \(-0.379277\pi\)
0.370235 + 0.928938i \(0.379277\pi\)
\(660\) 0 0
\(661\) −13928.5 −0.819598 −0.409799 0.912176i \(-0.634401\pi\)
−0.409799 + 0.912176i \(0.634401\pi\)
\(662\) 0 0
\(663\) −2230.26 −0.130643
\(664\) 0 0
\(665\) 4761.13 0.277637
\(666\) 0 0
\(667\) −33257.7 −1.93065
\(668\) 0 0
\(669\) 13282.4 0.767607
\(670\) 0 0
\(671\) −8864.76 −0.510015
\(672\) 0 0
\(673\) −8979.99 −0.514344 −0.257172 0.966366i \(-0.582791\pi\)
−0.257172 + 0.966366i \(0.582791\pi\)
\(674\) 0 0
\(675\) 2905.94 0.165703
\(676\) 0 0
\(677\) −5984.79 −0.339755 −0.169878 0.985465i \(-0.554337\pi\)
−0.169878 + 0.985465i \(0.554337\pi\)
\(678\) 0 0
\(679\) 42844.1 2.42151
\(680\) 0 0
\(681\) 13035.9 0.733535
\(682\) 0 0
\(683\) 21531.8 1.20628 0.603142 0.797634i \(-0.293915\pi\)
0.603142 + 0.797634i \(0.293915\pi\)
\(684\) 0 0
\(685\) −100.073 −0.00558187
\(686\) 0 0
\(687\) −2899.22 −0.161008
\(688\) 0 0
\(689\) 7887.62 0.436131
\(690\) 0 0
\(691\) −12902.6 −0.710329 −0.355164 0.934804i \(-0.615575\pi\)
−0.355164 + 0.934804i \(0.615575\pi\)
\(692\) 0 0
\(693\) 4942.91 0.270946
\(694\) 0 0
\(695\) −8826.71 −0.481750
\(696\) 0 0
\(697\) 19118.9 1.03900
\(698\) 0 0
\(699\) 17294.2 0.935806
\(700\) 0 0
\(701\) −26032.1 −1.40259 −0.701297 0.712869i \(-0.747396\pi\)
−0.701297 + 0.712869i \(0.747396\pi\)
\(702\) 0 0
\(703\) −13889.8 −0.745181
\(704\) 0 0
\(705\) 6334.54 0.338401
\(706\) 0 0
\(707\) 5490.79 0.292082
\(708\) 0 0
\(709\) −20810.3 −1.10232 −0.551160 0.834399i \(-0.685815\pi\)
−0.551160 + 0.834399i \(0.685815\pi\)
\(710\) 0 0
\(711\) −1256.07 −0.0662537
\(712\) 0 0
\(713\) −29229.1 −1.53526
\(714\) 0 0
\(715\) −1046.57 −0.0547406
\(716\) 0 0
\(717\) −3745.94 −0.195111
\(718\) 0 0
\(719\) 15301.1 0.793649 0.396825 0.917894i \(-0.370112\pi\)
0.396825 + 0.917894i \(0.370112\pi\)
\(720\) 0 0
\(721\) 56106.2 2.89806
\(722\) 0 0
\(723\) 18364.9 0.944670
\(724\) 0 0
\(725\) 17610.3 0.902108
\(726\) 0 0
\(727\) −1716.29 −0.0875565 −0.0437782 0.999041i \(-0.513940\pi\)
−0.0437782 + 0.999041i \(0.513940\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −10271.8 −0.519721
\(732\) 0 0
\(733\) 22161.9 1.11674 0.558369 0.829593i \(-0.311427\pi\)
0.558369 + 0.829593i \(0.311427\pi\)
\(734\) 0 0
\(735\) −5821.03 −0.292125
\(736\) 0 0
\(737\) 1872.35 0.0935807
\(738\) 0 0
\(739\) −9810.07 −0.488321 −0.244161 0.969735i \(-0.578512\pi\)
−0.244161 + 0.969735i \(0.578512\pi\)
\(740\) 0 0
\(741\) 1566.73 0.0776725
\(742\) 0 0
\(743\) 10376.9 0.512372 0.256186 0.966628i \(-0.417534\pi\)
0.256186 + 0.966628i \(0.417534\pi\)
\(744\) 0 0
\(745\) 6532.91 0.321272
\(746\) 0 0
\(747\) 8897.43 0.435796
\(748\) 0 0
\(749\) 20841.0 1.01671
\(750\) 0 0
\(751\) −419.090 −0.0203633 −0.0101816 0.999948i \(-0.503241\pi\)
−0.0101816 + 0.999948i \(0.503241\pi\)
\(752\) 0 0
\(753\) −6887.47 −0.333324
\(754\) 0 0
\(755\) 10683.0 0.514957
\(756\) 0 0
\(757\) 40437.4 1.94151 0.970755 0.240074i \(-0.0771716\pi\)
0.970755 + 0.240074i \(0.0771716\pi\)
\(758\) 0 0
\(759\) 11777.8 0.563249
\(760\) 0 0
\(761\) −33507.9 −1.59614 −0.798069 0.602567i \(-0.794145\pi\)
−0.798069 + 0.602567i \(0.794145\pi\)
\(762\) 0 0
\(763\) −23812.5 −1.12985
\(764\) 0 0
\(765\) 2145.19 0.101385
\(766\) 0 0
\(767\) 10211.2 0.480709
\(768\) 0 0
\(769\) 26117.8 1.22475 0.612375 0.790568i \(-0.290214\pi\)
0.612375 + 0.790568i \(0.290214\pi\)
\(770\) 0 0
\(771\) 1341.99 0.0626854
\(772\) 0 0
\(773\) 33310.4 1.54993 0.774963 0.632007i \(-0.217769\pi\)
0.774963 + 0.632007i \(0.217769\pi\)
\(774\) 0 0
\(775\) 15477.1 0.717358
\(776\) 0 0
\(777\) 29494.0 1.36176
\(778\) 0 0
\(779\) −13430.8 −0.617725
\(780\) 0 0
\(781\) −7790.72 −0.356945
\(782\) 0 0
\(783\) 4417.81 0.201634
\(784\) 0 0
\(785\) 5716.34 0.259904
\(786\) 0 0
\(787\) 18976.6 0.859521 0.429761 0.902943i \(-0.358598\pi\)
0.429761 + 0.902943i \(0.358598\pi\)
\(788\) 0 0
\(789\) 18761.3 0.846538
\(790\) 0 0
\(791\) 16346.6 0.734791
\(792\) 0 0
\(793\) 5966.47 0.267183
\(794\) 0 0
\(795\) −7586.76 −0.338459
\(796\) 0 0
\(797\) −13163.1 −0.585021 −0.292511 0.956262i \(-0.594491\pi\)
−0.292511 + 0.956262i \(0.594491\pi\)
\(798\) 0 0
\(799\) −28970.2 −1.28272
\(800\) 0 0
\(801\) 1490.65 0.0657545
\(802\) 0 0
\(803\) 17257.2 0.758399
\(804\) 0 0
\(805\) −24089.6 −1.05472
\(806\) 0 0
\(807\) −24824.3 −1.08285
\(808\) 0 0
\(809\) −8357.17 −0.363192 −0.181596 0.983373i \(-0.558126\pi\)
−0.181596 + 0.983373i \(0.558126\pi\)
\(810\) 0 0
\(811\) −9527.89 −0.412540 −0.206270 0.978495i \(-0.566132\pi\)
−0.206270 + 0.978495i \(0.566132\pi\)
\(812\) 0 0
\(813\) 24030.6 1.03664
\(814\) 0 0
\(815\) −10367.5 −0.445591
\(816\) 0 0
\(817\) 7215.80 0.308995
\(818\) 0 0
\(819\) −3326.85 −0.141941
\(820\) 0 0
\(821\) −20151.8 −0.856642 −0.428321 0.903627i \(-0.640895\pi\)
−0.428321 + 0.903627i \(0.640895\pi\)
\(822\) 0 0
\(823\) −20811.6 −0.881467 −0.440734 0.897638i \(-0.645282\pi\)
−0.440734 + 0.897638i \(0.645282\pi\)
\(824\) 0 0
\(825\) −6236.44 −0.263182
\(826\) 0 0
\(827\) −4991.30 −0.209873 −0.104936 0.994479i \(-0.533464\pi\)
−0.104936 + 0.994479i \(0.533464\pi\)
\(828\) 0 0
\(829\) −16837.9 −0.705433 −0.352717 0.935730i \(-0.614742\pi\)
−0.352717 + 0.935730i \(0.614742\pi\)
\(830\) 0 0
\(831\) −16551.0 −0.690913
\(832\) 0 0
\(833\) 26621.8 1.10731
\(834\) 0 0
\(835\) 11027.8 0.457046
\(836\) 0 0
\(837\) 3882.66 0.160340
\(838\) 0 0
\(839\) 13025.9 0.536000 0.268000 0.963419i \(-0.413637\pi\)
0.268000 + 0.963419i \(0.413637\pi\)
\(840\) 0 0
\(841\) 2383.29 0.0977200
\(842\) 0 0
\(843\) 4599.98 0.187938
\(844\) 0 0
\(845\) 704.400 0.0286770
\(846\) 0 0
\(847\) 27238.5 1.10499
\(848\) 0 0
\(849\) 25459.6 1.02918
\(850\) 0 0
\(851\) 70277.2 2.83087
\(852\) 0 0
\(853\) 11278.0 0.452698 0.226349 0.974046i \(-0.427321\pi\)
0.226349 + 0.974046i \(0.427321\pi\)
\(854\) 0 0
\(855\) −1506.97 −0.0602776
\(856\) 0 0
\(857\) −7278.15 −0.290101 −0.145051 0.989424i \(-0.546335\pi\)
−0.145051 + 0.989424i \(0.546335\pi\)
\(858\) 0 0
\(859\) 43829.0 1.74089 0.870446 0.492263i \(-0.163830\pi\)
0.870446 + 0.492263i \(0.163830\pi\)
\(860\) 0 0
\(861\) 28519.4 1.12885
\(862\) 0 0
\(863\) −1132.98 −0.0446896 −0.0223448 0.999750i \(-0.507113\pi\)
−0.0223448 + 0.999750i \(0.507113\pi\)
\(864\) 0 0
\(865\) 15873.5 0.623948
\(866\) 0 0
\(867\) 4928.22 0.193046
\(868\) 0 0
\(869\) 2695.66 0.105229
\(870\) 0 0
\(871\) −1260.20 −0.0490243
\(872\) 0 0
\(873\) −13560.8 −0.525733
\(874\) 0 0
\(875\) 27570.3 1.06519
\(876\) 0 0
\(877\) 37968.2 1.46191 0.730955 0.682426i \(-0.239075\pi\)
0.730955 + 0.682426i \(0.239075\pi\)
\(878\) 0 0
\(879\) 7164.67 0.274924
\(880\) 0 0
\(881\) −40587.2 −1.55212 −0.776060 0.630659i \(-0.782785\pi\)
−0.776060 + 0.630659i \(0.782785\pi\)
\(882\) 0 0
\(883\) 30722.7 1.17090 0.585449 0.810709i \(-0.300918\pi\)
0.585449 + 0.810709i \(0.300918\pi\)
\(884\) 0 0
\(885\) −9821.69 −0.373054
\(886\) 0 0
\(887\) 8589.35 0.325143 0.162572 0.986697i \(-0.448021\pi\)
0.162572 + 0.986697i \(0.448021\pi\)
\(888\) 0 0
\(889\) −58386.7 −2.20273
\(890\) 0 0
\(891\) −1564.51 −0.0588249
\(892\) 0 0
\(893\) 20351.2 0.762629
\(894\) 0 0
\(895\) −5021.23 −0.187532
\(896\) 0 0
\(897\) −7927.10 −0.295070
\(898\) 0 0
\(899\) 23529.3 0.872909
\(900\) 0 0
\(901\) 34697.1 1.28294
\(902\) 0 0
\(903\) −15322.3 −0.564666
\(904\) 0 0
\(905\) −14688.3 −0.539510
\(906\) 0 0
\(907\) −4784.14 −0.175143 −0.0875715 0.996158i \(-0.527911\pi\)
−0.0875715 + 0.996158i \(0.527911\pi\)
\(908\) 0 0
\(909\) −1737.92 −0.0634138
\(910\) 0 0
\(911\) 14336.1 0.521381 0.260690 0.965422i \(-0.416050\pi\)
0.260690 + 0.965422i \(0.416050\pi\)
\(912\) 0 0
\(913\) −19094.8 −0.692163
\(914\) 0 0
\(915\) −5738.90 −0.207347
\(916\) 0 0
\(917\) 6196.46 0.223146
\(918\) 0 0
\(919\) −42216.6 −1.51534 −0.757669 0.652639i \(-0.773662\pi\)
−0.757669 + 0.652639i \(0.773662\pi\)
\(920\) 0 0
\(921\) −13462.3 −0.481647
\(922\) 0 0
\(923\) 5243.59 0.186993
\(924\) 0 0
\(925\) −37212.4 −1.32274
\(926\) 0 0
\(927\) −17758.5 −0.629196
\(928\) 0 0
\(929\) −48513.1 −1.71331 −0.856655 0.515890i \(-0.827461\pi\)
−0.856655 + 0.515890i \(0.827461\pi\)
\(930\) 0 0
\(931\) −18701.5 −0.658341
\(932\) 0 0
\(933\) −28172.0 −0.988542
\(934\) 0 0
\(935\) −4603.80 −0.161027
\(936\) 0 0
\(937\) 39496.4 1.37705 0.688523 0.725215i \(-0.258260\pi\)
0.688523 + 0.725215i \(0.258260\pi\)
\(938\) 0 0
\(939\) −17645.2 −0.613235
\(940\) 0 0
\(941\) −49619.6 −1.71897 −0.859485 0.511160i \(-0.829216\pi\)
−0.859485 + 0.511160i \(0.829216\pi\)
\(942\) 0 0
\(943\) 67955.0 2.34668
\(944\) 0 0
\(945\) 3199.96 0.110153
\(946\) 0 0
\(947\) −33759.8 −1.15844 −0.579221 0.815170i \(-0.696643\pi\)
−0.579221 + 0.815170i \(0.696643\pi\)
\(948\) 0 0
\(949\) −11615.1 −0.397304
\(950\) 0 0
\(951\) 4886.72 0.166627
\(952\) 0 0
\(953\) 27222.9 0.925328 0.462664 0.886534i \(-0.346894\pi\)
0.462664 + 0.886534i \(0.346894\pi\)
\(954\) 0 0
\(955\) 5500.86 0.186391
\(956\) 0 0
\(957\) −9481.05 −0.320250
\(958\) 0 0
\(959\) 682.700 0.0229880
\(960\) 0 0
\(961\) −9111.93 −0.305862
\(962\) 0 0
\(963\) −6596.49 −0.220736
\(964\) 0 0
\(965\) 6772.79 0.225931
\(966\) 0 0
\(967\) 44305.1 1.47338 0.736689 0.676232i \(-0.236388\pi\)
0.736689 + 0.676232i \(0.236388\pi\)
\(968\) 0 0
\(969\) 6891.95 0.228484
\(970\) 0 0
\(971\) 6092.31 0.201351 0.100675 0.994919i \(-0.467900\pi\)
0.100675 + 0.994919i \(0.467900\pi\)
\(972\) 0 0
\(973\) 60216.2 1.98401
\(974\) 0 0
\(975\) 4197.47 0.137873
\(976\) 0 0
\(977\) −4983.98 −0.163205 −0.0816027 0.996665i \(-0.526004\pi\)
−0.0816027 + 0.996665i \(0.526004\pi\)
\(978\) 0 0
\(979\) −3199.08 −0.104436
\(980\) 0 0
\(981\) 7537.04 0.245300
\(982\) 0 0
\(983\) 8228.82 0.266998 0.133499 0.991049i \(-0.457379\pi\)
0.133499 + 0.991049i \(0.457379\pi\)
\(984\) 0 0
\(985\) −14030.4 −0.453854
\(986\) 0 0
\(987\) −43214.5 −1.39365
\(988\) 0 0
\(989\) −36509.4 −1.17384
\(990\) 0 0
\(991\) −46521.1 −1.49121 −0.745606 0.666388i \(-0.767840\pi\)
−0.745606 + 0.666388i \(0.767840\pi\)
\(992\) 0 0
\(993\) 19710.0 0.629887
\(994\) 0 0
\(995\) −12804.7 −0.407977
\(996\) 0 0
\(997\) −22290.5 −0.708073 −0.354036 0.935232i \(-0.615191\pi\)
−0.354036 + 0.935232i \(0.615191\pi\)
\(998\) 0 0
\(999\) −9335.31 −0.295652
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.ca.1.4 5
4.3 odd 2 2496.4.a.cf.1.4 5
8.3 odd 2 1248.4.a.g.1.2 5
8.5 even 2 1248.4.a.l.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.4.a.g.1.2 5 8.3 odd 2
1248.4.a.l.1.2 yes 5 8.5 even 2
2496.4.a.ca.1.4 5 1.1 even 1 trivial
2496.4.a.cf.1.4 5 4.3 odd 2