Properties

Label 2496.4.a.ca.1.1
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 20x^{3} - 33x^{2} + 17x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.81539\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -14.7452 q^{5} -9.44613 q^{7} +9.00000 q^{9} +55.6334 q^{11} +13.0000 q^{13} +44.2356 q^{15} -120.234 q^{17} -136.902 q^{19} +28.3384 q^{21} +62.1708 q^{23} +92.4212 q^{25} -27.0000 q^{27} +171.656 q^{29} +68.3802 q^{31} -166.900 q^{33} +139.285 q^{35} +165.907 q^{37} -39.0000 q^{39} -437.690 q^{41} +191.295 q^{43} -132.707 q^{45} +271.577 q^{47} -253.771 q^{49} +360.703 q^{51} +155.725 q^{53} -820.327 q^{55} +410.706 q^{57} +582.688 q^{59} +261.654 q^{61} -85.0152 q^{63} -191.688 q^{65} +197.665 q^{67} -186.513 q^{69} +69.8308 q^{71} +815.835 q^{73} -277.264 q^{75} -525.521 q^{77} -396.735 q^{79} +81.0000 q^{81} -938.295 q^{83} +1772.88 q^{85} -514.967 q^{87} +572.142 q^{89} -122.800 q^{91} -205.141 q^{93} +2018.65 q^{95} -145.028 q^{97} +500.701 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} + 10 q^{5} - 14 q^{7} + 45 q^{9} + 22 q^{11} + 65 q^{13} - 30 q^{15} - 34 q^{17} - 90 q^{19} + 42 q^{21} - 96 q^{23} + 107 q^{25} - 135 q^{27} + 54 q^{29} - 378 q^{31} - 66 q^{33} + 84 q^{35}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −14.7452 −1.31885 −0.659426 0.751770i \(-0.729201\pi\)
−0.659426 + 0.751770i \(0.729201\pi\)
\(6\) 0 0
\(7\) −9.44613 −0.510043 −0.255022 0.966935i \(-0.582083\pi\)
−0.255022 + 0.966935i \(0.582083\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 55.6334 1.52492 0.762460 0.647036i \(-0.223992\pi\)
0.762460 + 0.647036i \(0.223992\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 44.2356 0.761439
\(16\) 0 0
\(17\) −120.234 −1.71536 −0.857679 0.514186i \(-0.828094\pi\)
−0.857679 + 0.514186i \(0.828094\pi\)
\(18\) 0 0
\(19\) −136.902 −1.65303 −0.826513 0.562917i \(-0.809679\pi\)
−0.826513 + 0.562917i \(0.809679\pi\)
\(20\) 0 0
\(21\) 28.3384 0.294474
\(22\) 0 0
\(23\) 62.1708 0.563631 0.281816 0.959469i \(-0.409063\pi\)
0.281816 + 0.959469i \(0.409063\pi\)
\(24\) 0 0
\(25\) 92.4212 0.739369
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 171.656 1.09916 0.549580 0.835441i \(-0.314788\pi\)
0.549580 + 0.835441i \(0.314788\pi\)
\(30\) 0 0
\(31\) 68.3802 0.396176 0.198088 0.980184i \(-0.436527\pi\)
0.198088 + 0.980184i \(0.436527\pi\)
\(32\) 0 0
\(33\) −166.900 −0.880413
\(34\) 0 0
\(35\) 139.285 0.672671
\(36\) 0 0
\(37\) 165.907 0.737161 0.368580 0.929596i \(-0.379844\pi\)
0.368580 + 0.929596i \(0.379844\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) −437.690 −1.66721 −0.833605 0.552360i \(-0.813727\pi\)
−0.833605 + 0.552360i \(0.813727\pi\)
\(42\) 0 0
\(43\) 191.295 0.678424 0.339212 0.940710i \(-0.389840\pi\)
0.339212 + 0.940710i \(0.389840\pi\)
\(44\) 0 0
\(45\) −132.707 −0.439617
\(46\) 0 0
\(47\) 271.577 0.842843 0.421421 0.906865i \(-0.361531\pi\)
0.421421 + 0.906865i \(0.361531\pi\)
\(48\) 0 0
\(49\) −253.771 −0.739856
\(50\) 0 0
\(51\) 360.703 0.990362
\(52\) 0 0
\(53\) 155.725 0.403593 0.201796 0.979428i \(-0.435322\pi\)
0.201796 + 0.979428i \(0.435322\pi\)
\(54\) 0 0
\(55\) −820.327 −2.01114
\(56\) 0 0
\(57\) 410.706 0.954375
\(58\) 0 0
\(59\) 582.688 1.28575 0.642877 0.765969i \(-0.277741\pi\)
0.642877 + 0.765969i \(0.277741\pi\)
\(60\) 0 0
\(61\) 261.654 0.549202 0.274601 0.961558i \(-0.411454\pi\)
0.274601 + 0.961558i \(0.411454\pi\)
\(62\) 0 0
\(63\) −85.0152 −0.170014
\(64\) 0 0
\(65\) −191.688 −0.365784
\(66\) 0 0
\(67\) 197.665 0.360427 0.180213 0.983628i \(-0.442321\pi\)
0.180213 + 0.983628i \(0.442321\pi\)
\(68\) 0 0
\(69\) −186.513 −0.325413
\(70\) 0 0
\(71\) 69.8308 0.116724 0.0583619 0.998295i \(-0.481412\pi\)
0.0583619 + 0.998295i \(0.481412\pi\)
\(72\) 0 0
\(73\) 815.835 1.30803 0.654016 0.756481i \(-0.273083\pi\)
0.654016 + 0.756481i \(0.273083\pi\)
\(74\) 0 0
\(75\) −277.264 −0.426875
\(76\) 0 0
\(77\) −525.521 −0.777775
\(78\) 0 0
\(79\) −396.735 −0.565015 −0.282507 0.959265i \(-0.591166\pi\)
−0.282507 + 0.959265i \(0.591166\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −938.295 −1.24086 −0.620429 0.784262i \(-0.713042\pi\)
−0.620429 + 0.784262i \(0.713042\pi\)
\(84\) 0 0
\(85\) 1772.88 2.26230
\(86\) 0 0
\(87\) −514.967 −0.634600
\(88\) 0 0
\(89\) 572.142 0.681427 0.340713 0.940167i \(-0.389331\pi\)
0.340713 + 0.940167i \(0.389331\pi\)
\(90\) 0 0
\(91\) −122.800 −0.141461
\(92\) 0 0
\(93\) −205.141 −0.228732
\(94\) 0 0
\(95\) 2018.65 2.18010
\(96\) 0 0
\(97\) −145.028 −0.151808 −0.0759041 0.997115i \(-0.524184\pi\)
−0.0759041 + 0.997115i \(0.524184\pi\)
\(98\) 0 0
\(99\) 500.701 0.508307
\(100\) 0 0
\(101\) 1332.99 1.31324 0.656621 0.754221i \(-0.271985\pi\)
0.656621 + 0.754221i \(0.271985\pi\)
\(102\) 0 0
\(103\) −427.202 −0.408675 −0.204337 0.978901i \(-0.565504\pi\)
−0.204337 + 0.978901i \(0.565504\pi\)
\(104\) 0 0
\(105\) −417.856 −0.388367
\(106\) 0 0
\(107\) 434.184 0.392281 0.196141 0.980576i \(-0.437159\pi\)
0.196141 + 0.980576i \(0.437159\pi\)
\(108\) 0 0
\(109\) 1070.80 0.940951 0.470476 0.882413i \(-0.344082\pi\)
0.470476 + 0.882413i \(0.344082\pi\)
\(110\) 0 0
\(111\) −497.721 −0.425600
\(112\) 0 0
\(113\) −488.658 −0.406806 −0.203403 0.979095i \(-0.565200\pi\)
−0.203403 + 0.979095i \(0.565200\pi\)
\(114\) 0 0
\(115\) −916.722 −0.743346
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) 1135.75 0.874906
\(120\) 0 0
\(121\) 1764.08 1.32538
\(122\) 0 0
\(123\) 1313.07 0.962565
\(124\) 0 0
\(125\) 480.382 0.343733
\(126\) 0 0
\(127\) 1774.22 1.23966 0.619828 0.784738i \(-0.287202\pi\)
0.619828 + 0.784738i \(0.287202\pi\)
\(128\) 0 0
\(129\) −573.885 −0.391688
\(130\) 0 0
\(131\) 814.519 0.543243 0.271621 0.962404i \(-0.412440\pi\)
0.271621 + 0.962404i \(0.412440\pi\)
\(132\) 0 0
\(133\) 1293.20 0.843115
\(134\) 0 0
\(135\) 398.121 0.253813
\(136\) 0 0
\(137\) 1328.55 0.828511 0.414256 0.910161i \(-0.364042\pi\)
0.414256 + 0.910161i \(0.364042\pi\)
\(138\) 0 0
\(139\) −735.419 −0.448759 −0.224379 0.974502i \(-0.572035\pi\)
−0.224379 + 0.974502i \(0.572035\pi\)
\(140\) 0 0
\(141\) −814.732 −0.486616
\(142\) 0 0
\(143\) 723.235 0.422937
\(144\) 0 0
\(145\) −2531.10 −1.44963
\(146\) 0 0
\(147\) 761.312 0.427156
\(148\) 0 0
\(149\) −2360.83 −1.29803 −0.649015 0.760775i \(-0.724819\pi\)
−0.649015 + 0.760775i \(0.724819\pi\)
\(150\) 0 0
\(151\) −2725.54 −1.46889 −0.734443 0.678671i \(-0.762556\pi\)
−0.734443 + 0.678671i \(0.762556\pi\)
\(152\) 0 0
\(153\) −1082.11 −0.571786
\(154\) 0 0
\(155\) −1008.28 −0.522497
\(156\) 0 0
\(157\) 410.252 0.208546 0.104273 0.994549i \(-0.466748\pi\)
0.104273 + 0.994549i \(0.466748\pi\)
\(158\) 0 0
\(159\) −467.174 −0.233014
\(160\) 0 0
\(161\) −587.274 −0.287476
\(162\) 0 0
\(163\) 1268.90 0.609743 0.304871 0.952394i \(-0.401387\pi\)
0.304871 + 0.952394i \(0.401387\pi\)
\(164\) 0 0
\(165\) 2460.98 1.16113
\(166\) 0 0
\(167\) −3541.26 −1.64090 −0.820451 0.571717i \(-0.806278\pi\)
−0.820451 + 0.571717i \(0.806278\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −1232.12 −0.551009
\(172\) 0 0
\(173\) −670.272 −0.294566 −0.147283 0.989094i \(-0.547053\pi\)
−0.147283 + 0.989094i \(0.547053\pi\)
\(174\) 0 0
\(175\) −873.023 −0.377110
\(176\) 0 0
\(177\) −1748.06 −0.742331
\(178\) 0 0
\(179\) −4416.42 −1.84413 −0.922063 0.387040i \(-0.873498\pi\)
−0.922063 + 0.387040i \(0.873498\pi\)
\(180\) 0 0
\(181\) −1633.78 −0.670929 −0.335464 0.942053i \(-0.608893\pi\)
−0.335464 + 0.942053i \(0.608893\pi\)
\(182\) 0 0
\(183\) −784.962 −0.317082
\(184\) 0 0
\(185\) −2446.33 −0.972206
\(186\) 0 0
\(187\) −6689.04 −2.61578
\(188\) 0 0
\(189\) 255.046 0.0981579
\(190\) 0 0
\(191\) −3961.29 −1.50067 −0.750337 0.661055i \(-0.770109\pi\)
−0.750337 + 0.661055i \(0.770109\pi\)
\(192\) 0 0
\(193\) −2196.08 −0.819052 −0.409526 0.912298i \(-0.634306\pi\)
−0.409526 + 0.912298i \(0.634306\pi\)
\(194\) 0 0
\(195\) 575.063 0.211185
\(196\) 0 0
\(197\) 3511.12 1.26983 0.634916 0.772581i \(-0.281035\pi\)
0.634916 + 0.772581i \(0.281035\pi\)
\(198\) 0 0
\(199\) 4813.03 1.71450 0.857252 0.514896i \(-0.172170\pi\)
0.857252 + 0.514896i \(0.172170\pi\)
\(200\) 0 0
\(201\) −592.994 −0.208092
\(202\) 0 0
\(203\) −1621.48 −0.560619
\(204\) 0 0
\(205\) 6453.83 2.19880
\(206\) 0 0
\(207\) 559.538 0.187877
\(208\) 0 0
\(209\) −7616.34 −2.52073
\(210\) 0 0
\(211\) 319.742 0.104322 0.0521610 0.998639i \(-0.483389\pi\)
0.0521610 + 0.998639i \(0.483389\pi\)
\(212\) 0 0
\(213\) −209.493 −0.0673906
\(214\) 0 0
\(215\) −2820.69 −0.894741
\(216\) 0 0
\(217\) −645.928 −0.202067
\(218\) 0 0
\(219\) −2447.51 −0.755192
\(220\) 0 0
\(221\) −1563.04 −0.475754
\(222\) 0 0
\(223\) −3261.73 −0.979470 −0.489735 0.871871i \(-0.662906\pi\)
−0.489735 + 0.871871i \(0.662906\pi\)
\(224\) 0 0
\(225\) 831.791 0.246456
\(226\) 0 0
\(227\) −1639.14 −0.479268 −0.239634 0.970863i \(-0.577027\pi\)
−0.239634 + 0.970863i \(0.577027\pi\)
\(228\) 0 0
\(229\) −5198.91 −1.50023 −0.750117 0.661305i \(-0.770003\pi\)
−0.750117 + 0.661305i \(0.770003\pi\)
\(230\) 0 0
\(231\) 1576.56 0.449049
\(232\) 0 0
\(233\) −5894.74 −1.65741 −0.828707 0.559683i \(-0.810923\pi\)
−0.828707 + 0.559683i \(0.810923\pi\)
\(234\) 0 0
\(235\) −4004.46 −1.11158
\(236\) 0 0
\(237\) 1190.20 0.326211
\(238\) 0 0
\(239\) −3293.00 −0.891239 −0.445620 0.895222i \(-0.647017\pi\)
−0.445620 + 0.895222i \(0.647017\pi\)
\(240\) 0 0
\(241\) 138.548 0.0370317 0.0185159 0.999829i \(-0.494106\pi\)
0.0185159 + 0.999829i \(0.494106\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 3741.90 0.975760
\(246\) 0 0
\(247\) −1779.73 −0.458467
\(248\) 0 0
\(249\) 2814.89 0.716410
\(250\) 0 0
\(251\) −2812.92 −0.707371 −0.353685 0.935364i \(-0.615072\pi\)
−0.353685 + 0.935364i \(0.615072\pi\)
\(252\) 0 0
\(253\) 3458.78 0.859492
\(254\) 0 0
\(255\) −5318.63 −1.30614
\(256\) 0 0
\(257\) 4450.11 1.08012 0.540059 0.841627i \(-0.318402\pi\)
0.540059 + 0.841627i \(0.318402\pi\)
\(258\) 0 0
\(259\) −1567.18 −0.375984
\(260\) 0 0
\(261\) 1544.90 0.366387
\(262\) 0 0
\(263\) −1789.33 −0.419523 −0.209762 0.977753i \(-0.567269\pi\)
−0.209762 + 0.977753i \(0.567269\pi\)
\(264\) 0 0
\(265\) −2296.19 −0.532279
\(266\) 0 0
\(267\) −1716.43 −0.393422
\(268\) 0 0
\(269\) 7912.65 1.79347 0.896733 0.442571i \(-0.145934\pi\)
0.896733 + 0.442571i \(0.145934\pi\)
\(270\) 0 0
\(271\) 4234.45 0.949168 0.474584 0.880210i \(-0.342599\pi\)
0.474584 + 0.880210i \(0.342599\pi\)
\(272\) 0 0
\(273\) 368.399 0.0816723
\(274\) 0 0
\(275\) 5141.71 1.12748
\(276\) 0 0
\(277\) 6294.69 1.36538 0.682692 0.730706i \(-0.260809\pi\)
0.682692 + 0.730706i \(0.260809\pi\)
\(278\) 0 0
\(279\) 615.422 0.132059
\(280\) 0 0
\(281\) 5274.13 1.11967 0.559837 0.828603i \(-0.310864\pi\)
0.559837 + 0.828603i \(0.310864\pi\)
\(282\) 0 0
\(283\) −2871.45 −0.603145 −0.301573 0.953443i \(-0.597512\pi\)
−0.301573 + 0.953443i \(0.597512\pi\)
\(284\) 0 0
\(285\) −6055.95 −1.25868
\(286\) 0 0
\(287\) 4134.48 0.850350
\(288\) 0 0
\(289\) 9543.26 1.94245
\(290\) 0 0
\(291\) 435.085 0.0876465
\(292\) 0 0
\(293\) −2216.66 −0.441975 −0.220988 0.975277i \(-0.570928\pi\)
−0.220988 + 0.975277i \(0.570928\pi\)
\(294\) 0 0
\(295\) −8591.85 −1.69572
\(296\) 0 0
\(297\) −1502.10 −0.293471
\(298\) 0 0
\(299\) 808.221 0.156323
\(300\) 0 0
\(301\) −1807.00 −0.346026
\(302\) 0 0
\(303\) −3998.97 −0.758200
\(304\) 0 0
\(305\) −3858.14 −0.724317
\(306\) 0 0
\(307\) −6630.04 −1.23256 −0.616281 0.787526i \(-0.711362\pi\)
−0.616281 + 0.787526i \(0.711362\pi\)
\(308\) 0 0
\(309\) 1281.61 0.235949
\(310\) 0 0
\(311\) −6417.22 −1.17005 −0.585027 0.811014i \(-0.698916\pi\)
−0.585027 + 0.811014i \(0.698916\pi\)
\(312\) 0 0
\(313\) −10030.5 −1.81137 −0.905685 0.423952i \(-0.860643\pi\)
−0.905685 + 0.423952i \(0.860643\pi\)
\(314\) 0 0
\(315\) 1253.57 0.224224
\(316\) 0 0
\(317\) −6080.92 −1.07741 −0.538704 0.842495i \(-0.681086\pi\)
−0.538704 + 0.842495i \(0.681086\pi\)
\(318\) 0 0
\(319\) 9549.79 1.67613
\(320\) 0 0
\(321\) −1302.55 −0.226484
\(322\) 0 0
\(323\) 16460.3 2.83553
\(324\) 0 0
\(325\) 1201.48 0.205064
\(326\) 0 0
\(327\) −3212.39 −0.543259
\(328\) 0 0
\(329\) −2565.35 −0.429886
\(330\) 0 0
\(331\) 4169.50 0.692376 0.346188 0.938165i \(-0.387476\pi\)
0.346188 + 0.938165i \(0.387476\pi\)
\(332\) 0 0
\(333\) 1493.16 0.245720
\(334\) 0 0
\(335\) −2914.61 −0.475349
\(336\) 0 0
\(337\) 8455.48 1.36676 0.683382 0.730061i \(-0.260508\pi\)
0.683382 + 0.730061i \(0.260508\pi\)
\(338\) 0 0
\(339\) 1465.97 0.234869
\(340\) 0 0
\(341\) 3804.23 0.604136
\(342\) 0 0
\(343\) 5637.17 0.887402
\(344\) 0 0
\(345\) 2750.17 0.429171
\(346\) 0 0
\(347\) −10221.0 −1.58125 −0.790623 0.612304i \(-0.790243\pi\)
−0.790623 + 0.612304i \(0.790243\pi\)
\(348\) 0 0
\(349\) 6210.05 0.952483 0.476241 0.879315i \(-0.341999\pi\)
0.476241 + 0.879315i \(0.341999\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) −2938.60 −0.443076 −0.221538 0.975152i \(-0.571108\pi\)
−0.221538 + 0.975152i \(0.571108\pi\)
\(354\) 0 0
\(355\) −1029.67 −0.153941
\(356\) 0 0
\(357\) −3407.24 −0.505127
\(358\) 0 0
\(359\) −9684.69 −1.42378 −0.711892 0.702289i \(-0.752162\pi\)
−0.711892 + 0.702289i \(0.752162\pi\)
\(360\) 0 0
\(361\) 11883.2 1.73250
\(362\) 0 0
\(363\) −5292.24 −0.765208
\(364\) 0 0
\(365\) −12029.7 −1.72510
\(366\) 0 0
\(367\) 2061.20 0.293171 0.146585 0.989198i \(-0.453172\pi\)
0.146585 + 0.989198i \(0.453172\pi\)
\(368\) 0 0
\(369\) −3939.21 −0.555737
\(370\) 0 0
\(371\) −1470.99 −0.205850
\(372\) 0 0
\(373\) −8658.96 −1.20200 −0.600998 0.799251i \(-0.705230\pi\)
−0.600998 + 0.799251i \(0.705230\pi\)
\(374\) 0 0
\(375\) −1441.15 −0.198454
\(376\) 0 0
\(377\) 2231.52 0.304852
\(378\) 0 0
\(379\) −4101.61 −0.555898 −0.277949 0.960596i \(-0.589655\pi\)
−0.277949 + 0.960596i \(0.589655\pi\)
\(380\) 0 0
\(381\) −5322.65 −0.715716
\(382\) 0 0
\(383\) −8906.22 −1.18822 −0.594108 0.804386i \(-0.702495\pi\)
−0.594108 + 0.804386i \(0.702495\pi\)
\(384\) 0 0
\(385\) 7748.92 1.02577
\(386\) 0 0
\(387\) 1721.66 0.226141
\(388\) 0 0
\(389\) −10659.9 −1.38941 −0.694703 0.719296i \(-0.744464\pi\)
−0.694703 + 0.719296i \(0.744464\pi\)
\(390\) 0 0
\(391\) −7475.06 −0.966829
\(392\) 0 0
\(393\) −2443.56 −0.313641
\(394\) 0 0
\(395\) 5849.94 0.745170
\(396\) 0 0
\(397\) 10652.9 1.34673 0.673365 0.739310i \(-0.264848\pi\)
0.673365 + 0.739310i \(0.264848\pi\)
\(398\) 0 0
\(399\) −3879.59 −0.486773
\(400\) 0 0
\(401\) −10685.9 −1.33074 −0.665369 0.746514i \(-0.731726\pi\)
−0.665369 + 0.746514i \(0.731726\pi\)
\(402\) 0 0
\(403\) 888.942 0.109879
\(404\) 0 0
\(405\) −1194.36 −0.146539
\(406\) 0 0
\(407\) 9229.98 1.12411
\(408\) 0 0
\(409\) 13408.9 1.62110 0.810549 0.585670i \(-0.199169\pi\)
0.810549 + 0.585670i \(0.199169\pi\)
\(410\) 0 0
\(411\) −3985.66 −0.478341
\(412\) 0 0
\(413\) −5504.15 −0.655790
\(414\) 0 0
\(415\) 13835.4 1.63651
\(416\) 0 0
\(417\) 2206.26 0.259091
\(418\) 0 0
\(419\) −12789.8 −1.49123 −0.745615 0.666377i \(-0.767844\pi\)
−0.745615 + 0.666377i \(0.767844\pi\)
\(420\) 0 0
\(421\) −3851.75 −0.445898 −0.222949 0.974830i \(-0.571568\pi\)
−0.222949 + 0.974830i \(0.571568\pi\)
\(422\) 0 0
\(423\) 2444.20 0.280948
\(424\) 0 0
\(425\) −11112.2 −1.26828
\(426\) 0 0
\(427\) −2471.62 −0.280117
\(428\) 0 0
\(429\) −2169.70 −0.244183
\(430\) 0 0
\(431\) −16659.8 −1.86189 −0.930946 0.365157i \(-0.881015\pi\)
−0.930946 + 0.365157i \(0.881015\pi\)
\(432\) 0 0
\(433\) −16062.9 −1.78275 −0.891377 0.453262i \(-0.850260\pi\)
−0.891377 + 0.453262i \(0.850260\pi\)
\(434\) 0 0
\(435\) 7593.29 0.836943
\(436\) 0 0
\(437\) −8511.32 −0.931697
\(438\) 0 0
\(439\) 620.202 0.0674274 0.0337137 0.999432i \(-0.489267\pi\)
0.0337137 + 0.999432i \(0.489267\pi\)
\(440\) 0 0
\(441\) −2283.94 −0.246619
\(442\) 0 0
\(443\) 4046.82 0.434019 0.217009 0.976170i \(-0.430370\pi\)
0.217009 + 0.976170i \(0.430370\pi\)
\(444\) 0 0
\(445\) −8436.36 −0.898701
\(446\) 0 0
\(447\) 7082.49 0.749419
\(448\) 0 0
\(449\) 10650.6 1.11945 0.559727 0.828677i \(-0.310906\pi\)
0.559727 + 0.828677i \(0.310906\pi\)
\(450\) 0 0
\(451\) −24350.2 −2.54236
\(452\) 0 0
\(453\) 8176.63 0.848061
\(454\) 0 0
\(455\) 1810.71 0.186565
\(456\) 0 0
\(457\) −950.953 −0.0973385 −0.0486692 0.998815i \(-0.515498\pi\)
−0.0486692 + 0.998815i \(0.515498\pi\)
\(458\) 0 0
\(459\) 3246.32 0.330121
\(460\) 0 0
\(461\) −3844.16 −0.388374 −0.194187 0.980965i \(-0.562207\pi\)
−0.194187 + 0.980965i \(0.562207\pi\)
\(462\) 0 0
\(463\) 4153.25 0.416886 0.208443 0.978035i \(-0.433160\pi\)
0.208443 + 0.978035i \(0.433160\pi\)
\(464\) 0 0
\(465\) 3024.84 0.301664
\(466\) 0 0
\(467\) 8205.41 0.813064 0.406532 0.913636i \(-0.366738\pi\)
0.406532 + 0.913636i \(0.366738\pi\)
\(468\) 0 0
\(469\) −1867.17 −0.183833
\(470\) 0 0
\(471\) −1230.76 −0.120404
\(472\) 0 0
\(473\) 10642.4 1.03454
\(474\) 0 0
\(475\) −12652.7 −1.22220
\(476\) 0 0
\(477\) 1401.52 0.134531
\(478\) 0 0
\(479\) −9472.01 −0.903522 −0.451761 0.892139i \(-0.649204\pi\)
−0.451761 + 0.892139i \(0.649204\pi\)
\(480\) 0 0
\(481\) 2156.79 0.204452
\(482\) 0 0
\(483\) 1761.82 0.165975
\(484\) 0 0
\(485\) 2138.47 0.200212
\(486\) 0 0
\(487\) 13022.3 1.21169 0.605847 0.795581i \(-0.292834\pi\)
0.605847 + 0.795581i \(0.292834\pi\)
\(488\) 0 0
\(489\) −3806.71 −0.352035
\(490\) 0 0
\(491\) 12947.4 1.19003 0.595017 0.803713i \(-0.297145\pi\)
0.595017 + 0.803713i \(0.297145\pi\)
\(492\) 0 0
\(493\) −20638.9 −1.88545
\(494\) 0 0
\(495\) −7382.94 −0.670381
\(496\) 0 0
\(497\) −659.631 −0.0595342
\(498\) 0 0
\(499\) 9313.74 0.835551 0.417776 0.908550i \(-0.362810\pi\)
0.417776 + 0.908550i \(0.362810\pi\)
\(500\) 0 0
\(501\) 10623.8 0.947375
\(502\) 0 0
\(503\) 10365.4 0.918828 0.459414 0.888222i \(-0.348059\pi\)
0.459414 + 0.888222i \(0.348059\pi\)
\(504\) 0 0
\(505\) −19655.2 −1.73197
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) −12031.0 −1.04767 −0.523835 0.851820i \(-0.675499\pi\)
−0.523835 + 0.851820i \(0.675499\pi\)
\(510\) 0 0
\(511\) −7706.49 −0.667153
\(512\) 0 0
\(513\) 3696.36 0.318125
\(514\) 0 0
\(515\) 6299.19 0.538981
\(516\) 0 0
\(517\) 15108.8 1.28527
\(518\) 0 0
\(519\) 2010.82 0.170068
\(520\) 0 0
\(521\) 18554.7 1.56026 0.780131 0.625616i \(-0.215152\pi\)
0.780131 + 0.625616i \(0.215152\pi\)
\(522\) 0 0
\(523\) 1315.45 0.109982 0.0549912 0.998487i \(-0.482487\pi\)
0.0549912 + 0.998487i \(0.482487\pi\)
\(524\) 0 0
\(525\) 2619.07 0.217725
\(526\) 0 0
\(527\) −8221.64 −0.679583
\(528\) 0 0
\(529\) −8301.79 −0.682320
\(530\) 0 0
\(531\) 5244.19 0.428585
\(532\) 0 0
\(533\) −5689.97 −0.462401
\(534\) 0 0
\(535\) −6402.13 −0.517361
\(536\) 0 0
\(537\) 13249.3 1.06471
\(538\) 0 0
\(539\) −14118.1 −1.12822
\(540\) 0 0
\(541\) 7840.34 0.623073 0.311537 0.950234i \(-0.399156\pi\)
0.311537 + 0.950234i \(0.399156\pi\)
\(542\) 0 0
\(543\) 4901.35 0.387361
\(544\) 0 0
\(545\) −15789.1 −1.24098
\(546\) 0 0
\(547\) 4796.69 0.374939 0.187469 0.982270i \(-0.439971\pi\)
0.187469 + 0.982270i \(0.439971\pi\)
\(548\) 0 0
\(549\) 2354.89 0.183067
\(550\) 0 0
\(551\) −23500.0 −1.81694
\(552\) 0 0
\(553\) 3747.61 0.288182
\(554\) 0 0
\(555\) 7339.00 0.561303
\(556\) 0 0
\(557\) 15030.4 1.14337 0.571686 0.820473i \(-0.306290\pi\)
0.571686 + 0.820473i \(0.306290\pi\)
\(558\) 0 0
\(559\) 2486.84 0.188161
\(560\) 0 0
\(561\) 20067.1 1.51022
\(562\) 0 0
\(563\) −5085.88 −0.380718 −0.190359 0.981715i \(-0.560965\pi\)
−0.190359 + 0.981715i \(0.560965\pi\)
\(564\) 0 0
\(565\) 7205.36 0.536516
\(566\) 0 0
\(567\) −765.137 −0.0566715
\(568\) 0 0
\(569\) −12964.0 −0.955151 −0.477576 0.878591i \(-0.658484\pi\)
−0.477576 + 0.878591i \(0.658484\pi\)
\(570\) 0 0
\(571\) −10862.3 −0.796098 −0.398049 0.917364i \(-0.630313\pi\)
−0.398049 + 0.917364i \(0.630313\pi\)
\(572\) 0 0
\(573\) 11883.9 0.866415
\(574\) 0 0
\(575\) 5745.90 0.416732
\(576\) 0 0
\(577\) −4502.26 −0.324838 −0.162419 0.986722i \(-0.551930\pi\)
−0.162419 + 0.986722i \(0.551930\pi\)
\(578\) 0 0
\(579\) 6588.23 0.472880
\(580\) 0 0
\(581\) 8863.26 0.632892
\(582\) 0 0
\(583\) 8663.49 0.615446
\(584\) 0 0
\(585\) −1725.19 −0.121928
\(586\) 0 0
\(587\) −5910.43 −0.415587 −0.207794 0.978173i \(-0.566628\pi\)
−0.207794 + 0.978173i \(0.566628\pi\)
\(588\) 0 0
\(589\) −9361.39 −0.654889
\(590\) 0 0
\(591\) −10533.4 −0.733138
\(592\) 0 0
\(593\) 23680.8 1.63989 0.819945 0.572443i \(-0.194004\pi\)
0.819945 + 0.572443i \(0.194004\pi\)
\(594\) 0 0
\(595\) −16746.8 −1.15387
\(596\) 0 0
\(597\) −14439.1 −0.989870
\(598\) 0 0
\(599\) 16091.1 1.09760 0.548802 0.835952i \(-0.315084\pi\)
0.548802 + 0.835952i \(0.315084\pi\)
\(600\) 0 0
\(601\) −6691.76 −0.454180 −0.227090 0.973874i \(-0.572921\pi\)
−0.227090 + 0.973874i \(0.572921\pi\)
\(602\) 0 0
\(603\) 1778.98 0.120142
\(604\) 0 0
\(605\) −26011.7 −1.74798
\(606\) 0 0
\(607\) 8087.54 0.540796 0.270398 0.962749i \(-0.412845\pi\)
0.270398 + 0.962749i \(0.412845\pi\)
\(608\) 0 0
\(609\) 4864.44 0.323674
\(610\) 0 0
\(611\) 3530.50 0.233763
\(612\) 0 0
\(613\) −20105.7 −1.32474 −0.662368 0.749179i \(-0.730448\pi\)
−0.662368 + 0.749179i \(0.730448\pi\)
\(614\) 0 0
\(615\) −19361.5 −1.26948
\(616\) 0 0
\(617\) 24167.0 1.57687 0.788434 0.615119i \(-0.210892\pi\)
0.788434 + 0.615119i \(0.210892\pi\)
\(618\) 0 0
\(619\) −1170.34 −0.0759932 −0.0379966 0.999278i \(-0.512098\pi\)
−0.0379966 + 0.999278i \(0.512098\pi\)
\(620\) 0 0
\(621\) −1678.61 −0.108471
\(622\) 0 0
\(623\) −5404.53 −0.347557
\(624\) 0 0
\(625\) −18636.0 −1.19270
\(626\) 0 0
\(627\) 22849.0 1.45535
\(628\) 0 0
\(629\) −19947.7 −1.26449
\(630\) 0 0
\(631\) −8603.15 −0.542767 −0.271384 0.962471i \(-0.587481\pi\)
−0.271384 + 0.962471i \(0.587481\pi\)
\(632\) 0 0
\(633\) −959.225 −0.0602303
\(634\) 0 0
\(635\) −26161.2 −1.63492
\(636\) 0 0
\(637\) −3299.02 −0.205199
\(638\) 0 0
\(639\) 628.478 0.0389080
\(640\) 0 0
\(641\) −4145.99 −0.255470 −0.127735 0.991808i \(-0.540771\pi\)
−0.127735 + 0.991808i \(0.540771\pi\)
\(642\) 0 0
\(643\) −10397.1 −0.637667 −0.318833 0.947811i \(-0.603291\pi\)
−0.318833 + 0.947811i \(0.603291\pi\)
\(644\) 0 0
\(645\) 8462.06 0.516579
\(646\) 0 0
\(647\) 24039.8 1.46074 0.730371 0.683050i \(-0.239347\pi\)
0.730371 + 0.683050i \(0.239347\pi\)
\(648\) 0 0
\(649\) 32416.9 1.96067
\(650\) 0 0
\(651\) 1937.79 0.116663
\(652\) 0 0
\(653\) 5877.28 0.352214 0.176107 0.984371i \(-0.443650\pi\)
0.176107 + 0.984371i \(0.443650\pi\)
\(654\) 0 0
\(655\) −12010.2 −0.716457
\(656\) 0 0
\(657\) 7342.52 0.436011
\(658\) 0 0
\(659\) −24314.2 −1.43725 −0.718625 0.695398i \(-0.755228\pi\)
−0.718625 + 0.695398i \(0.755228\pi\)
\(660\) 0 0
\(661\) −29089.2 −1.71171 −0.855854 0.517217i \(-0.826968\pi\)
−0.855854 + 0.517217i \(0.826968\pi\)
\(662\) 0 0
\(663\) 4689.13 0.274677
\(664\) 0 0
\(665\) −19068.4 −1.11194
\(666\) 0 0
\(667\) 10672.0 0.619521
\(668\) 0 0
\(669\) 9785.20 0.565497
\(670\) 0 0
\(671\) 14556.7 0.837490
\(672\) 0 0
\(673\) −3261.01 −0.186779 −0.0933897 0.995630i \(-0.529770\pi\)
−0.0933897 + 0.995630i \(0.529770\pi\)
\(674\) 0 0
\(675\) −2495.37 −0.142292
\(676\) 0 0
\(677\) 15283.6 0.867645 0.433822 0.900998i \(-0.357165\pi\)
0.433822 + 0.900998i \(0.357165\pi\)
\(678\) 0 0
\(679\) 1369.96 0.0774287
\(680\) 0 0
\(681\) 4917.43 0.276705
\(682\) 0 0
\(683\) −25901.5 −1.45109 −0.725544 0.688176i \(-0.758412\pi\)
−0.725544 + 0.688176i \(0.758412\pi\)
\(684\) 0 0
\(685\) −19589.8 −1.09268
\(686\) 0 0
\(687\) 15596.7 0.866161
\(688\) 0 0
\(689\) 2024.42 0.111936
\(690\) 0 0
\(691\) −33260.9 −1.83112 −0.915560 0.402181i \(-0.868252\pi\)
−0.915560 + 0.402181i \(0.868252\pi\)
\(692\) 0 0
\(693\) −4729.69 −0.259258
\(694\) 0 0
\(695\) 10843.9 0.591846
\(696\) 0 0
\(697\) 52625.3 2.85986
\(698\) 0 0
\(699\) 17684.2 0.956908
\(700\) 0 0
\(701\) −12913.7 −0.695783 −0.347891 0.937535i \(-0.613102\pi\)
−0.347891 + 0.937535i \(0.613102\pi\)
\(702\) 0 0
\(703\) −22713.0 −1.21855
\(704\) 0 0
\(705\) 12013.4 0.641774
\(706\) 0 0
\(707\) −12591.6 −0.669810
\(708\) 0 0
\(709\) −4763.90 −0.252344 −0.126172 0.992008i \(-0.540269\pi\)
−0.126172 + 0.992008i \(0.540269\pi\)
\(710\) 0 0
\(711\) −3570.61 −0.188338
\(712\) 0 0
\(713\) 4251.25 0.223297
\(714\) 0 0
\(715\) −10664.2 −0.557791
\(716\) 0 0
\(717\) 9878.99 0.514557
\(718\) 0 0
\(719\) −19464.3 −1.00959 −0.504795 0.863239i \(-0.668432\pi\)
−0.504795 + 0.863239i \(0.668432\pi\)
\(720\) 0 0
\(721\) 4035.41 0.208442
\(722\) 0 0
\(723\) −415.643 −0.0213803
\(724\) 0 0
\(725\) 15864.6 0.812685
\(726\) 0 0
\(727\) 10674.2 0.544546 0.272273 0.962220i \(-0.412225\pi\)
0.272273 + 0.962220i \(0.412225\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −23000.2 −1.16374
\(732\) 0 0
\(733\) 18606.8 0.937597 0.468798 0.883305i \(-0.344687\pi\)
0.468798 + 0.883305i \(0.344687\pi\)
\(734\) 0 0
\(735\) −11225.7 −0.563355
\(736\) 0 0
\(737\) 10996.8 0.549622
\(738\) 0 0
\(739\) 5357.18 0.266667 0.133334 0.991071i \(-0.457432\pi\)
0.133334 + 0.991071i \(0.457432\pi\)
\(740\) 0 0
\(741\) 5339.18 0.264696
\(742\) 0 0
\(743\) −25371.2 −1.25273 −0.626364 0.779530i \(-0.715458\pi\)
−0.626364 + 0.779530i \(0.715458\pi\)
\(744\) 0 0
\(745\) 34810.9 1.71191
\(746\) 0 0
\(747\) −8444.66 −0.413620
\(748\) 0 0
\(749\) −4101.36 −0.200080
\(750\) 0 0
\(751\) 9775.61 0.474989 0.237495 0.971389i \(-0.423674\pi\)
0.237495 + 0.971389i \(0.423674\pi\)
\(752\) 0 0
\(753\) 8438.77 0.408401
\(754\) 0 0
\(755\) 40188.7 1.93724
\(756\) 0 0
\(757\) 22496.9 1.08014 0.540068 0.841621i \(-0.318398\pi\)
0.540068 + 0.841621i \(0.318398\pi\)
\(758\) 0 0
\(759\) −10376.3 −0.496228
\(760\) 0 0
\(761\) −40282.4 −1.91884 −0.959419 0.281986i \(-0.909007\pi\)
−0.959419 + 0.281986i \(0.909007\pi\)
\(762\) 0 0
\(763\) −10114.9 −0.479926
\(764\) 0 0
\(765\) 15955.9 0.754100
\(766\) 0 0
\(767\) 7574.94 0.356604
\(768\) 0 0
\(769\) 15223.3 0.713872 0.356936 0.934129i \(-0.383821\pi\)
0.356936 + 0.934129i \(0.383821\pi\)
\(770\) 0 0
\(771\) −13350.3 −0.623607
\(772\) 0 0
\(773\) −1830.17 −0.0851574 −0.0425787 0.999093i \(-0.513557\pi\)
−0.0425787 + 0.999093i \(0.513557\pi\)
\(774\) 0 0
\(775\) 6319.78 0.292920
\(776\) 0 0
\(777\) 4701.54 0.217074
\(778\) 0 0
\(779\) 59920.6 2.75594
\(780\) 0 0
\(781\) 3884.93 0.177995
\(782\) 0 0
\(783\) −4634.70 −0.211533
\(784\) 0 0
\(785\) −6049.25 −0.275041
\(786\) 0 0
\(787\) −10219.7 −0.462889 −0.231445 0.972848i \(-0.574345\pi\)
−0.231445 + 0.972848i \(0.574345\pi\)
\(788\) 0 0
\(789\) 5367.98 0.242212
\(790\) 0 0
\(791\) 4615.92 0.207488
\(792\) 0 0
\(793\) 3401.50 0.152321
\(794\) 0 0
\(795\) 6888.57 0.307311
\(796\) 0 0
\(797\) −7383.96 −0.328172 −0.164086 0.986446i \(-0.552468\pi\)
−0.164086 + 0.986446i \(0.552468\pi\)
\(798\) 0 0
\(799\) −32652.9 −1.44578
\(800\) 0 0
\(801\) 5149.28 0.227142
\(802\) 0 0
\(803\) 45387.7 1.99464
\(804\) 0 0
\(805\) 8659.48 0.379139
\(806\) 0 0
\(807\) −23737.9 −1.03546
\(808\) 0 0
\(809\) −16125.8 −0.700807 −0.350403 0.936599i \(-0.613956\pi\)
−0.350403 + 0.936599i \(0.613956\pi\)
\(810\) 0 0
\(811\) −38170.9 −1.65273 −0.826363 0.563138i \(-0.809594\pi\)
−0.826363 + 0.563138i \(0.809594\pi\)
\(812\) 0 0
\(813\) −12703.4 −0.548002
\(814\) 0 0
\(815\) −18710.2 −0.804160
\(816\) 0 0
\(817\) −26188.7 −1.12145
\(818\) 0 0
\(819\) −1105.20 −0.0471535
\(820\) 0 0
\(821\) 45756.8 1.94509 0.972547 0.232705i \(-0.0747577\pi\)
0.972547 + 0.232705i \(0.0747577\pi\)
\(822\) 0 0
\(823\) 35523.2 1.50457 0.752285 0.658837i \(-0.228951\pi\)
0.752285 + 0.658837i \(0.228951\pi\)
\(824\) 0 0
\(825\) −15425.1 −0.650950
\(826\) 0 0
\(827\) 29187.4 1.22726 0.613630 0.789594i \(-0.289709\pi\)
0.613630 + 0.789594i \(0.289709\pi\)
\(828\) 0 0
\(829\) −13111.1 −0.549297 −0.274648 0.961545i \(-0.588561\pi\)
−0.274648 + 0.961545i \(0.588561\pi\)
\(830\) 0 0
\(831\) −18884.1 −0.788305
\(832\) 0 0
\(833\) 30511.9 1.26912
\(834\) 0 0
\(835\) 52216.6 2.16411
\(836\) 0 0
\(837\) −1846.26 −0.0762440
\(838\) 0 0
\(839\) 19083.7 0.785269 0.392635 0.919695i \(-0.371564\pi\)
0.392635 + 0.919695i \(0.371564\pi\)
\(840\) 0 0
\(841\) 5076.62 0.208152
\(842\) 0 0
\(843\) −15822.4 −0.646444
\(844\) 0 0
\(845\) −2491.94 −0.101450
\(846\) 0 0
\(847\) −16663.7 −0.676001
\(848\) 0 0
\(849\) 8614.36 0.348226
\(850\) 0 0
\(851\) 10314.6 0.415487
\(852\) 0 0
\(853\) −14986.8 −0.601570 −0.300785 0.953692i \(-0.597249\pi\)
−0.300785 + 0.953692i \(0.597249\pi\)
\(854\) 0 0
\(855\) 18167.9 0.726699
\(856\) 0 0
\(857\) −32888.7 −1.31092 −0.655459 0.755231i \(-0.727525\pi\)
−0.655459 + 0.755231i \(0.727525\pi\)
\(858\) 0 0
\(859\) 7238.15 0.287500 0.143750 0.989614i \(-0.454084\pi\)
0.143750 + 0.989614i \(0.454084\pi\)
\(860\) 0 0
\(861\) −12403.4 −0.490950
\(862\) 0 0
\(863\) −33335.2 −1.31488 −0.657442 0.753505i \(-0.728361\pi\)
−0.657442 + 0.753505i \(0.728361\pi\)
\(864\) 0 0
\(865\) 9883.30 0.388488
\(866\) 0 0
\(867\) −28629.8 −1.12147
\(868\) 0 0
\(869\) −22071.7 −0.861602
\(870\) 0 0
\(871\) 2569.64 0.0999644
\(872\) 0 0
\(873\) −1305.25 −0.0506027
\(874\) 0 0
\(875\) −4537.75 −0.175319
\(876\) 0 0
\(877\) 39278.6 1.51236 0.756182 0.654361i \(-0.227062\pi\)
0.756182 + 0.654361i \(0.227062\pi\)
\(878\) 0 0
\(879\) 6649.98 0.255175
\(880\) 0 0
\(881\) 8324.62 0.318347 0.159173 0.987251i \(-0.449117\pi\)
0.159173 + 0.987251i \(0.449117\pi\)
\(882\) 0 0
\(883\) 8434.60 0.321457 0.160729 0.986999i \(-0.448616\pi\)
0.160729 + 0.986999i \(0.448616\pi\)
\(884\) 0 0
\(885\) 25775.6 0.979024
\(886\) 0 0
\(887\) 20767.8 0.786148 0.393074 0.919507i \(-0.371412\pi\)
0.393074 + 0.919507i \(0.371412\pi\)
\(888\) 0 0
\(889\) −16759.5 −0.632278
\(890\) 0 0
\(891\) 4506.31 0.169436
\(892\) 0 0
\(893\) −37179.5 −1.39324
\(894\) 0 0
\(895\) 65121.0 2.43213
\(896\) 0 0
\(897\) −2424.66 −0.0902532
\(898\) 0 0
\(899\) 11737.8 0.435460
\(900\) 0 0
\(901\) −18723.4 −0.692306
\(902\) 0 0
\(903\) 5421.00 0.199778
\(904\) 0 0
\(905\) 24090.5 0.884856
\(906\) 0 0
\(907\) −4837.14 −0.177083 −0.0885416 0.996072i \(-0.528221\pi\)
−0.0885416 + 0.996072i \(0.528221\pi\)
\(908\) 0 0
\(909\) 11996.9 0.437747
\(910\) 0 0
\(911\) −17048.3 −0.620016 −0.310008 0.950734i \(-0.600332\pi\)
−0.310008 + 0.950734i \(0.600332\pi\)
\(912\) 0 0
\(913\) −52200.6 −1.89221
\(914\) 0 0
\(915\) 11574.4 0.418184
\(916\) 0 0
\(917\) −7694.05 −0.277077
\(918\) 0 0
\(919\) 36802.1 1.32099 0.660494 0.750831i \(-0.270347\pi\)
0.660494 + 0.750831i \(0.270347\pi\)
\(920\) 0 0
\(921\) 19890.1 0.711620
\(922\) 0 0
\(923\) 907.801 0.0323734
\(924\) 0 0
\(925\) 15333.3 0.545034
\(926\) 0 0
\(927\) −3844.82 −0.136225
\(928\) 0 0
\(929\) −45335.7 −1.60109 −0.800547 0.599270i \(-0.795457\pi\)
−0.800547 + 0.599270i \(0.795457\pi\)
\(930\) 0 0
\(931\) 34741.7 1.22300
\(932\) 0 0
\(933\) 19251.6 0.675531
\(934\) 0 0
\(935\) 98631.3 3.44983
\(936\) 0 0
\(937\) −4469.74 −0.155838 −0.0779188 0.996960i \(-0.524828\pi\)
−0.0779188 + 0.996960i \(0.524828\pi\)
\(938\) 0 0
\(939\) 30091.6 1.04579
\(940\) 0 0
\(941\) −21175.8 −0.733593 −0.366796 0.930301i \(-0.619545\pi\)
−0.366796 + 0.930301i \(0.619545\pi\)
\(942\) 0 0
\(943\) −27211.5 −0.939692
\(944\) 0 0
\(945\) −3760.70 −0.129456
\(946\) 0 0
\(947\) 41219.5 1.41442 0.707209 0.707004i \(-0.249954\pi\)
0.707209 + 0.707004i \(0.249954\pi\)
\(948\) 0 0
\(949\) 10605.9 0.362783
\(950\) 0 0
\(951\) 18242.8 0.622042
\(952\) 0 0
\(953\) −15109.0 −0.513565 −0.256783 0.966469i \(-0.582662\pi\)
−0.256783 + 0.966469i \(0.582662\pi\)
\(954\) 0 0
\(955\) 58410.0 1.97917
\(956\) 0 0
\(957\) −28649.4 −0.967714
\(958\) 0 0
\(959\) −12549.7 −0.422577
\(960\) 0 0
\(961\) −25115.2 −0.843045
\(962\) 0 0
\(963\) 3907.65 0.130760
\(964\) 0 0
\(965\) 32381.6 1.08021
\(966\) 0 0
\(967\) 27743.9 0.922631 0.461315 0.887236i \(-0.347378\pi\)
0.461315 + 0.887236i \(0.347378\pi\)
\(968\) 0 0
\(969\) −49380.9 −1.63709
\(970\) 0 0
\(971\) 36606.5 1.20984 0.604922 0.796284i \(-0.293204\pi\)
0.604922 + 0.796284i \(0.293204\pi\)
\(972\) 0 0
\(973\) 6946.87 0.228886
\(974\) 0 0
\(975\) −3604.43 −0.118394
\(976\) 0 0
\(977\) −26268.0 −0.860171 −0.430086 0.902788i \(-0.641517\pi\)
−0.430086 + 0.902788i \(0.641517\pi\)
\(978\) 0 0
\(979\) 31830.3 1.03912
\(980\) 0 0
\(981\) 9637.17 0.313650
\(982\) 0 0
\(983\) −24696.3 −0.801311 −0.400656 0.916229i \(-0.631218\pi\)
−0.400656 + 0.916229i \(0.631218\pi\)
\(984\) 0 0
\(985\) −51772.2 −1.67472
\(986\) 0 0
\(987\) 7696.06 0.248195
\(988\) 0 0
\(989\) 11893.0 0.382381
\(990\) 0 0
\(991\) 52765.4 1.69137 0.845685 0.533683i \(-0.179193\pi\)
0.845685 + 0.533683i \(0.179193\pi\)
\(992\) 0 0
\(993\) −12508.5 −0.399744
\(994\) 0 0
\(995\) −70969.1 −2.26118
\(996\) 0 0
\(997\) 41868.0 1.32996 0.664981 0.746860i \(-0.268440\pi\)
0.664981 + 0.746860i \(0.268440\pi\)
\(998\) 0 0
\(999\) −4479.49 −0.141867
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.ca.1.1 5
4.3 odd 2 2496.4.a.cf.1.1 5
8.3 odd 2 1248.4.a.g.1.5 5
8.5 even 2 1248.4.a.l.1.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.4.a.g.1.5 5 8.3 odd 2
1248.4.a.l.1.5 yes 5 8.5 even 2
2496.4.a.ca.1.1 5 1.1 even 1 trivial
2496.4.a.cf.1.1 5 4.3 odd 2