Properties

Label 2496.4.a.bz
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 52x^{3} + 174x^{2} + 55x - 56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_{3} + \beta_{2} + 2) q^{5} + ( - \beta_{3} + \beta_1 - 7) q^{7} + 9 q^{9} + ( - \beta_{2} + 2 \beta_1 + 3) q^{11} - 13 q^{13} + (3 \beta_{3} - 3 \beta_{2} - 6) q^{15} + (3 \beta_{4} - 2 \beta_{3} + 5 \beta_{2} - 19) q^{17}+ \cdots + ( - 9 \beta_{2} + 18 \beta_1 + 27) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} + 8 q^{5} - 38 q^{7} + 45 q^{9} + 12 q^{11} - 65 q^{13} - 24 q^{15} - 102 q^{17} + 82 q^{19} + 114 q^{21} - 136 q^{23} + 335 q^{25} - 135 q^{27} + 194 q^{29} - 110 q^{31} - 36 q^{33} + 216 q^{35}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 52x^{3} + 174x^{2} + 55x - 56 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + \nu^{3} - 43\nu^{2} + 61\nu + 15 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} + 8\nu^{2} - 109\nu - 7 ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + \nu^{3} + 55\nu^{2} - 127\nu - 168 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{4} - 2\beta_{3} + 3\beta_{2} - \beta _1 + 87 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -8\beta_{4} + 12\beta_{3} - 8\beta_{2} + 39\beta _1 - 150 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 137\beta_{4} - 98\beta_{3} + 157\beta_{2} - 143\beta _1 + 3709 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.668526
4.50768
5.34918
−7.64288
0.454540
0 −3.00000 0 −20.7291 0 −25.3838 0 9.00000 0
1.2 0 −3.00000 0 −1.65766 0 21.2320 0 9.00000 0
1.3 0 −3.00000 0 −1.06282 0 −7.20907 0 9.00000 0
1.4 0 −3.00000 0 11.7316 0 −30.3794 0 9.00000 0
1.5 0 −3.00000 0 19.7180 0 3.74023 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.bz 5
4.b odd 2 1 2496.4.a.ce 5
8.b even 2 1 1248.4.a.m yes 5
8.d odd 2 1 1248.4.a.h 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1248.4.a.h 5 8.d odd 2 1
1248.4.a.m yes 5 8.b even 2 1
2496.4.a.bz 5 1.a even 1 1 trivial
2496.4.a.ce 5 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5}^{5} - 8T_{5}^{4} - 448T_{5}^{3} + 3632T_{5}^{2} + 12304T_{5} + 8448 \) Copy content Toggle raw display
\( T_{7}^{5} + 38T_{7}^{4} - 320T_{7}^{3} - 18736T_{7}^{2} - 45664T_{7} + 441472 \) Copy content Toggle raw display
\( T_{11}^{5} - 12T_{11}^{4} - 3520T_{11}^{3} + 75552T_{11}^{2} + 158720T_{11} - 895488 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( (T + 3)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 8 T^{4} + \cdots + 8448 \) Copy content Toggle raw display
$7$ \( T^{5} + 38 T^{4} + \cdots + 441472 \) Copy content Toggle raw display
$11$ \( T^{5} - 12 T^{4} + \cdots - 895488 \) Copy content Toggle raw display
$13$ \( (T + 13)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 2758020320 \) Copy content Toggle raw display
$19$ \( T^{5} - 82 T^{4} + \cdots + 250262656 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 6019743744 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 6128496480 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 379390098304 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 56288885472 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 438713495424 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 2381396900864 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 189609788416 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 538340590752 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 34929749269504 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 161541399797344 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 57941029666432 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 923885240320 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 509660519904 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 40420732247040 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 10\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 16941742100928 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 708887603693280 \) Copy content Toggle raw display
show more
show less