Properties

Label 2496.4.a.bw
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 20x^{3} - 33x^{2} + 5x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_{2} - 2) q^{5} + (\beta_1 - 3) q^{7} + 9 q^{9} + (\beta_{3} - \beta_{2} - 17) q^{11} + 13 q^{13} + (3 \beta_{2} + 6) q^{15} + (\beta_{4} + 2 \beta_{2} - \beta_1 + 21) q^{17} + ( - \beta_{4} - 2 \beta_{2} - 36) q^{19}+ \cdots + (9 \beta_{3} - 9 \beta_{2} - 153) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} - 10 q^{5} - 14 q^{7} + 45 q^{9} - 86 q^{11} + 65 q^{13} + 30 q^{15} + 102 q^{17} - 178 q^{19} + 42 q^{21} - 96 q^{23} + 299 q^{25} - 135 q^{27} + 14 q^{29} + 14 q^{31} + 258 q^{33} + 60 q^{35}+ \cdots - 774 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 20x^{3} - 33x^{2} + 5x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu^{3} - 10\nu^{2} - 54\nu + 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\nu^{2} + 6\nu + 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{4} - 4\nu^{3} - 70\nu^{2} - 62\nu + 15 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -8\nu^{4} + 12\nu^{3} + 134\nu^{2} + 98\nu - 62 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + 2\beta_{3} + 2\beta_{2} - \beta _1 + 1 ) / 40 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{4} + 6\beta_{3} - 14\beta_{2} - 3\beta _1 + 323 ) / 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 21\beta_{4} + 42\beta_{3} - 8\beta_{2} - 11\beta _1 + 811 ) / 40 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 89\beta_{4} + 188\beta_{3} - 222\beta_{2} - 79\beta _1 + 6329 ) / 40 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.494837
−0.487908
5.11829
−2.25750
−2.86773
0 −3.00000 0 −20.4793 0 −30.6852 0 9.00000 0
1.2 0 −3.00000 0 −14.5964 0 21.5019 0 9.00000 0
1.3 0 −3.00000 0 3.68410 0 −4.02277 0 9.00000 0
1.4 0 −3.00000 0 5.73757 0 22.9225 0 9.00000 0
1.5 0 −3.00000 0 15.6541 0 −23.7164 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.bw 5
4.b odd 2 1 2496.4.a.cc 5
8.b even 2 1 1248.4.a.o yes 5
8.d odd 2 1 1248.4.a.k 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1248.4.a.k 5 8.d odd 2 1
1248.4.a.o yes 5 8.b even 2 1
2496.4.a.bw 5 1.a even 1 1 trivial
2496.4.a.cc 5 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5}^{5} + 10T_{5}^{4} - 412T_{5}^{3} - 1912T_{5}^{2} + 38800T_{5} - 98912 \) Copy content Toggle raw display
\( T_{7}^{5} + 14T_{7}^{4} - 1156T_{7}^{3} - 10328T_{7}^{2} + 336496T_{7} + 1442912 \) Copy content Toggle raw display
\( T_{11}^{5} + 86T_{11}^{4} - 2552T_{11}^{3} - 323216T_{11}^{2} - 4563760T_{11} - 1421600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( (T + 3)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 10 T^{4} + \cdots - 98912 \) Copy content Toggle raw display
$7$ \( T^{5} + 14 T^{4} + \cdots + 1442912 \) Copy content Toggle raw display
$11$ \( T^{5} + 86 T^{4} + \cdots - 1421600 \) Copy content Toggle raw display
$13$ \( (T - 13)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} - 102 T^{4} + \cdots - 958487904 \) Copy content Toggle raw display
$19$ \( T^{5} + 178 T^{4} + \cdots + 774351648 \) Copy content Toggle raw display
$23$ \( T^{5} + 96 T^{4} + \cdots - 31408128 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 66363423200 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 17452768352 \) Copy content Toggle raw display
$37$ \( T^{5} + 170 T^{4} + \cdots - 1484384 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 2064369248 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 479249741824 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 195600232800 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 900213519200 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 9120807314784 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 223484504544 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 4288389352416 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 3473843704992 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 176390609742048 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 2049129446400 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 96504611209632 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 36553553265824 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 53240656725216 \) Copy content Toggle raw display
show more
show less