Properties

Label 2496.4.a.bs
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6406729.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 49x^{2} - 62x + 172 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + \beta_{2} q^{5} + ( - \beta_{3} + 5) q^{7} + 9 q^{9} + (\beta_1 + 3) q^{11} + 13 q^{13} - 3 \beta_{2} q^{15} + ( - 2 \beta_{3} - 2 \beta_1 + 10) q^{17} + ( - \beta_{3} + 4 \beta_{2} + \cdots + 23) q^{19}+ \cdots + (9 \beta_1 + 27) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} - 2 q^{5} + 18 q^{7} + 36 q^{9} + 12 q^{11} + 52 q^{13} + 6 q^{15} + 36 q^{17} + 82 q^{19} - 54 q^{21} + 140 q^{23} + 160 q^{25} - 108 q^{27} - 108 q^{29} + 386 q^{31} - 36 q^{33} + 76 q^{35}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 49x^{2} - 62x + 172 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 3\nu^{2} - 35\nu - 2 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 7\nu^{2} + 27\nu - 95 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{3} + 3\beta_{2} + 2\beta _1 + 99 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 9\beta_{3} + 21\beta_{2} + 41\beta _1 + 340 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.34926
−4.95046
7.87227
−3.27106
0 −3.00000 0 −17.4097 0 21.0943 0 9.00000 0
1.2 0 −3.00000 0 −7.85879 0 −16.4028 0 9.00000 0
1.3 0 −3.00000 0 8.13923 0 −16.1648 0 9.00000 0
1.4 0 −3.00000 0 15.1293 0 29.4733 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.bs 4
4.b odd 2 1 2496.4.a.bu 4
8.b even 2 1 1248.4.a.f yes 4
8.d odd 2 1 1248.4.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1248.4.a.d 4 8.d odd 2 1
1248.4.a.f yes 4 8.b even 2 1
2496.4.a.bs 4 1.a even 1 1 trivial
2496.4.a.bu 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5}^{4} + 2T_{5}^{3} - 328T_{5}^{2} - 72T_{5} + 16848 \) Copy content Toggle raw display
\( T_{7}^{4} - 18T_{7}^{3} - 760T_{7}^{2} + 6840T_{7} + 164848 \) Copy content Toggle raw display
\( T_{11}^{4} - 12T_{11}^{3} - 736T_{11}^{2} - 912T_{11} + 48880 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 16848 \) Copy content Toggle raw display
$7$ \( T^{4} - 18 T^{3} + \cdots + 164848 \) Copy content Toggle raw display
$11$ \( T^{4} - 12 T^{3} + \cdots + 48880 \) Copy content Toggle raw display
$13$ \( (T - 13)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 36 T^{3} + \cdots - 2388240 \) Copy content Toggle raw display
$19$ \( T^{4} - 82 T^{3} + \cdots + 1675472 \) Copy content Toggle raw display
$23$ \( T^{4} - 140 T^{3} + \cdots + 364544 \) Copy content Toggle raw display
$29$ \( T^{4} + 108 T^{3} + \cdots + 34116848 \) Copy content Toggle raw display
$31$ \( T^{4} - 386 T^{3} + \cdots - 57529584 \) Copy content Toggle raw display
$37$ \( T^{4} + 612 T^{3} + \cdots - 203026896 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 2706318576 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 2904403968 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 29146001104 \) Copy content Toggle raw display
$53$ \( T^{4} + 204 T^{3} + \cdots - 262955344 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 14598489680 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 3307656528 \) Copy content Toggle raw display
$67$ \( T^{4} + 586 T^{3} + \cdots - 450132048 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 118084117392 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 65356778960 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 129396346624 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 139211655728 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 131317516080 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 127526793328 \) Copy content Toggle raw display
show more
show less