Properties

Label 2496.4.a.br
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3261.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + ( - \beta_1 + 3) q^{5} + (\beta_{2} + 2 \beta_1 + 1) q^{7} + 9 q^{9} + ( - \beta_{2} + \beta_1 - 8) q^{11} - 13 q^{13} + ( - 3 \beta_1 + 9) q^{15} + (2 \beta_{2} - 2 \beta_1 - 46) q^{17}+ \cdots + ( - 9 \beta_{2} + 9 \beta_1 - 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} + 10 q^{5} + 27 q^{9} - 24 q^{11} - 39 q^{13} + 30 q^{15} - 138 q^{17} + 64 q^{19} + 96 q^{23} - 51 q^{25} + 81 q^{27} + 50 q^{29} - 32 q^{31} - 72 q^{33} - 480 q^{35} - 66 q^{37} - 117 q^{39}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 11x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -2\nu^{2} + 6\nu + 13 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 2\nu - 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + \beta _1 + 32 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.597250
4.06724
−2.46999
0 3.00000 0 −5.70308 0 5.31408 0 9.00000 0
1.2 0 3.00000 0 −1.31856 0 19.5875 0 9.00000 0
1.3 0 3.00000 0 17.0216 0 −24.9016 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.br 3
4.b odd 2 1 2496.4.a.bn 3
8.b even 2 1 1248.4.a.a 3
8.d odd 2 1 1248.4.a.b yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1248.4.a.a 3 8.b even 2 1
1248.4.a.b yes 3 8.d odd 2 1
2496.4.a.bn 3 4.b odd 2 1
2496.4.a.br 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5}^{3} - 10T_{5}^{2} - 112T_{5} - 128 \) Copy content Toggle raw display
\( T_{7}^{3} - 516T_{7} + 2592 \) Copy content Toggle raw display
\( T_{11}^{3} + 24T_{11}^{2} - 192T_{11} - 4544 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 10 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$7$ \( T^{3} - 516T + 2592 \) Copy content Toggle raw display
$11$ \( T^{3} + 24 T^{2} + \cdots - 4544 \) Copy content Toggle raw display
$13$ \( (T + 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 138 T^{2} + \cdots + 42552 \) Copy content Toggle raw display
$19$ \( T^{3} - 64 T^{2} + \cdots - 57344 \) Copy content Toggle raw display
$23$ \( T^{3} - 96 T^{2} + \cdots + 392704 \) Copy content Toggle raw display
$29$ \( T^{3} - 50 T^{2} + \cdots + 1928 \) Copy content Toggle raw display
$31$ \( T^{3} + 32 T^{2} + \cdots + 180736 \) Copy content Toggle raw display
$37$ \( T^{3} + 66 T^{2} + \cdots - 5424904 \) Copy content Toggle raw display
$41$ \( T^{3} - 30 T^{2} + \cdots + 3442176 \) Copy content Toggle raw display
$43$ \( T^{3} + 364 T^{2} + \cdots - 46922176 \) Copy content Toggle raw display
$47$ \( T^{3} - 540 T^{2} + \cdots + 11999232 \) Copy content Toggle raw display
$53$ \( T^{3} + 62 T^{2} + \cdots - 2659736 \) Copy content Toggle raw display
$59$ \( T^{3} + 336 T^{2} + \cdots - 98741952 \) Copy content Toggle raw display
$61$ \( T^{3} - 78 T^{2} + \cdots + 16020152 \) Copy content Toggle raw display
$67$ \( T^{3} + 968 T^{2} + \cdots + 31931584 \) Copy content Toggle raw display
$71$ \( T^{3} + 180 T^{2} + \cdots - 284495616 \) Copy content Toggle raw display
$73$ \( T^{3} + 1074 T^{2} + \cdots - 360130888 \) Copy content Toggle raw display
$79$ \( T^{3} + 788 T^{2} + \cdots - 620199488 \) Copy content Toggle raw display
$83$ \( T^{3} + 1416 T^{2} + \cdots - 334516544 \) Copy content Toggle raw display
$89$ \( T^{3} + 3050 T^{2} + \cdots + 719246752 \) Copy content Toggle raw display
$97$ \( T^{3} + 2874 T^{2} + \cdots + 331088216 \) Copy content Toggle raw display
show more
show less