Properties

Label 2496.4.a.bf
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,4,Mod(1,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,0,0,8,0,18,0,60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{22}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{22}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + \beta q^{5} + (3 \beta + 4) q^{7} + 9 q^{9} + (2 \beta + 30) q^{11} + 13 q^{13} + 3 \beta q^{15} + ( - 6 \beta - 54) q^{17} + (3 \beta + 108) q^{19} + (9 \beta + 12) q^{21} + (8 \beta - 108) q^{23}+ \cdots + (18 \beta + 270) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 8 q^{7} + 18 q^{9} + 60 q^{11} + 26 q^{13} - 108 q^{17} + 216 q^{19} + 24 q^{21} - 216 q^{23} - 74 q^{25} + 54 q^{27} + 108 q^{29} + 80 q^{31} + 180 q^{33} + 528 q^{35} - 108 q^{37} + 78 q^{39}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.69042
4.69042
0 3.00000 0 −9.38083 0 −24.1425 0 9.00000 0
1.2 0 3.00000 0 9.38083 0 32.1425 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.bf 2
4.b odd 2 1 2496.4.a.w 2
8.b even 2 1 156.4.a.c 2
8.d odd 2 1 624.4.a.p 2
24.f even 2 1 1872.4.a.y 2
24.h odd 2 1 468.4.a.g 2
104.e even 2 1 2028.4.a.d 2
104.j odd 4 2 2028.4.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.4.a.c 2 8.b even 2 1
468.4.a.g 2 24.h odd 2 1
624.4.a.p 2 8.d odd 2 1
1872.4.a.y 2 24.f even 2 1
2028.4.a.d 2 104.e even 2 1
2028.4.b.e 4 104.j odd 4 2
2496.4.a.w 2 4.b odd 2 1
2496.4.a.bf 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5}^{2} - 88 \) Copy content Toggle raw display
\( T_{7}^{2} - 8T_{7} - 776 \) Copy content Toggle raw display
\( T_{11}^{2} - 60T_{11} + 548 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 88 \) Copy content Toggle raw display
$7$ \( T^{2} - 8T - 776 \) Copy content Toggle raw display
$11$ \( T^{2} - 60T + 548 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 108T - 252 \) Copy content Toggle raw display
$19$ \( T^{2} - 216T + 10872 \) Copy content Toggle raw display
$23$ \( T^{2} + 216T + 6032 \) Copy content Toggle raw display
$29$ \( T^{2} - 108T - 32284 \) Copy content Toggle raw display
$31$ \( T^{2} - 80T - 18200 \) Copy content Toggle raw display
$37$ \( T^{2} + 108T - 25596 \) Copy content Toggle raw display
$41$ \( T^{2} + 48T - 19224 \) Copy content Toggle raw display
$43$ \( T^{2} + 8T - 256592 \) Copy content Toggle raw display
$47$ \( T^{2} + 228T - 157372 \) Copy content Toggle raw display
$53$ \( T^{2} + 540T + 60228 \) Copy content Toggle raw display
$59$ \( T^{2} - 852T + 40676 \) Copy content Toggle raw display
$61$ \( T^{2} + 308T + 11044 \) Copy content Toggle raw display
$67$ \( T^{2} - 304T - 110744 \) Copy content Toggle raw display
$71$ \( T^{2} + 228T - 578716 \) Copy content Toggle raw display
$73$ \( T^{2} - 1420 T + 500932 \) Copy content Toggle raw display
$79$ \( T^{2} - 496T - 255296 \) Copy content Toggle raw display
$83$ \( T^{2} + 1236 T + 369252 \) Copy content Toggle raw display
$89$ \( T^{2} + 1416 T + 151992 \) Copy content Toggle raw display
$97$ \( T^{2} - 604T + 12004 \) Copy content Toggle raw display
show more
show less