Properties

Label 2496.4.a.bd.1.1
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{43}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-6.55744\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -19.1149 q^{5} -35.1149 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} -19.1149 q^{5} -35.1149 q^{7} +9.00000 q^{9} +26.0000 q^{11} +13.0000 q^{13} -57.3446 q^{15} -36.2298 q^{17} -95.5744 q^{19} -105.345 q^{21} +161.379 q^{23} +240.379 q^{25} +27.0000 q^{27} +91.3785 q^{29} +266.723 q^{31} +78.0000 q^{33} +671.217 q^{35} +149.608 q^{37} +39.0000 q^{39} -77.8041 q^{41} +183.608 q^{43} -172.034 q^{45} +60.6893 q^{47} +890.055 q^{49} -108.689 q^{51} -281.540 q^{53} -496.987 q^{55} -286.723 q^{57} -542.527 q^{59} -65.0810 q^{61} -316.034 q^{63} -248.493 q^{65} -1033.94 q^{67} +484.136 q^{69} -1041.81 q^{71} +483.311 q^{73} +721.136 q^{75} -912.987 q^{77} +1337.05 q^{79} +81.0000 q^{81} +812.825 q^{83} +692.527 q^{85} +274.136 q^{87} +936.885 q^{89} -456.493 q^{91} +800.169 q^{93} +1826.89 q^{95} -954.068 q^{97} +234.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 12 q^{5} - 44 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} - 12 q^{5} - 44 q^{7} + 18 q^{9} + 52 q^{11} + 26 q^{13} - 36 q^{15} - 20 q^{17} - 60 q^{19} - 132 q^{21} + 8 q^{23} + 166 q^{25} + 54 q^{27} - 132 q^{29} + 140 q^{31} + 156 q^{33} + 608 q^{35} - 68 q^{37} + 78 q^{39} + 28 q^{41} - 108 q^{45} - 36 q^{47} + 626 q^{49} - 60 q^{51} - 668 q^{53} - 312 q^{55} - 180 q^{57} - 508 q^{59} - 340 q^{61} - 396 q^{63} - 156 q^{65} - 940 q^{67} + 24 q^{69} - 300 q^{71} + 1124 q^{73} + 498 q^{75} - 1144 q^{77} + 1520 q^{79} + 162 q^{81} + 524 q^{83} + 808 q^{85} - 396 q^{87} + 1900 q^{89} - 572 q^{91} + 420 q^{93} + 2080 q^{95} - 1436 q^{97} + 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) −19.1149 −1.70969 −0.854843 0.518886i \(-0.826347\pi\)
−0.854843 + 0.518886i \(0.826347\pi\)
\(6\) 0 0
\(7\) −35.1149 −1.89603 −0.948013 0.318233i \(-0.896911\pi\)
−0.948013 + 0.318233i \(0.896911\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 26.0000 0.712663 0.356332 0.934360i \(-0.384027\pi\)
0.356332 + 0.934360i \(0.384027\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −57.3446 −0.987088
\(16\) 0 0
\(17\) −36.2298 −0.516883 −0.258441 0.966027i \(-0.583209\pi\)
−0.258441 + 0.966027i \(0.583209\pi\)
\(18\) 0 0
\(19\) −95.5744 −1.15401 −0.577007 0.816739i \(-0.695779\pi\)
−0.577007 + 0.816739i \(0.695779\pi\)
\(20\) 0 0
\(21\) −105.345 −1.09467
\(22\) 0 0
\(23\) 161.379 1.46303 0.731516 0.681824i \(-0.238813\pi\)
0.731516 + 0.681824i \(0.238813\pi\)
\(24\) 0 0
\(25\) 240.379 1.92303
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 91.3785 0.585123 0.292561 0.956247i \(-0.405492\pi\)
0.292561 + 0.956247i \(0.405492\pi\)
\(30\) 0 0
\(31\) 266.723 1.54532 0.772660 0.634821i \(-0.218926\pi\)
0.772660 + 0.634821i \(0.218926\pi\)
\(32\) 0 0
\(33\) 78.0000 0.411456
\(34\) 0 0
\(35\) 671.217 3.24161
\(36\) 0 0
\(37\) 149.608 0.664742 0.332371 0.943149i \(-0.392151\pi\)
0.332371 + 0.943149i \(0.392151\pi\)
\(38\) 0 0
\(39\) 39.0000 0.160128
\(40\) 0 0
\(41\) −77.8041 −0.296365 −0.148183 0.988960i \(-0.547342\pi\)
−0.148183 + 0.988960i \(0.547342\pi\)
\(42\) 0 0
\(43\) 183.608 0.651163 0.325581 0.945514i \(-0.394440\pi\)
0.325581 + 0.945514i \(0.394440\pi\)
\(44\) 0 0
\(45\) −172.034 −0.569896
\(46\) 0 0
\(47\) 60.6893 0.188350 0.0941749 0.995556i \(-0.469979\pi\)
0.0941749 + 0.995556i \(0.469979\pi\)
\(48\) 0 0
\(49\) 890.055 2.59491
\(50\) 0 0
\(51\) −108.689 −0.298422
\(52\) 0 0
\(53\) −281.540 −0.729671 −0.364835 0.931072i \(-0.618875\pi\)
−0.364835 + 0.931072i \(0.618875\pi\)
\(54\) 0 0
\(55\) −496.987 −1.21843
\(56\) 0 0
\(57\) −286.723 −0.666270
\(58\) 0 0
\(59\) −542.527 −1.19714 −0.598568 0.801072i \(-0.704263\pi\)
−0.598568 + 0.801072i \(0.704263\pi\)
\(60\) 0 0
\(61\) −65.0810 −0.136603 −0.0683014 0.997665i \(-0.521758\pi\)
−0.0683014 + 0.997665i \(0.521758\pi\)
\(62\) 0 0
\(63\) −316.034 −0.632008
\(64\) 0 0
\(65\) −248.493 −0.474182
\(66\) 0 0
\(67\) −1033.94 −1.88531 −0.942656 0.333767i \(-0.891680\pi\)
−0.942656 + 0.333767i \(0.891680\pi\)
\(68\) 0 0
\(69\) 484.136 0.844682
\(70\) 0 0
\(71\) −1041.81 −1.74141 −0.870706 0.491803i \(-0.836338\pi\)
−0.870706 + 0.491803i \(0.836338\pi\)
\(72\) 0 0
\(73\) 483.311 0.774894 0.387447 0.921892i \(-0.373357\pi\)
0.387447 + 0.921892i \(0.373357\pi\)
\(74\) 0 0
\(75\) 721.136 1.11026
\(76\) 0 0
\(77\) −912.987 −1.35123
\(78\) 0 0
\(79\) 1337.05 1.90418 0.952091 0.305815i \(-0.0989288\pi\)
0.952091 + 0.305815i \(0.0989288\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 812.825 1.07493 0.537465 0.843286i \(-0.319382\pi\)
0.537465 + 0.843286i \(0.319382\pi\)
\(84\) 0 0
\(85\) 692.527 0.883707
\(86\) 0 0
\(87\) 274.136 0.337821
\(88\) 0 0
\(89\) 936.885 1.11584 0.557919 0.829895i \(-0.311600\pi\)
0.557919 + 0.829895i \(0.311600\pi\)
\(90\) 0 0
\(91\) −456.493 −0.525863
\(92\) 0 0
\(93\) 800.169 0.892190
\(94\) 0 0
\(95\) 1826.89 1.97300
\(96\) 0 0
\(97\) −954.068 −0.998669 −0.499335 0.866409i \(-0.666422\pi\)
−0.499335 + 0.866409i \(0.666422\pi\)
\(98\) 0 0
\(99\) 234.000 0.237554
\(100\) 0 0
\(101\) −1401.15 −1.38039 −0.690196 0.723623i \(-0.742476\pi\)
−0.690196 + 0.723623i \(0.742476\pi\)
\(102\) 0 0
\(103\) −954.960 −0.913544 −0.456772 0.889584i \(-0.650995\pi\)
−0.456772 + 0.889584i \(0.650995\pi\)
\(104\) 0 0
\(105\) 2013.65 1.87154
\(106\) 0 0
\(107\) −924.595 −0.835364 −0.417682 0.908593i \(-0.637157\pi\)
−0.417682 + 0.908593i \(0.637157\pi\)
\(108\) 0 0
\(109\) −172.893 −0.151928 −0.0759638 0.997111i \(-0.524203\pi\)
−0.0759638 + 0.997111i \(0.524203\pi\)
\(110\) 0 0
\(111\) 448.825 0.383789
\(112\) 0 0
\(113\) 1241.81 1.03380 0.516902 0.856045i \(-0.327085\pi\)
0.516902 + 0.856045i \(0.327085\pi\)
\(114\) 0 0
\(115\) −3084.73 −2.50133
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) 1272.20 0.980023
\(120\) 0 0
\(121\) −655.000 −0.492111
\(122\) 0 0
\(123\) −233.412 −0.171106
\(124\) 0 0
\(125\) −2205.45 −1.57809
\(126\) 0 0
\(127\) 1079.93 0.754555 0.377278 0.926100i \(-0.376860\pi\)
0.377278 + 0.926100i \(0.376860\pi\)
\(128\) 0 0
\(129\) 550.825 0.375949
\(130\) 0 0
\(131\) −918.026 −0.612277 −0.306139 0.951987i \(-0.599037\pi\)
−0.306139 + 0.951987i \(0.599037\pi\)
\(132\) 0 0
\(133\) 3356.08 2.18804
\(134\) 0 0
\(135\) −516.102 −0.329029
\(136\) 0 0
\(137\) 1311.06 0.817603 0.408801 0.912623i \(-0.365947\pi\)
0.408801 + 0.912623i \(0.365947\pi\)
\(138\) 0 0
\(139\) −227.593 −0.138879 −0.0694396 0.997586i \(-0.522121\pi\)
−0.0694396 + 0.997586i \(0.522121\pi\)
\(140\) 0 0
\(141\) 182.068 0.108744
\(142\) 0 0
\(143\) 338.000 0.197657
\(144\) 0 0
\(145\) −1746.69 −1.00038
\(146\) 0 0
\(147\) 2670.16 1.49817
\(148\) 0 0
\(149\) −1325.48 −0.728776 −0.364388 0.931247i \(-0.618722\pi\)
−0.364388 + 0.931247i \(0.618722\pi\)
\(150\) 0 0
\(151\) −252.426 −0.136040 −0.0680202 0.997684i \(-0.521668\pi\)
−0.0680202 + 0.997684i \(0.521668\pi\)
\(152\) 0 0
\(153\) −326.068 −0.172294
\(154\) 0 0
\(155\) −5098.38 −2.64201
\(156\) 0 0
\(157\) 2268.62 1.15322 0.576611 0.817019i \(-0.304375\pi\)
0.576611 + 0.817019i \(0.304375\pi\)
\(158\) 0 0
\(159\) −844.621 −0.421276
\(160\) 0 0
\(161\) −5666.79 −2.77395
\(162\) 0 0
\(163\) −1083.45 −0.520630 −0.260315 0.965524i \(-0.583826\pi\)
−0.260315 + 0.965524i \(0.583826\pi\)
\(164\) 0 0
\(165\) −1490.96 −0.703461
\(166\) 0 0
\(167\) 796.041 0.368859 0.184430 0.982846i \(-0.440956\pi\)
0.184430 + 0.982846i \(0.440956\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −860.169 −0.384671
\(172\) 0 0
\(173\) 1.09598 0.000481654 0 0.000240827 1.00000i \(-0.499923\pi\)
0.000240827 1.00000i \(0.499923\pi\)
\(174\) 0 0
\(175\) −8440.86 −3.64611
\(176\) 0 0
\(177\) −1627.58 −0.691167
\(178\) 0 0
\(179\) 3250.06 1.35710 0.678549 0.734555i \(-0.262609\pi\)
0.678549 + 0.734555i \(0.262609\pi\)
\(180\) 0 0
\(181\) −2980.84 −1.22411 −0.612055 0.790815i \(-0.709657\pi\)
−0.612055 + 0.790815i \(0.709657\pi\)
\(182\) 0 0
\(183\) −195.243 −0.0788676
\(184\) 0 0
\(185\) −2859.74 −1.13650
\(186\) 0 0
\(187\) −941.974 −0.368363
\(188\) 0 0
\(189\) −948.102 −0.364890
\(190\) 0 0
\(191\) −612.595 −0.232072 −0.116036 0.993245i \(-0.537019\pi\)
−0.116036 + 0.993245i \(0.537019\pi\)
\(192\) 0 0
\(193\) −4185.81 −1.56115 −0.780573 0.625064i \(-0.785073\pi\)
−0.780573 + 0.625064i \(0.785073\pi\)
\(194\) 0 0
\(195\) −745.480 −0.273769
\(196\) 0 0
\(197\) −2.06029 −0.000745124 0 −0.000372562 1.00000i \(-0.500119\pi\)
−0.000372562 1.00000i \(0.500119\pi\)
\(198\) 0 0
\(199\) −1492.39 −0.531622 −0.265811 0.964025i \(-0.585640\pi\)
−0.265811 + 0.964025i \(0.585640\pi\)
\(200\) 0 0
\(201\) −3101.82 −1.08848
\(202\) 0 0
\(203\) −3208.75 −1.10941
\(204\) 0 0
\(205\) 1487.22 0.506691
\(206\) 0 0
\(207\) 1452.41 0.487678
\(208\) 0 0
\(209\) −2484.93 −0.822423
\(210\) 0 0
\(211\) 2748.27 0.896677 0.448338 0.893864i \(-0.352016\pi\)
0.448338 + 0.893864i \(0.352016\pi\)
\(212\) 0 0
\(213\) −3125.43 −1.00541
\(214\) 0 0
\(215\) −3509.65 −1.11328
\(216\) 0 0
\(217\) −9365.95 −2.92996
\(218\) 0 0
\(219\) 1449.93 0.447385
\(220\) 0 0
\(221\) −470.987 −0.143357
\(222\) 0 0
\(223\) −186.655 −0.0560510 −0.0280255 0.999607i \(-0.508922\pi\)
−0.0280255 + 0.999607i \(0.508922\pi\)
\(224\) 0 0
\(225\) 2163.41 0.641009
\(226\) 0 0
\(227\) 3932.57 1.14984 0.574920 0.818210i \(-0.305033\pi\)
0.574920 + 0.818210i \(0.305033\pi\)
\(228\) 0 0
\(229\) −5951.00 −1.71726 −0.858632 0.512593i \(-0.828685\pi\)
−0.858632 + 0.512593i \(0.828685\pi\)
\(230\) 0 0
\(231\) −2738.96 −0.780131
\(232\) 0 0
\(233\) 6548.94 1.84135 0.920676 0.390327i \(-0.127638\pi\)
0.920676 + 0.390327i \(0.127638\pi\)
\(234\) 0 0
\(235\) −1160.07 −0.322019
\(236\) 0 0
\(237\) 4011.16 1.09938
\(238\) 0 0
\(239\) 3462.35 0.937076 0.468538 0.883443i \(-0.344781\pi\)
0.468538 + 0.883443i \(0.344781\pi\)
\(240\) 0 0
\(241\) 4581.96 1.22469 0.612345 0.790591i \(-0.290226\pi\)
0.612345 + 0.790591i \(0.290226\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) −17013.3 −4.43649
\(246\) 0 0
\(247\) −1242.47 −0.320066
\(248\) 0 0
\(249\) 2438.47 0.620611
\(250\) 0 0
\(251\) 4746.76 1.19368 0.596838 0.802362i \(-0.296424\pi\)
0.596838 + 0.802362i \(0.296424\pi\)
\(252\) 0 0
\(253\) 4195.84 1.04265
\(254\) 0 0
\(255\) 2077.58 0.510209
\(256\) 0 0
\(257\) −3373.64 −0.818840 −0.409420 0.912346i \(-0.634269\pi\)
−0.409420 + 0.912346i \(0.634269\pi\)
\(258\) 0 0
\(259\) −5253.48 −1.26037
\(260\) 0 0
\(261\) 822.407 0.195041
\(262\) 0 0
\(263\) −3527.19 −0.826981 −0.413491 0.910508i \(-0.635691\pi\)
−0.413491 + 0.910508i \(0.635691\pi\)
\(264\) 0 0
\(265\) 5381.61 1.24751
\(266\) 0 0
\(267\) 2810.66 0.644230
\(268\) 0 0
\(269\) −1144.30 −0.259365 −0.129682 0.991556i \(-0.541396\pi\)
−0.129682 + 0.991556i \(0.541396\pi\)
\(270\) 0 0
\(271\) −2254.25 −0.505298 −0.252649 0.967558i \(-0.581302\pi\)
−0.252649 + 0.967558i \(0.581302\pi\)
\(272\) 0 0
\(273\) −1369.48 −0.303607
\(274\) 0 0
\(275\) 6249.84 1.37047
\(276\) 0 0
\(277\) −7101.62 −1.54042 −0.770208 0.637793i \(-0.779848\pi\)
−0.770208 + 0.637793i \(0.779848\pi\)
\(278\) 0 0
\(279\) 2400.51 0.515106
\(280\) 0 0
\(281\) −3831.81 −0.813475 −0.406738 0.913545i \(-0.633334\pi\)
−0.406738 + 0.913545i \(0.633334\pi\)
\(282\) 0 0
\(283\) −3032.56 −0.636985 −0.318493 0.947925i \(-0.603177\pi\)
−0.318493 + 0.947925i \(0.603177\pi\)
\(284\) 0 0
\(285\) 5480.68 1.13911
\(286\) 0 0
\(287\) 2732.08 0.561915
\(288\) 0 0
\(289\) −3600.40 −0.732832
\(290\) 0 0
\(291\) −2862.20 −0.576582
\(292\) 0 0
\(293\) 2296.44 0.457882 0.228941 0.973440i \(-0.426474\pi\)
0.228941 + 0.973440i \(0.426474\pi\)
\(294\) 0 0
\(295\) 10370.3 2.04673
\(296\) 0 0
\(297\) 702.000 0.137152
\(298\) 0 0
\(299\) 2097.92 0.405772
\(300\) 0 0
\(301\) −6447.38 −1.23462
\(302\) 0 0
\(303\) −4203.45 −0.796969
\(304\) 0 0
\(305\) 1244.01 0.233548
\(306\) 0 0
\(307\) 5174.26 0.961925 0.480962 0.876741i \(-0.340287\pi\)
0.480962 + 0.876741i \(0.340287\pi\)
\(308\) 0 0
\(309\) −2864.88 −0.527435
\(310\) 0 0
\(311\) 7481.54 1.36411 0.682057 0.731299i \(-0.261086\pi\)
0.682057 + 0.731299i \(0.261086\pi\)
\(312\) 0 0
\(313\) −4158.97 −0.751051 −0.375526 0.926812i \(-0.622538\pi\)
−0.375526 + 0.926812i \(0.622538\pi\)
\(314\) 0 0
\(315\) 6040.95 1.08054
\(316\) 0 0
\(317\) 370.535 0.0656508 0.0328254 0.999461i \(-0.489549\pi\)
0.0328254 + 0.999461i \(0.489549\pi\)
\(318\) 0 0
\(319\) 2375.84 0.416996
\(320\) 0 0
\(321\) −2773.79 −0.482298
\(322\) 0 0
\(323\) 3462.64 0.596490
\(324\) 0 0
\(325\) 3124.92 0.533352
\(326\) 0 0
\(327\) −518.678 −0.0877154
\(328\) 0 0
\(329\) −2131.10 −0.357116
\(330\) 0 0
\(331\) 1820.84 0.302364 0.151182 0.988506i \(-0.451692\pi\)
0.151182 + 0.988506i \(0.451692\pi\)
\(332\) 0 0
\(333\) 1346.47 0.221581
\(334\) 0 0
\(335\) 19763.6 3.22329
\(336\) 0 0
\(337\) −11838.2 −1.91356 −0.956781 0.290809i \(-0.906076\pi\)
−0.956781 + 0.290809i \(0.906076\pi\)
\(338\) 0 0
\(339\) 3725.43 0.596867
\(340\) 0 0
\(341\) 6934.80 1.10129
\(342\) 0 0
\(343\) −19209.8 −3.02399
\(344\) 0 0
\(345\) −9254.19 −1.44414
\(346\) 0 0
\(347\) 10603.5 1.64043 0.820214 0.572057i \(-0.193855\pi\)
0.820214 + 0.572057i \(0.193855\pi\)
\(348\) 0 0
\(349\) 6398.72 0.981421 0.490710 0.871323i \(-0.336737\pi\)
0.490710 + 0.871323i \(0.336737\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) 0 0
\(353\) −7031.27 −1.06016 −0.530080 0.847948i \(-0.677838\pi\)
−0.530080 + 0.847948i \(0.677838\pi\)
\(354\) 0 0
\(355\) 19914.1 2.97727
\(356\) 0 0
\(357\) 3816.61 0.565816
\(358\) 0 0
\(359\) −5053.75 −0.742972 −0.371486 0.928439i \(-0.621152\pi\)
−0.371486 + 0.928439i \(0.621152\pi\)
\(360\) 0 0
\(361\) 2275.46 0.331749
\(362\) 0 0
\(363\) −1965.00 −0.284121
\(364\) 0 0
\(365\) −9238.43 −1.32483
\(366\) 0 0
\(367\) 81.1902 0.0115479 0.00577397 0.999983i \(-0.498162\pi\)
0.00577397 + 0.999983i \(0.498162\pi\)
\(368\) 0 0
\(369\) −700.237 −0.0987883
\(370\) 0 0
\(371\) 9886.26 1.38347
\(372\) 0 0
\(373\) −8295.79 −1.15158 −0.575790 0.817597i \(-0.695305\pi\)
−0.575790 + 0.817597i \(0.695305\pi\)
\(374\) 0 0
\(375\) −6616.34 −0.911110
\(376\) 0 0
\(377\) 1187.92 0.162284
\(378\) 0 0
\(379\) −6592.90 −0.893548 −0.446774 0.894647i \(-0.647427\pi\)
−0.446774 + 0.894647i \(0.647427\pi\)
\(380\) 0 0
\(381\) 3239.80 0.435643
\(382\) 0 0
\(383\) 7472.96 0.996999 0.498499 0.866890i \(-0.333885\pi\)
0.498499 + 0.866890i \(0.333885\pi\)
\(384\) 0 0
\(385\) 17451.6 2.31018
\(386\) 0 0
\(387\) 1652.47 0.217054
\(388\) 0 0
\(389\) 3175.88 0.413943 0.206971 0.978347i \(-0.433639\pi\)
0.206971 + 0.978347i \(0.433639\pi\)
\(390\) 0 0
\(391\) −5846.70 −0.756216
\(392\) 0 0
\(393\) −2754.08 −0.353499
\(394\) 0 0
\(395\) −25557.6 −3.25555
\(396\) 0 0
\(397\) −11394.6 −1.44050 −0.720251 0.693713i \(-0.755973\pi\)
−0.720251 + 0.693713i \(0.755973\pi\)
\(398\) 0 0
\(399\) 10068.2 1.26327
\(400\) 0 0
\(401\) 13046.7 1.62474 0.812370 0.583142i \(-0.198177\pi\)
0.812370 + 0.583142i \(0.198177\pi\)
\(402\) 0 0
\(403\) 3467.40 0.428594
\(404\) 0 0
\(405\) −1548.31 −0.189965
\(406\) 0 0
\(407\) 3889.82 0.473737
\(408\) 0 0
\(409\) −2888.77 −0.349243 −0.174622 0.984636i \(-0.555870\pi\)
−0.174622 + 0.984636i \(0.555870\pi\)
\(410\) 0 0
\(411\) 3933.19 0.472043
\(412\) 0 0
\(413\) 19050.8 2.26980
\(414\) 0 0
\(415\) −15537.0 −1.83779
\(416\) 0 0
\(417\) −682.780 −0.0801819
\(418\) 0 0
\(419\) −14260.8 −1.66273 −0.831367 0.555724i \(-0.812441\pi\)
−0.831367 + 0.555724i \(0.812441\pi\)
\(420\) 0 0
\(421\) −890.723 −0.103114 −0.0515572 0.998670i \(-0.516418\pi\)
−0.0515572 + 0.998670i \(0.516418\pi\)
\(422\) 0 0
\(423\) 546.203 0.0627833
\(424\) 0 0
\(425\) −8708.85 −0.993980
\(426\) 0 0
\(427\) 2285.31 0.259002
\(428\) 0 0
\(429\) 1014.00 0.114117
\(430\) 0 0
\(431\) 1323.12 0.147871 0.0739353 0.997263i \(-0.476444\pi\)
0.0739353 + 0.997263i \(0.476444\pi\)
\(432\) 0 0
\(433\) −9399.47 −1.04321 −0.521605 0.853187i \(-0.674666\pi\)
−0.521605 + 0.853187i \(0.674666\pi\)
\(434\) 0 0
\(435\) −5240.07 −0.577568
\(436\) 0 0
\(437\) −15423.7 −1.68836
\(438\) 0 0
\(439\) 6115.04 0.664817 0.332409 0.943135i \(-0.392139\pi\)
0.332409 + 0.943135i \(0.392139\pi\)
\(440\) 0 0
\(441\) 8010.49 0.864970
\(442\) 0 0
\(443\) −12931.1 −1.38685 −0.693425 0.720529i \(-0.743899\pi\)
−0.693425 + 0.720529i \(0.743899\pi\)
\(444\) 0 0
\(445\) −17908.4 −1.90773
\(446\) 0 0
\(447\) −3976.44 −0.420759
\(448\) 0 0
\(449\) −2050.73 −0.215546 −0.107773 0.994176i \(-0.534372\pi\)
−0.107773 + 0.994176i \(0.534372\pi\)
\(450\) 0 0
\(451\) −2022.91 −0.211208
\(452\) 0 0
\(453\) −757.277 −0.0785430
\(454\) 0 0
\(455\) 8725.82 0.899061
\(456\) 0 0
\(457\) −11923.7 −1.22049 −0.610247 0.792211i \(-0.708930\pi\)
−0.610247 + 0.792211i \(0.708930\pi\)
\(458\) 0 0
\(459\) −978.203 −0.0994741
\(460\) 0 0
\(461\) −1324.14 −0.133777 −0.0668886 0.997760i \(-0.521307\pi\)
−0.0668886 + 0.997760i \(0.521307\pi\)
\(462\) 0 0
\(463\) 6840.65 0.686635 0.343318 0.939219i \(-0.388449\pi\)
0.343318 + 0.939219i \(0.388449\pi\)
\(464\) 0 0
\(465\) −15295.1 −1.52537
\(466\) 0 0
\(467\) −9041.73 −0.895935 −0.447967 0.894050i \(-0.647852\pi\)
−0.447967 + 0.894050i \(0.647852\pi\)
\(468\) 0 0
\(469\) 36306.7 3.57460
\(470\) 0 0
\(471\) 6805.86 0.665812
\(472\) 0 0
\(473\) 4773.82 0.464060
\(474\) 0 0
\(475\) −22974.0 −2.21920
\(476\) 0 0
\(477\) −2533.86 −0.243224
\(478\) 0 0
\(479\) −4650.71 −0.443625 −0.221812 0.975089i \(-0.571197\pi\)
−0.221812 + 0.975089i \(0.571197\pi\)
\(480\) 0 0
\(481\) 1944.91 0.184366
\(482\) 0 0
\(483\) −17000.4 −1.60154
\(484\) 0 0
\(485\) 18236.9 1.70741
\(486\) 0 0
\(487\) 19632.4 1.82675 0.913375 0.407120i \(-0.133467\pi\)
0.913375 + 0.407120i \(0.133467\pi\)
\(488\) 0 0
\(489\) −3250.36 −0.300586
\(490\) 0 0
\(491\) −14472.0 −1.33017 −0.665084 0.746769i \(-0.731604\pi\)
−0.665084 + 0.746769i \(0.731604\pi\)
\(492\) 0 0
\(493\) −3310.62 −0.302440
\(494\) 0 0
\(495\) −4472.88 −0.406144
\(496\) 0 0
\(497\) 36583.1 3.30176
\(498\) 0 0
\(499\) −7065.91 −0.633895 −0.316947 0.948443i \(-0.602658\pi\)
−0.316947 + 0.948443i \(0.602658\pi\)
\(500\) 0 0
\(501\) 2388.12 0.212961
\(502\) 0 0
\(503\) −11955.1 −1.05974 −0.529871 0.848078i \(-0.677760\pi\)
−0.529871 + 0.848078i \(0.677760\pi\)
\(504\) 0 0
\(505\) 26782.8 2.36004
\(506\) 0 0
\(507\) 507.000 0.0444116
\(508\) 0 0
\(509\) 8321.15 0.724614 0.362307 0.932059i \(-0.381989\pi\)
0.362307 + 0.932059i \(0.381989\pi\)
\(510\) 0 0
\(511\) −16971.4 −1.46922
\(512\) 0 0
\(513\) −2580.51 −0.222090
\(514\) 0 0
\(515\) 18254.0 1.56187
\(516\) 0 0
\(517\) 1577.92 0.134230
\(518\) 0 0
\(519\) 3.28795 0.000278083 0
\(520\) 0 0
\(521\) −20130.2 −1.69274 −0.846372 0.532592i \(-0.821218\pi\)
−0.846372 + 0.532592i \(0.821218\pi\)
\(522\) 0 0
\(523\) 8810.52 0.736630 0.368315 0.929701i \(-0.379935\pi\)
0.368315 + 0.929701i \(0.379935\pi\)
\(524\) 0 0
\(525\) −25322.6 −2.10508
\(526\) 0 0
\(527\) −9663.31 −0.798749
\(528\) 0 0
\(529\) 13876.0 1.14046
\(530\) 0 0
\(531\) −4882.75 −0.399045
\(532\) 0 0
\(533\) −1011.45 −0.0821969
\(534\) 0 0
\(535\) 17673.5 1.42821
\(536\) 0 0
\(537\) 9750.17 0.783521
\(538\) 0 0
\(539\) 23141.4 1.84930
\(540\) 0 0
\(541\) −7765.62 −0.617135 −0.308567 0.951202i \(-0.599850\pi\)
−0.308567 + 0.951202i \(0.599850\pi\)
\(542\) 0 0
\(543\) −8942.52 −0.706741
\(544\) 0 0
\(545\) 3304.82 0.259749
\(546\) 0 0
\(547\) 19782.4 1.54631 0.773156 0.634216i \(-0.218677\pi\)
0.773156 + 0.634216i \(0.218677\pi\)
\(548\) 0 0
\(549\) −585.729 −0.0455342
\(550\) 0 0
\(551\) −8733.45 −0.675240
\(552\) 0 0
\(553\) −46950.5 −3.61038
\(554\) 0 0
\(555\) −8579.23 −0.656159
\(556\) 0 0
\(557\) 10153.9 0.772413 0.386206 0.922412i \(-0.373785\pi\)
0.386206 + 0.922412i \(0.373785\pi\)
\(558\) 0 0
\(559\) 2386.91 0.180600
\(560\) 0 0
\(561\) −2825.92 −0.212675
\(562\) 0 0
\(563\) 18388.2 1.37650 0.688252 0.725472i \(-0.258378\pi\)
0.688252 + 0.725472i \(0.258378\pi\)
\(564\) 0 0
\(565\) −23737.1 −1.76748
\(566\) 0 0
\(567\) −2844.31 −0.210669
\(568\) 0 0
\(569\) 16365.0 1.20573 0.602863 0.797845i \(-0.294027\pi\)
0.602863 + 0.797845i \(0.294027\pi\)
\(570\) 0 0
\(571\) 544.241 0.0398875 0.0199437 0.999801i \(-0.493651\pi\)
0.0199437 + 0.999801i \(0.493651\pi\)
\(572\) 0 0
\(573\) −1837.79 −0.133987
\(574\) 0 0
\(575\) 38791.9 2.81345
\(576\) 0 0
\(577\) −798.738 −0.0576289 −0.0288145 0.999585i \(-0.509173\pi\)
−0.0288145 + 0.999585i \(0.509173\pi\)
\(578\) 0 0
\(579\) −12557.4 −0.901328
\(580\) 0 0
\(581\) −28542.2 −2.03809
\(582\) 0 0
\(583\) −7320.05 −0.520010
\(584\) 0 0
\(585\) −2236.44 −0.158061
\(586\) 0 0
\(587\) 9187.53 0.646013 0.323007 0.946397i \(-0.395306\pi\)
0.323007 + 0.946397i \(0.395306\pi\)
\(588\) 0 0
\(589\) −25491.9 −1.78332
\(590\) 0 0
\(591\) −6.18086 −0.000430197 0
\(592\) 0 0
\(593\) −4371.80 −0.302746 −0.151373 0.988477i \(-0.548369\pi\)
−0.151373 + 0.988477i \(0.548369\pi\)
\(594\) 0 0
\(595\) −24318.0 −1.67553
\(596\) 0 0
\(597\) −4477.18 −0.306932
\(598\) 0 0
\(599\) 6780.78 0.462530 0.231265 0.972891i \(-0.425714\pi\)
0.231265 + 0.972891i \(0.425714\pi\)
\(600\) 0 0
\(601\) −21348.5 −1.44895 −0.724477 0.689299i \(-0.757919\pi\)
−0.724477 + 0.689299i \(0.757919\pi\)
\(602\) 0 0
\(603\) −9305.46 −0.628437
\(604\) 0 0
\(605\) 12520.2 0.841356
\(606\) 0 0
\(607\) −11161.8 −0.746362 −0.373181 0.927758i \(-0.621733\pi\)
−0.373181 + 0.927758i \(0.621733\pi\)
\(608\) 0 0
\(609\) −9626.24 −0.640517
\(610\) 0 0
\(611\) 788.960 0.0522388
\(612\) 0 0
\(613\) −12407.8 −0.817528 −0.408764 0.912640i \(-0.634040\pi\)
−0.408764 + 0.912640i \(0.634040\pi\)
\(614\) 0 0
\(615\) 4461.65 0.292538
\(616\) 0 0
\(617\) 5035.01 0.328528 0.164264 0.986416i \(-0.447475\pi\)
0.164264 + 0.986416i \(0.447475\pi\)
\(618\) 0 0
\(619\) −1623.67 −0.105430 −0.0527148 0.998610i \(-0.516787\pi\)
−0.0527148 + 0.998610i \(0.516787\pi\)
\(620\) 0 0
\(621\) 4357.22 0.281561
\(622\) 0 0
\(623\) −32898.6 −2.11566
\(624\) 0 0
\(625\) 12109.5 0.775009
\(626\) 0 0
\(627\) −7454.80 −0.474826
\(628\) 0 0
\(629\) −5420.27 −0.343594
\(630\) 0 0
\(631\) −24809.0 −1.56519 −0.782593 0.622534i \(-0.786103\pi\)
−0.782593 + 0.622534i \(0.786103\pi\)
\(632\) 0 0
\(633\) 8244.81 0.517697
\(634\) 0 0
\(635\) −20642.8 −1.29005
\(636\) 0 0
\(637\) 11570.7 0.719699
\(638\) 0 0
\(639\) −9376.30 −0.580471
\(640\) 0 0
\(641\) 18076.6 1.11386 0.556928 0.830561i \(-0.311980\pi\)
0.556928 + 0.830561i \(0.311980\pi\)
\(642\) 0 0
\(643\) 19954.2 1.22382 0.611910 0.790928i \(-0.290402\pi\)
0.611910 + 0.790928i \(0.290402\pi\)
\(644\) 0 0
\(645\) −10528.9 −0.642755
\(646\) 0 0
\(647\) 11206.1 0.680921 0.340461 0.940259i \(-0.389417\pi\)
0.340461 + 0.940259i \(0.389417\pi\)
\(648\) 0 0
\(649\) −14105.7 −0.853155
\(650\) 0 0
\(651\) −28097.9 −1.69162
\(652\) 0 0
\(653\) −2456.10 −0.147189 −0.0735947 0.997288i \(-0.523447\pi\)
−0.0735947 + 0.997288i \(0.523447\pi\)
\(654\) 0 0
\(655\) 17548.0 1.04680
\(656\) 0 0
\(657\) 4349.80 0.258298
\(658\) 0 0
\(659\) −23280.8 −1.37616 −0.688081 0.725633i \(-0.741547\pi\)
−0.688081 + 0.725633i \(0.741547\pi\)
\(660\) 0 0
\(661\) 6999.49 0.411874 0.205937 0.978565i \(-0.433976\pi\)
0.205937 + 0.978565i \(0.433976\pi\)
\(662\) 0 0
\(663\) −1412.96 −0.0827675
\(664\) 0 0
\(665\) −64151.1 −3.74086
\(666\) 0 0
\(667\) 14746.5 0.856054
\(668\) 0 0
\(669\) −559.966 −0.0323610
\(670\) 0 0
\(671\) −1692.11 −0.0973517
\(672\) 0 0
\(673\) 33166.1 1.89964 0.949820 0.312798i \(-0.101266\pi\)
0.949820 + 0.312798i \(0.101266\pi\)
\(674\) 0 0
\(675\) 6490.22 0.370087
\(676\) 0 0
\(677\) −19998.6 −1.13532 −0.567658 0.823265i \(-0.692150\pi\)
−0.567658 + 0.823265i \(0.692150\pi\)
\(678\) 0 0
\(679\) 33502.0 1.89350
\(680\) 0 0
\(681\) 11797.7 0.663861
\(682\) 0 0
\(683\) 22857.9 1.28058 0.640289 0.768134i \(-0.278815\pi\)
0.640289 + 0.768134i \(0.278815\pi\)
\(684\) 0 0
\(685\) −25060.8 −1.39784
\(686\) 0 0
\(687\) −17853.0 −0.991462
\(688\) 0 0
\(689\) −3660.03 −0.202374
\(690\) 0 0
\(691\) −2866.56 −0.157813 −0.0789066 0.996882i \(-0.525143\pi\)
−0.0789066 + 0.996882i \(0.525143\pi\)
\(692\) 0 0
\(693\) −8216.88 −0.450409
\(694\) 0 0
\(695\) 4350.42 0.237440
\(696\) 0 0
\(697\) 2818.82 0.153186
\(698\) 0 0
\(699\) 19646.8 1.06311
\(700\) 0 0
\(701\) −30788.1 −1.65885 −0.829424 0.558620i \(-0.811331\pi\)
−0.829424 + 0.558620i \(0.811331\pi\)
\(702\) 0 0
\(703\) −14298.7 −0.767121
\(704\) 0 0
\(705\) −3480.20 −0.185918
\(706\) 0 0
\(707\) 49201.2 2.61726
\(708\) 0 0
\(709\) 4389.07 0.232489 0.116245 0.993221i \(-0.462914\pi\)
0.116245 + 0.993221i \(0.462914\pi\)
\(710\) 0 0
\(711\) 12033.5 0.634727
\(712\) 0 0
\(713\) 43043.4 2.26085
\(714\) 0 0
\(715\) −6460.83 −0.337932
\(716\) 0 0
\(717\) 10387.1 0.541021
\(718\) 0 0
\(719\) 8729.09 0.452768 0.226384 0.974038i \(-0.427310\pi\)
0.226384 + 0.974038i \(0.427310\pi\)
\(720\) 0 0
\(721\) 33533.3 1.73210
\(722\) 0 0
\(723\) 13745.9 0.707075
\(724\) 0 0
\(725\) 21965.4 1.12521
\(726\) 0 0
\(727\) −1471.81 −0.0750845 −0.0375423 0.999295i \(-0.511953\pi\)
−0.0375423 + 0.999295i \(0.511953\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −6652.08 −0.336575
\(732\) 0 0
\(733\) 14082.8 0.709632 0.354816 0.934936i \(-0.384543\pi\)
0.354816 + 0.934936i \(0.384543\pi\)
\(734\) 0 0
\(735\) −51039.9 −2.56141
\(736\) 0 0
\(737\) −26882.4 −1.34359
\(738\) 0 0
\(739\) 12529.5 0.623687 0.311843 0.950133i \(-0.399054\pi\)
0.311843 + 0.950133i \(0.399054\pi\)
\(740\) 0 0
\(741\) −3727.40 −0.184790
\(742\) 0 0
\(743\) 19044.9 0.940363 0.470182 0.882570i \(-0.344188\pi\)
0.470182 + 0.882570i \(0.344188\pi\)
\(744\) 0 0
\(745\) 25336.4 1.24598
\(746\) 0 0
\(747\) 7315.42 0.358310
\(748\) 0 0
\(749\) 32467.0 1.58387
\(750\) 0 0
\(751\) 22009.9 1.06944 0.534722 0.845028i \(-0.320416\pi\)
0.534722 + 0.845028i \(0.320416\pi\)
\(752\) 0 0
\(753\) 14240.3 0.689169
\(754\) 0 0
\(755\) 4825.08 0.232587
\(756\) 0 0
\(757\) 8198.54 0.393634 0.196817 0.980440i \(-0.436939\pi\)
0.196817 + 0.980440i \(0.436939\pi\)
\(758\) 0 0
\(759\) 12587.5 0.601974
\(760\) 0 0
\(761\) −31929.6 −1.52096 −0.760478 0.649363i \(-0.775036\pi\)
−0.760478 + 0.649363i \(0.775036\pi\)
\(762\) 0 0
\(763\) 6071.10 0.288059
\(764\) 0 0
\(765\) 6232.75 0.294569
\(766\) 0 0
\(767\) −7052.85 −0.332026
\(768\) 0 0
\(769\) −26725.8 −1.25326 −0.626630 0.779317i \(-0.715566\pi\)
−0.626630 + 0.779317i \(0.715566\pi\)
\(770\) 0 0
\(771\) −10120.9 −0.472757
\(772\) 0 0
\(773\) −23760.8 −1.10558 −0.552792 0.833320i \(-0.686437\pi\)
−0.552792 + 0.833320i \(0.686437\pi\)
\(774\) 0 0
\(775\) 64114.5 2.97169
\(776\) 0 0
\(777\) −15760.4 −0.727673
\(778\) 0 0
\(779\) 7436.08 0.342009
\(780\) 0 0
\(781\) −27087.1 −1.24104
\(782\) 0 0
\(783\) 2467.22 0.112607
\(784\) 0 0
\(785\) −43364.4 −1.97165
\(786\) 0 0
\(787\) −23647.2 −1.07107 −0.535536 0.844513i \(-0.679890\pi\)
−0.535536 + 0.844513i \(0.679890\pi\)
\(788\) 0 0
\(789\) −10581.6 −0.477458
\(790\) 0 0
\(791\) −43606.1 −1.96012
\(792\) 0 0
\(793\) −846.053 −0.0378868
\(794\) 0 0
\(795\) 16144.8 0.720249
\(796\) 0 0
\(797\) −21067.5 −0.936324 −0.468162 0.883643i \(-0.655084\pi\)
−0.468162 + 0.883643i \(0.655084\pi\)
\(798\) 0 0
\(799\) −2198.76 −0.0973547
\(800\) 0 0
\(801\) 8431.97 0.371946
\(802\) 0 0
\(803\) 12566.1 0.552238
\(804\) 0 0
\(805\) 108320. 4.74258
\(806\) 0 0
\(807\) −3432.89 −0.149744
\(808\) 0 0
\(809\) 1877.67 0.0816011 0.0408005 0.999167i \(-0.487009\pi\)
0.0408005 + 0.999167i \(0.487009\pi\)
\(810\) 0 0
\(811\) 2178.85 0.0943401 0.0471700 0.998887i \(-0.484980\pi\)
0.0471700 + 0.998887i \(0.484980\pi\)
\(812\) 0 0
\(813\) −6762.75 −0.291734
\(814\) 0 0
\(815\) 20710.1 0.890114
\(816\) 0 0
\(817\) −17548.2 −0.751451
\(818\) 0 0
\(819\) −4108.44 −0.175288
\(820\) 0 0
\(821\) −11731.4 −0.498696 −0.249348 0.968414i \(-0.580216\pi\)
−0.249348 + 0.968414i \(0.580216\pi\)
\(822\) 0 0
\(823\) 6925.69 0.293334 0.146667 0.989186i \(-0.453145\pi\)
0.146667 + 0.989186i \(0.453145\pi\)
\(824\) 0 0
\(825\) 18749.5 0.791242
\(826\) 0 0
\(827\) −35912.7 −1.51004 −0.755022 0.655700i \(-0.772374\pi\)
−0.755022 + 0.655700i \(0.772374\pi\)
\(828\) 0 0
\(829\) 7107.67 0.297780 0.148890 0.988854i \(-0.452430\pi\)
0.148890 + 0.988854i \(0.452430\pi\)
\(830\) 0 0
\(831\) −21304.9 −0.889360
\(832\) 0 0
\(833\) −32246.5 −1.34126
\(834\) 0 0
\(835\) −15216.2 −0.630634
\(836\) 0 0
\(837\) 7201.53 0.297397
\(838\) 0 0
\(839\) −37844.0 −1.55724 −0.778618 0.627498i \(-0.784079\pi\)
−0.778618 + 0.627498i \(0.784079\pi\)
\(840\) 0 0
\(841\) −16039.0 −0.657631
\(842\) 0 0
\(843\) −11495.4 −0.469660
\(844\) 0 0
\(845\) −3230.41 −0.131514
\(846\) 0 0
\(847\) 23000.2 0.933055
\(848\) 0 0
\(849\) −9097.67 −0.367764
\(850\) 0 0
\(851\) 24143.6 0.972539
\(852\) 0 0
\(853\) −23280.9 −0.934492 −0.467246 0.884127i \(-0.654754\pi\)
−0.467246 + 0.884127i \(0.654754\pi\)
\(854\) 0 0
\(855\) 16442.0 0.657667
\(856\) 0 0
\(857\) 10395.1 0.414342 0.207171 0.978305i \(-0.433574\pi\)
0.207171 + 0.978305i \(0.433574\pi\)
\(858\) 0 0
\(859\) −6698.89 −0.266080 −0.133040 0.991111i \(-0.542474\pi\)
−0.133040 + 0.991111i \(0.542474\pi\)
\(860\) 0 0
\(861\) 8196.25 0.324422
\(862\) 0 0
\(863\) −31844.8 −1.25609 −0.628047 0.778175i \(-0.716146\pi\)
−0.628047 + 0.778175i \(0.716146\pi\)
\(864\) 0 0
\(865\) −20.9496 −0.000823477 0
\(866\) 0 0
\(867\) −10801.2 −0.423101
\(868\) 0 0
\(869\) 34763.4 1.35704
\(870\) 0 0
\(871\) −13441.2 −0.522891
\(872\) 0 0
\(873\) −8586.61 −0.332890
\(874\) 0 0
\(875\) 77444.0 2.99210
\(876\) 0 0
\(877\) 20114.1 0.774465 0.387233 0.921982i \(-0.373431\pi\)
0.387233 + 0.921982i \(0.373431\pi\)
\(878\) 0 0
\(879\) 6889.32 0.264358
\(880\) 0 0
\(881\) −2596.61 −0.0992987 −0.0496493 0.998767i \(-0.515810\pi\)
−0.0496493 + 0.998767i \(0.515810\pi\)
\(882\) 0 0
\(883\) −46374.7 −1.76742 −0.883710 0.468035i \(-0.844962\pi\)
−0.883710 + 0.468035i \(0.844962\pi\)
\(884\) 0 0
\(885\) 31111.0 1.18168
\(886\) 0 0
\(887\) 31863.1 1.20615 0.603077 0.797683i \(-0.293941\pi\)
0.603077 + 0.797683i \(0.293941\pi\)
\(888\) 0 0
\(889\) −37921.7 −1.43066
\(890\) 0 0
\(891\) 2106.00 0.0791848
\(892\) 0 0
\(893\) −5800.34 −0.217358
\(894\) 0 0
\(895\) −62124.4 −2.32021
\(896\) 0 0
\(897\) 6293.76 0.234273
\(898\) 0 0
\(899\) 24372.8 0.904202
\(900\) 0 0
\(901\) 10200.1 0.377154
\(902\) 0 0
\(903\) −19342.1 −0.712809
\(904\) 0 0
\(905\) 56978.4 2.09285
\(906\) 0 0
\(907\) 3004.29 0.109984 0.0549922 0.998487i \(-0.482487\pi\)
0.0549922 + 0.998487i \(0.482487\pi\)
\(908\) 0 0
\(909\) −12610.3 −0.460130
\(910\) 0 0
\(911\) 9985.05 0.363139 0.181569 0.983378i \(-0.441882\pi\)
0.181569 + 0.983378i \(0.441882\pi\)
\(912\) 0 0
\(913\) 21133.4 0.766062
\(914\) 0 0
\(915\) 3732.04 0.134839
\(916\) 0 0
\(917\) 32236.4 1.16089
\(918\) 0 0
\(919\) 8216.29 0.294919 0.147459 0.989068i \(-0.452890\pi\)
0.147459 + 0.989068i \(0.452890\pi\)
\(920\) 0 0
\(921\) 15522.8 0.555367
\(922\) 0 0
\(923\) −13543.6 −0.482981
\(924\) 0 0
\(925\) 35962.6 1.27832
\(926\) 0 0
\(927\) −8594.64 −0.304515
\(928\) 0 0
\(929\) −17832.8 −0.629791 −0.314896 0.949126i \(-0.601970\pi\)
−0.314896 + 0.949126i \(0.601970\pi\)
\(930\) 0 0
\(931\) −85066.4 −2.99456
\(932\) 0 0
\(933\) 22444.6 0.787572
\(934\) 0 0
\(935\) 18005.7 0.629786
\(936\) 0 0
\(937\) −444.289 −0.0154902 −0.00774509 0.999970i \(-0.502465\pi\)
−0.00774509 + 0.999970i \(0.502465\pi\)
\(938\) 0 0
\(939\) −12476.9 −0.433620
\(940\) 0 0
\(941\) −30762.5 −1.06571 −0.532853 0.846208i \(-0.678880\pi\)
−0.532853 + 0.846208i \(0.678880\pi\)
\(942\) 0 0
\(943\) −12555.9 −0.433592
\(944\) 0 0
\(945\) 18122.8 0.623848
\(946\) 0 0
\(947\) −8791.45 −0.301672 −0.150836 0.988559i \(-0.548197\pi\)
−0.150836 + 0.988559i \(0.548197\pi\)
\(948\) 0 0
\(949\) 6283.04 0.214917
\(950\) 0 0
\(951\) 1111.60 0.0379035
\(952\) 0 0
\(953\) 1754.41 0.0596336 0.0298168 0.999555i \(-0.490508\pi\)
0.0298168 + 0.999555i \(0.490508\pi\)
\(954\) 0 0
\(955\) 11709.7 0.396771
\(956\) 0 0
\(957\) 7127.52 0.240753
\(958\) 0 0
\(959\) −46037.8 −1.55020
\(960\) 0 0
\(961\) 41350.2 1.38801
\(962\) 0 0
\(963\) −8321.36 −0.278455
\(964\) 0 0
\(965\) 80011.3 2.66907
\(966\) 0 0
\(967\) −26655.9 −0.886447 −0.443224 0.896411i \(-0.646165\pi\)
−0.443224 + 0.896411i \(0.646165\pi\)
\(968\) 0 0
\(969\) 10387.9 0.344384
\(970\) 0 0
\(971\) −42151.7 −1.39311 −0.696556 0.717502i \(-0.745285\pi\)
−0.696556 + 0.717502i \(0.745285\pi\)
\(972\) 0 0
\(973\) 7991.91 0.263318
\(974\) 0 0
\(975\) 9374.76 0.307931
\(976\) 0 0
\(977\) 14594.7 0.477919 0.238959 0.971030i \(-0.423194\pi\)
0.238959 + 0.971030i \(0.423194\pi\)
\(978\) 0 0
\(979\) 24359.0 0.795217
\(980\) 0 0
\(981\) −1556.03 −0.0506425
\(982\) 0 0
\(983\) −57077.8 −1.85198 −0.925991 0.377546i \(-0.876768\pi\)
−0.925991 + 0.377546i \(0.876768\pi\)
\(984\) 0 0
\(985\) 39.3821 0.00127393
\(986\) 0 0
\(987\) −6393.29 −0.206181
\(988\) 0 0
\(989\) 29630.4 0.952672
\(990\) 0 0
\(991\) −11986.6 −0.384224 −0.192112 0.981373i \(-0.561534\pi\)
−0.192112 + 0.981373i \(0.561534\pi\)
\(992\) 0 0
\(993\) 5462.52 0.174570
\(994\) 0 0
\(995\) 28526.9 0.908908
\(996\) 0 0
\(997\) −32210.1 −1.02317 −0.511587 0.859231i \(-0.670942\pi\)
−0.511587 + 0.859231i \(0.670942\pi\)
\(998\) 0 0
\(999\) 4039.42 0.127930
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.bd.1.1 2
4.3 odd 2 2496.4.a.u.1.1 2
8.3 odd 2 312.4.a.f.1.2 2
8.5 even 2 624.4.a.l.1.2 2
24.5 odd 2 1872.4.a.v.1.1 2
24.11 even 2 936.4.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.f.1.2 2 8.3 odd 2
624.4.a.l.1.2 2 8.5 even 2
936.4.a.c.1.1 2 24.11 even 2
1872.4.a.v.1.1 2 24.5 odd 2
2496.4.a.u.1.1 2 4.3 odd 2
2496.4.a.bd.1.1 2 1.1 even 1 trivial