Properties

Label 2496.2.n
Level $2496$
Weight $2$
Character orbit 2496.n
Rep. character $\chi_{2496}(2495,\cdot)$
Character field $\Q$
Dimension $108$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2496, [\chi])\).

Total New Old
Modular forms 472 116 356
Cusp forms 424 108 316
Eisenstein series 48 8 40

Trace form

\( 108 q - 4 q^{9} - 4 q^{13} + 84 q^{25} + 76 q^{49} + 24 q^{61} + 16 q^{69} - 4 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)