Defining parameters
| Level: | \( N \) | \(=\) | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2496.n (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 156 \) |
| Character field: | \(\Q\) | ||
| Sturm bound: | \(896\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2496, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 472 | 116 | 356 |
| Cusp forms | 424 | 108 | 316 |
| Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)