Properties

Label 2496.2.d.b.1535.1
Level $2496$
Weight $2$
Character 2496.1535
Analytic conductor $19.931$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(1535,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.1535"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,0,0,0,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1535.1
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 2496.1535
Dual form 2496.2.d.b.1535.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.41421i) q^{3} +1.41421i q^{5} +4.24264i q^{7} +(-1.00000 + 2.82843i) q^{9} -1.00000 q^{13} +(2.00000 - 1.41421i) q^{15} -5.65685i q^{17} +4.24264i q^{19} +(6.00000 - 4.24264i) q^{21} +6.00000 q^{23} +3.00000 q^{25} +(5.00000 - 1.41421i) q^{27} -2.82843i q^{29} +4.24264i q^{31} -6.00000 q^{35} -2.00000 q^{37} +(1.00000 + 1.41421i) q^{39} -1.41421i q^{41} +8.48528i q^{43} +(-4.00000 - 1.41421i) q^{45} -12.0000 q^{47} -11.0000 q^{49} +(-8.00000 + 5.65685i) q^{51} +5.65685i q^{53} +(6.00000 - 4.24264i) q^{57} -8.00000 q^{61} +(-12.0000 - 4.24264i) q^{63} -1.41421i q^{65} +4.24264i q^{67} +(-6.00000 - 8.48528i) q^{69} -12.0000 q^{71} +2.00000 q^{73} +(-3.00000 - 4.24264i) q^{75} +8.48528i q^{79} +(-7.00000 - 5.65685i) q^{81} +12.0000 q^{83} +8.00000 q^{85} +(-4.00000 + 2.82843i) q^{87} +7.07107i q^{89} -4.24264i q^{91} +(6.00000 - 4.24264i) q^{93} -6.00000 q^{95} -10.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{9} - 2 q^{13} + 4 q^{15} + 12 q^{21} + 12 q^{23} + 6 q^{25} + 10 q^{27} - 12 q^{35} - 4 q^{37} + 2 q^{39} - 8 q^{45} - 24 q^{47} - 22 q^{49} - 16 q^{51} + 12 q^{57} - 16 q^{61} - 24 q^{63}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.41421i −0.577350 0.816497i
\(4\) 0 0
\(5\) 1.41421i 0.632456i 0.948683 + 0.316228i \(0.102416\pi\)
−0.948683 + 0.316228i \(0.897584\pi\)
\(6\) 0 0
\(7\) 4.24264i 1.60357i 0.597614 + 0.801784i \(0.296115\pi\)
−0.597614 + 0.801784i \(0.703885\pi\)
\(8\) 0 0
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 2.00000 1.41421i 0.516398 0.365148i
\(16\) 0 0
\(17\) 5.65685i 1.37199i −0.727607 0.685994i \(-0.759367\pi\)
0.727607 0.685994i \(-0.240633\pi\)
\(18\) 0 0
\(19\) 4.24264i 0.973329i 0.873589 + 0.486664i \(0.161786\pi\)
−0.873589 + 0.486664i \(0.838214\pi\)
\(20\) 0 0
\(21\) 6.00000 4.24264i 1.30931 0.925820i
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 5.00000 1.41421i 0.962250 0.272166i
\(28\) 0 0
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 0 0
\(31\) 4.24264i 0.762001i 0.924575 + 0.381000i \(0.124420\pi\)
−0.924575 + 0.381000i \(0.875580\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 −1.01419
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 1.00000 + 1.41421i 0.160128 + 0.226455i
\(40\) 0 0
\(41\) 1.41421i 0.220863i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) 8.48528i 1.29399i 0.762493 + 0.646997i \(0.223975\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) −4.00000 1.41421i −0.596285 0.210819i
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −11.0000 −1.57143
\(50\) 0 0
\(51\) −8.00000 + 5.65685i −1.12022 + 0.792118i
\(52\) 0 0
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000 4.24264i 0.794719 0.561951i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) −12.0000 4.24264i −1.51186 0.534522i
\(64\) 0 0
\(65\) 1.41421i 0.175412i
\(66\) 0 0
\(67\) 4.24264i 0.518321i 0.965834 + 0.259161i \(0.0834459\pi\)
−0.965834 + 0.259161i \(0.916554\pi\)
\(68\) 0 0
\(69\) −6.00000 8.48528i −0.722315 1.02151i
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) −3.00000 4.24264i −0.346410 0.489898i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.48528i 0.954669i 0.878722 + 0.477334i \(0.158397\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(80\) 0 0
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) −4.00000 + 2.82843i −0.428845 + 0.303239i
\(88\) 0 0
\(89\) 7.07107i 0.749532i 0.927119 + 0.374766i \(0.122277\pi\)
−0.927119 + 0.374766i \(0.877723\pi\)
\(90\) 0 0
\(91\) 4.24264i 0.444750i
\(92\) 0 0
\(93\) 6.00000 4.24264i 0.622171 0.439941i
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.82843i 0.281439i −0.990050 0.140720i \(-0.955058\pi\)
0.990050 0.140720i \(-0.0449416\pi\)
\(102\) 0 0
\(103\) 8.48528i 0.836080i −0.908429 0.418040i \(-0.862717\pi\)
0.908429 0.418040i \(-0.137283\pi\)
\(104\) 0 0
\(105\) 6.00000 + 8.48528i 0.585540 + 0.828079i
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 2.00000 + 2.82843i 0.189832 + 0.268462i
\(112\) 0 0
\(113\) 14.1421i 1.33038i −0.746674 0.665190i \(-0.768350\pi\)
0.746674 0.665190i \(-0.231650\pi\)
\(114\) 0 0
\(115\) 8.48528i 0.791257i
\(116\) 0 0
\(117\) 1.00000 2.82843i 0.0924500 0.261488i
\(118\) 0 0
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −2.00000 + 1.41421i −0.180334 + 0.127515i
\(124\) 0 0
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 16.9706i 1.50589i 0.658081 + 0.752947i \(0.271368\pi\)
−0.658081 + 0.752947i \(0.728632\pi\)
\(128\) 0 0
\(129\) 12.0000 8.48528i 1.05654 0.747087i
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −18.0000 −1.56080
\(134\) 0 0
\(135\) 2.00000 + 7.07107i 0.172133 + 0.608581i
\(136\) 0 0
\(137\) 15.5563i 1.32907i 0.747258 + 0.664534i \(0.231370\pi\)
−0.747258 + 0.664534i \(0.768630\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 12.0000 + 16.9706i 1.01058 + 1.42918i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 11.0000 + 15.5563i 0.907265 + 1.28307i
\(148\) 0 0
\(149\) 1.41421i 0.115857i 0.998321 + 0.0579284i \(0.0184495\pi\)
−0.998321 + 0.0579284i \(0.981550\pi\)
\(150\) 0 0
\(151\) 4.24264i 0.345261i −0.984987 0.172631i \(-0.944773\pi\)
0.984987 0.172631i \(-0.0552267\pi\)
\(152\) 0 0
\(153\) 16.0000 + 5.65685i 1.29352 + 0.457330i
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 0 0
\(159\) 8.00000 5.65685i 0.634441 0.448618i
\(160\) 0 0
\(161\) 25.4558i 2.00620i
\(162\) 0 0
\(163\) 4.24264i 0.332309i 0.986100 + 0.166155i \(0.0531351\pi\)
−0.986100 + 0.166155i \(0.946865\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −12.0000 4.24264i −0.917663 0.324443i
\(172\) 0 0
\(173\) 2.82843i 0.215041i −0.994203 0.107521i \(-0.965709\pi\)
0.994203 0.107521i \(-0.0342912\pi\)
\(174\) 0 0
\(175\) 12.7279i 0.962140i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 8.00000 + 11.3137i 0.591377 + 0.836333i
\(184\) 0 0
\(185\) 2.82843i 0.207950i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.00000 + 21.2132i 0.436436 + 1.54303i
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) −2.00000 + 1.41421i −0.143223 + 0.101274i
\(196\) 0 0
\(197\) 7.07107i 0.503793i −0.967754 0.251896i \(-0.918946\pi\)
0.967754 0.251896i \(-0.0810542\pi\)
\(198\) 0 0
\(199\) 16.9706i 1.20301i −0.798869 0.601506i \(-0.794568\pi\)
0.798869 0.601506i \(-0.205432\pi\)
\(200\) 0 0
\(201\) 6.00000 4.24264i 0.423207 0.299253i
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) −6.00000 + 16.9706i −0.417029 + 1.17954i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 8.48528i 0.584151i −0.956395 0.292075i \(-0.905654\pi\)
0.956395 0.292075i \(-0.0943458\pi\)
\(212\) 0 0
\(213\) 12.0000 + 16.9706i 0.822226 + 1.16280i
\(214\) 0 0
\(215\) −12.0000 −0.818393
\(216\) 0 0
\(217\) −18.0000 −1.22192
\(218\) 0 0
\(219\) −2.00000 2.82843i −0.135147 0.191127i
\(220\) 0 0
\(221\) 5.65685i 0.380521i
\(222\) 0 0
\(223\) 12.7279i 0.852325i 0.904647 + 0.426162i \(0.140135\pi\)
−0.904647 + 0.426162i \(0.859865\pi\)
\(224\) 0 0
\(225\) −3.00000 + 8.48528i −0.200000 + 0.565685i
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.7990i 1.29707i 0.761183 + 0.648537i \(0.224619\pi\)
−0.761183 + 0.648537i \(0.775381\pi\)
\(234\) 0 0
\(235\) 16.9706i 1.10704i
\(236\) 0 0
\(237\) 12.0000 8.48528i 0.779484 0.551178i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) −1.00000 + 15.5563i −0.0641500 + 0.997940i
\(244\) 0 0
\(245\) 15.5563i 0.993859i
\(246\) 0 0
\(247\) 4.24264i 0.269953i
\(248\) 0 0
\(249\) −12.0000 16.9706i −0.760469 1.07547i
\(250\) 0 0
\(251\) 30.0000 1.89358 0.946792 0.321847i \(-0.104304\pi\)
0.946792 + 0.321847i \(0.104304\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.00000 11.3137i −0.500979 0.708492i
\(256\) 0 0
\(257\) 14.1421i 0.882162i −0.897467 0.441081i \(-0.854595\pi\)
0.897467 0.441081i \(-0.145405\pi\)
\(258\) 0 0
\(259\) 8.48528i 0.527250i
\(260\) 0 0
\(261\) 8.00000 + 2.82843i 0.495188 + 0.175075i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) 10.0000 7.07107i 0.611990 0.432742i
\(268\) 0 0
\(269\) 19.7990i 1.20717i −0.797300 0.603583i \(-0.793739\pi\)
0.797300 0.603583i \(-0.206261\pi\)
\(270\) 0 0
\(271\) 21.2132i 1.28861i −0.764768 0.644305i \(-0.777147\pi\)
0.764768 0.644305i \(-0.222853\pi\)
\(272\) 0 0
\(273\) −6.00000 + 4.24264i −0.363137 + 0.256776i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −26.0000 −1.56219 −0.781094 0.624413i \(-0.785338\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) 0 0
\(279\) −12.0000 4.24264i −0.718421 0.254000i
\(280\) 0 0
\(281\) 15.5563i 0.928014i 0.885832 + 0.464007i \(0.153589\pi\)
−0.885832 + 0.464007i \(0.846411\pi\)
\(282\) 0 0
\(283\) 16.9706i 1.00880i 0.863472 + 0.504398i \(0.168285\pi\)
−0.863472 + 0.504398i \(0.831715\pi\)
\(284\) 0 0
\(285\) 6.00000 + 8.48528i 0.355409 + 0.502625i
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 10.0000 + 14.1421i 0.586210 + 0.829027i
\(292\) 0 0
\(293\) 1.41421i 0.0826192i 0.999146 + 0.0413096i \(0.0131530\pi\)
−0.999146 + 0.0413096i \(0.986847\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) −36.0000 −2.07501
\(302\) 0 0
\(303\) −4.00000 + 2.82843i −0.229794 + 0.162489i
\(304\) 0 0
\(305\) 11.3137i 0.647821i
\(306\) 0 0
\(307\) 12.7279i 0.726421i 0.931707 + 0.363210i \(0.118319\pi\)
−0.931707 + 0.363210i \(0.881681\pi\)
\(308\) 0 0
\(309\) −12.0000 + 8.48528i −0.682656 + 0.482711i
\(310\) 0 0
\(311\) −6.00000 −0.340229 −0.170114 0.985424i \(-0.554414\pi\)
−0.170114 + 0.985424i \(0.554414\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 6.00000 16.9706i 0.338062 0.956183i
\(316\) 0 0
\(317\) 9.89949i 0.556011i 0.960579 + 0.278006i \(0.0896734\pi\)
−0.960579 + 0.278006i \(0.910327\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 + 16.9706i 0.669775 + 0.947204i
\(322\) 0 0
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) −3.00000 −0.166410
\(326\) 0 0
\(327\) 2.00000 + 2.82843i 0.110600 + 0.156412i
\(328\) 0 0
\(329\) 50.9117i 2.80685i
\(330\) 0 0
\(331\) 21.2132i 1.16598i 0.812478 + 0.582992i \(0.198118\pi\)
−0.812478 + 0.582992i \(0.801882\pi\)
\(332\) 0 0
\(333\) 2.00000 5.65685i 0.109599 0.309994i
\(334\) 0 0
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) −20.0000 + 14.1421i −1.08625 + 0.768095i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 12.0000 8.48528i 0.646058 0.456832i
\(346\) 0 0
\(347\) 18.0000 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) −5.00000 + 1.41421i −0.266880 + 0.0754851i
\(352\) 0 0
\(353\) 9.89949i 0.526897i −0.964673 0.263448i \(-0.915140\pi\)
0.964673 0.263448i \(-0.0848599\pi\)
\(354\) 0 0
\(355\) 16.9706i 0.900704i
\(356\) 0 0
\(357\) −24.0000 33.9411i −1.27021 1.79635i
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 11.0000 + 15.5563i 0.577350 + 0.816497i
\(364\) 0 0
\(365\) 2.82843i 0.148047i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 4.00000 + 1.41421i 0.208232 + 0.0736210i
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 16.0000 11.3137i 0.826236 0.584237i
\(376\) 0 0
\(377\) 2.82843i 0.145671i
\(378\) 0 0
\(379\) 29.6985i 1.52551i −0.646688 0.762754i \(-0.723847\pi\)
0.646688 0.762754i \(-0.276153\pi\)
\(380\) 0 0
\(381\) 24.0000 16.9706i 1.22956 0.869428i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −24.0000 8.48528i −1.21999 0.431331i
\(388\) 0 0
\(389\) 28.2843i 1.43407i −0.697037 0.717035i \(-0.745499\pi\)
0.697037 0.717035i \(-0.254501\pi\)
\(390\) 0 0
\(391\) 33.9411i 1.71648i
\(392\) 0 0
\(393\) 12.0000 + 16.9706i 0.605320 + 0.856052i
\(394\) 0 0
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 18.0000 + 25.4558i 0.901127 + 1.27439i
\(400\) 0 0
\(401\) 1.41421i 0.0706225i −0.999376 0.0353112i \(-0.988758\pi\)
0.999376 0.0353112i \(-0.0112422\pi\)
\(402\) 0 0
\(403\) 4.24264i 0.211341i
\(404\) 0 0
\(405\) 8.00000 9.89949i 0.397523 0.491910i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 22.0000 15.5563i 1.08518 0.767338i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 16.9706i 0.833052i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 12.0000 33.9411i 0.583460 1.65027i
\(424\) 0 0
\(425\) 16.9706i 0.823193i
\(426\) 0 0
\(427\) 33.9411i 1.64253i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) −4.00000 5.65685i −0.191785 0.271225i
\(436\) 0 0
\(437\) 25.4558i 1.21772i
\(438\) 0 0
\(439\) 25.4558i 1.21494i 0.794342 + 0.607471i \(0.207816\pi\)
−0.794342 + 0.607471i \(0.792184\pi\)
\(440\) 0 0
\(441\) 11.0000 31.1127i 0.523810 1.48156i
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) −10.0000 −0.474045
\(446\) 0 0
\(447\) 2.00000 1.41421i 0.0945968 0.0668900i
\(448\) 0 0
\(449\) 32.5269i 1.53504i 0.641025 + 0.767520i \(0.278509\pi\)
−0.641025 + 0.767520i \(0.721491\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −6.00000 + 4.24264i −0.281905 + 0.199337i
\(454\) 0 0
\(455\) 6.00000 0.281284
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) −8.00000 28.2843i −0.373408 1.32020i
\(460\) 0 0
\(461\) 35.3553i 1.64666i 0.567561 + 0.823331i \(0.307887\pi\)
−0.567561 + 0.823331i \(0.692113\pi\)
\(462\) 0 0
\(463\) 4.24264i 0.197172i 0.995129 + 0.0985861i \(0.0314320\pi\)
−0.995129 + 0.0985861i \(0.968568\pi\)
\(464\) 0 0
\(465\) 6.00000 + 8.48528i 0.278243 + 0.393496i
\(466\) 0 0
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) −18.0000 −0.831163
\(470\) 0 0
\(471\) −4.00000 5.65685i −0.184310 0.260654i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 12.7279i 0.583997i
\(476\) 0 0
\(477\) −16.0000 5.65685i −0.732590 0.259010i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 36.0000 25.4558i 1.63806 1.15828i
\(484\) 0 0
\(485\) 14.1421i 0.642161i
\(486\) 0 0
\(487\) 4.24264i 0.192252i −0.995369 0.0961262i \(-0.969355\pi\)
0.995369 0.0961262i \(-0.0306452\pi\)
\(488\) 0 0
\(489\) 6.00000 4.24264i 0.271329 0.191859i
\(490\) 0 0
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 0 0
\(493\) −16.0000 −0.720604
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 50.9117i 2.28370i
\(498\) 0 0
\(499\) 4.24264i 0.189927i −0.995481 0.0949633i \(-0.969727\pi\)
0.995481 0.0949633i \(-0.0302734\pi\)
\(500\) 0 0
\(501\) 12.0000 + 16.9706i 0.536120 + 0.758189i
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) −1.00000 1.41421i −0.0444116 0.0628074i
\(508\) 0 0
\(509\) 24.0416i 1.06563i −0.846233 0.532813i \(-0.821135\pi\)
0.846233 0.532813i \(-0.178865\pi\)
\(510\) 0 0
\(511\) 8.48528i 0.375367i
\(512\) 0 0
\(513\) 6.00000 + 21.2132i 0.264906 + 0.936586i
\(514\) 0 0
\(515\) 12.0000 0.528783
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −4.00000 + 2.82843i −0.175581 + 0.124154i
\(520\) 0 0
\(521\) 19.7990i 0.867409i 0.901055 + 0.433705i \(0.142794\pi\)
−0.901055 + 0.433705i \(0.857206\pi\)
\(522\) 0 0
\(523\) 16.9706i 0.742071i −0.928619 0.371035i \(-0.879003\pi\)
0.928619 0.371035i \(-0.120997\pi\)
\(524\) 0 0
\(525\) 18.0000 12.7279i 0.785584 0.555492i
\(526\) 0 0
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.41421i 0.0612564i
\(534\) 0 0
\(535\) 16.9706i 0.733701i
\(536\) 0 0
\(537\) 12.0000 + 16.9706i 0.517838 + 0.732334i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) −16.0000 22.6274i −0.686626 0.971035i
\(544\) 0 0
\(545\) 2.82843i 0.121157i
\(546\) 0 0
\(547\) 16.9706i 0.725609i 0.931865 + 0.362804i \(0.118181\pi\)
−0.931865 + 0.362804i \(0.881819\pi\)
\(548\) 0 0
\(549\) 8.00000 22.6274i 0.341432 0.965715i
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) −36.0000 −1.53088
\(554\) 0 0
\(555\) −4.00000 + 2.82843i −0.169791 + 0.120060i
\(556\) 0 0
\(557\) 7.07107i 0.299611i −0.988716 0.149805i \(-0.952135\pi\)
0.988716 0.149805i \(-0.0478647\pi\)
\(558\) 0 0
\(559\) 8.48528i 0.358889i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 20.0000 0.841406
\(566\) 0 0
\(567\) 24.0000 29.6985i 1.00791 1.24722i
\(568\) 0 0
\(569\) 2.82843i 0.118574i 0.998241 + 0.0592869i \(0.0188827\pi\)
−0.998241 + 0.0592869i \(0.981117\pi\)
\(570\) 0 0
\(571\) 16.9706i 0.710196i −0.934829 0.355098i \(-0.884448\pi\)
0.934829 0.355098i \(-0.115552\pi\)
\(572\) 0 0
\(573\) 6.00000 + 8.48528i 0.250654 + 0.354478i
\(574\) 0 0
\(575\) 18.0000 0.750652
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) −14.0000 19.7990i −0.581820 0.822818i
\(580\) 0 0
\(581\) 50.9117i 2.11217i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 4.00000 + 1.41421i 0.165380 + 0.0584705i
\(586\) 0 0
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 0 0
\(589\) −18.0000 −0.741677
\(590\) 0 0
\(591\) −10.0000 + 7.07107i −0.411345 + 0.290865i
\(592\) 0 0
\(593\) 7.07107i 0.290374i 0.989404 + 0.145187i \(0.0463784\pi\)
−0.989404 + 0.145187i \(0.953622\pi\)
\(594\) 0 0
\(595\) 33.9411i 1.39145i
\(596\) 0 0
\(597\) −24.0000 + 16.9706i −0.982255 + 0.694559i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) −12.0000 4.24264i −0.488678 0.172774i
\(604\) 0 0
\(605\) 15.5563i 0.632456i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) −12.0000 16.9706i −0.486265 0.687682i
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) 34.0000 1.37325 0.686624 0.727013i \(-0.259092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(614\) 0 0
\(615\) −2.00000 2.82843i −0.0806478 0.114053i
\(616\) 0 0
\(617\) 1.41421i 0.0569341i −0.999595 0.0284670i \(-0.990937\pi\)
0.999595 0.0284670i \(-0.00906257\pi\)
\(618\) 0 0
\(619\) 4.24264i 0.170526i 0.996358 + 0.0852631i \(0.0271731\pi\)
−0.996358 + 0.0852631i \(0.972827\pi\)
\(620\) 0 0
\(621\) 30.0000 8.48528i 1.20386 0.340503i
\(622\) 0 0
\(623\) −30.0000 −1.20192
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.3137i 0.451107i
\(630\) 0 0
\(631\) 21.2132i 0.844484i 0.906483 + 0.422242i \(0.138757\pi\)
−0.906483 + 0.422242i \(0.861243\pi\)
\(632\) 0 0
\(633\) −12.0000 + 8.48528i −0.476957 + 0.337260i
\(634\) 0 0
\(635\) −24.0000 −0.952411
\(636\) 0 0
\(637\) 11.0000 0.435836
\(638\) 0 0
\(639\) 12.0000 33.9411i 0.474713 1.34269i
\(640\) 0 0
\(641\) 28.2843i 1.11716i 0.829450 + 0.558581i \(0.188654\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) 12.7279i 0.501940i 0.967995 + 0.250970i \(0.0807496\pi\)
−0.967995 + 0.250970i \(0.919250\pi\)
\(644\) 0 0
\(645\) 12.0000 + 16.9706i 0.472500 + 0.668215i
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 18.0000 + 25.4558i 0.705476 + 0.997693i
\(652\) 0 0
\(653\) 14.1421i 0.553425i 0.960953 + 0.276712i \(0.0892449\pi\)
−0.960953 + 0.276712i \(0.910755\pi\)
\(654\) 0 0
\(655\) 16.9706i 0.663095i
\(656\) 0 0
\(657\) −2.00000 + 5.65685i −0.0780274 + 0.220695i
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 0 0
\(663\) 8.00000 5.65685i 0.310694 0.219694i
\(664\) 0 0
\(665\) 25.4558i 0.987135i
\(666\) 0 0
\(667\) 16.9706i 0.657103i
\(668\) 0 0
\(669\) 18.0000 12.7279i 0.695920 0.492090i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −28.0000 −1.07932 −0.539660 0.841883i \(-0.681447\pi\)
−0.539660 + 0.841883i \(0.681447\pi\)
\(674\) 0 0
\(675\) 15.0000 4.24264i 0.577350 0.163299i
\(676\) 0 0
\(677\) 22.6274i 0.869642i 0.900517 + 0.434821i \(0.143188\pi\)
−0.900517 + 0.434821i \(0.856812\pi\)
\(678\) 0 0
\(679\) 42.4264i 1.62818i
\(680\) 0 0
\(681\) 12.0000 + 16.9706i 0.459841 + 0.650313i
\(682\) 0 0
\(683\) 48.0000 1.83667 0.918334 0.395805i \(-0.129534\pi\)
0.918334 + 0.395805i \(0.129534\pi\)
\(684\) 0 0
\(685\) −22.0000 −0.840577
\(686\) 0 0
\(687\) 14.0000 + 19.7990i 0.534133 + 0.755379i
\(688\) 0 0
\(689\) 5.65685i 0.215509i
\(690\) 0 0
\(691\) 12.7279i 0.484193i 0.970252 + 0.242096i \(0.0778351\pi\)
−0.970252 + 0.242096i \(0.922165\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −8.00000 −0.303022
\(698\) 0 0
\(699\) 28.0000 19.7990i 1.05906 0.748867i
\(700\) 0 0
\(701\) 45.2548i 1.70925i −0.519244 0.854626i \(-0.673787\pi\)
0.519244 0.854626i \(-0.326213\pi\)
\(702\) 0 0
\(703\) 8.48528i 0.320028i
\(704\) 0 0
\(705\) −24.0000 + 16.9706i −0.903892 + 0.639148i
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) −24.0000 8.48528i −0.900070 0.318223i
\(712\) 0 0
\(713\) 25.4558i 0.953329i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.0000 16.9706i −0.448148 0.633777i
\(718\) 0 0
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) 36.0000 1.34071
\(722\) 0 0
\(723\) −26.0000 36.7696i −0.966950 1.36747i
\(724\) 0 0
\(725\) 8.48528i 0.315135i
\(726\) 0 0
\(727\) 16.9706i 0.629403i −0.949191 0.314702i \(-0.898096\pi\)
0.949191 0.314702i \(-0.101904\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) 48.0000 1.77534
\(732\) 0 0
\(733\) −50.0000 −1.84679 −0.923396 0.383849i \(-0.874598\pi\)
−0.923396 + 0.383849i \(0.874598\pi\)
\(734\) 0 0
\(735\) −22.0000 + 15.5563i −0.811482 + 0.573805i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 4.24264i 0.156068i −0.996951 0.0780340i \(-0.975136\pi\)
0.996951 0.0780340i \(-0.0248643\pi\)
\(740\) 0 0
\(741\) −6.00000 + 4.24264i −0.220416 + 0.155857i
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −2.00000 −0.0732743
\(746\) 0 0
\(747\) −12.0000 + 33.9411i −0.439057 + 1.24184i
\(748\) 0 0
\(749\) 50.9117i 1.86027i
\(750\) 0 0
\(751\) 8.48528i 0.309632i 0.987943 + 0.154816i \(0.0494785\pi\)
−0.987943 + 0.154816i \(0.950521\pi\)
\(752\) 0 0
\(753\) −30.0000 42.4264i −1.09326 1.54610i
\(754\) 0 0
\(755\) 6.00000 0.218362
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.8701i 0.974039i −0.873391 0.487019i \(-0.838084\pi\)
0.873391 0.487019i \(-0.161916\pi\)
\(762\) 0 0
\(763\) 8.48528i 0.307188i
\(764\) 0 0
\(765\) −8.00000 + 22.6274i −0.289241 + 0.818096i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) −20.0000 + 14.1421i −0.720282 + 0.509317i
\(772\) 0 0
\(773\) 43.8406i 1.57684i 0.615139 + 0.788419i \(0.289100\pi\)
−0.615139 + 0.788419i \(0.710900\pi\)
\(774\) 0 0
\(775\) 12.7279i 0.457200i
\(776\) 0 0
\(777\) −12.0000 + 8.48528i −0.430498 + 0.304408i
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −4.00000 14.1421i −0.142948 0.505399i
\(784\) 0 0
\(785\) 5.65685i 0.201902i
\(786\) 0 0
\(787\) 12.7279i 0.453701i 0.973930 + 0.226851i \(0.0728429\pi\)
−0.973930 + 0.226851i \(0.927157\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 60.0000 2.13335
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 0 0
\(795\) 8.00000 + 11.3137i 0.283731 + 0.401256i
\(796\) 0 0
\(797\) 39.5980i 1.40263i 0.712850 + 0.701316i \(0.247404\pi\)
−0.712850 + 0.701316i \(0.752596\pi\)
\(798\) 0 0
\(799\) 67.8823i 2.40150i
\(800\) 0 0
\(801\) −20.0000 7.07107i −0.706665 0.249844i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −36.0000 −1.26883
\(806\) 0 0
\(807\) −28.0000 + 19.7990i −0.985647 + 0.696957i
\(808\) 0 0
\(809\) 19.7990i 0.696095i 0.937477 + 0.348048i \(0.113155\pi\)
−0.937477 + 0.348048i \(0.886845\pi\)
\(810\) 0 0
\(811\) 38.1838i 1.34081i −0.741994 0.670407i \(-0.766120\pi\)
0.741994 0.670407i \(-0.233880\pi\)
\(812\) 0 0
\(813\) −30.0000 + 21.2132i −1.05215 + 0.743980i
\(814\) 0 0
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) −36.0000 −1.25948
\(818\) 0 0
\(819\) 12.0000 + 4.24264i 0.419314 + 0.148250i
\(820\) 0 0
\(821\) 9.89949i 0.345495i 0.984966 + 0.172747i \(0.0552644\pi\)
−0.984966 + 0.172747i \(0.944736\pi\)
\(822\) 0 0
\(823\) 25.4558i 0.887335i 0.896191 + 0.443667i \(0.146323\pi\)
−0.896191 + 0.443667i \(0.853677\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 26.0000 + 36.7696i 0.901930 + 1.27552i
\(832\) 0 0
\(833\) 62.2254i 2.15598i
\(834\) 0 0
\(835\) 16.9706i 0.587291i
\(836\) 0 0
\(837\) 6.00000 + 21.2132i 0.207390 + 0.733236i
\(838\) 0 0
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) 22.0000 15.5563i 0.757720 0.535789i
\(844\) 0 0
\(845\) 1.41421i 0.0486504i
\(846\) 0 0
\(847\) 46.6690i 1.60357i
\(848\) 0 0
\(849\) 24.0000 16.9706i 0.823678 0.582428i
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 0 0
\(855\) 6.00000 16.9706i 0.205196 0.580381i
\(856\) 0 0
\(857\) 2.82843i 0.0966172i 0.998832 + 0.0483086i \(0.0153831\pi\)
−0.998832 + 0.0483086i \(0.984617\pi\)
\(858\) 0 0
\(859\) 42.4264i 1.44757i −0.690025 0.723785i \(-0.742401\pi\)
0.690025 0.723785i \(-0.257599\pi\)
\(860\) 0 0
\(861\) −6.00000 8.48528i −0.204479 0.289178i
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 4.00000 0.136004
\(866\) 0 0
\(867\) 15.0000 + 21.2132i 0.509427 + 0.720438i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 4.24264i 0.143756i
\(872\) 0 0
\(873\) 10.0000 28.2843i 0.338449 0.957278i
\(874\) 0 0
\(875\) −48.0000 −1.62270
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 2.00000 1.41421i 0.0674583 0.0477002i
\(880\) 0 0
\(881\) 19.7990i 0.667045i 0.942742 + 0.333522i \(0.108237\pi\)
−0.942742 + 0.333522i \(0.891763\pi\)
\(882\) 0 0
\(883\) 50.9117i 1.71331i 0.515886 + 0.856657i \(0.327463\pi\)
−0.515886 + 0.856657i \(0.672537\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.00000 0.201460 0.100730 0.994914i \(-0.467882\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(888\) 0 0
\(889\) −72.0000 −2.41480
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 50.9117i 1.70369i
\(894\) 0 0
\(895\) 16.9706i 0.567263i
\(896\) 0 0
\(897\) 6.00000 + 8.48528i 0.200334 + 0.283315i
\(898\) 0 0
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 32.0000 1.06607
\(902\) 0 0
\(903\) 36.0000 + 50.9117i 1.19800 + 1.69423i
\(904\) 0 0
\(905\) 22.6274i 0.752161i
\(906\) 0 0
\(907\) 50.9117i 1.69049i 0.534375 + 0.845247i \(0.320547\pi\)
−0.534375 + 0.845247i \(0.679453\pi\)
\(908\) 0 0
\(909\) 8.00000 + 2.82843i 0.265343 + 0.0938130i
\(910\) 0 0
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −16.0000 + 11.3137i −0.528944 + 0.374020i
\(916\) 0 0
\(917\) 50.9117i 1.68125i
\(918\) 0 0
\(919\) 8.48528i 0.279904i 0.990158 + 0.139952i \(0.0446948\pi\)
−0.990158 + 0.139952i \(0.955305\pi\)
\(920\) 0 0
\(921\) 18.0000 12.7279i 0.593120 0.419399i
\(922\) 0 0
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 0 0
\(927\) 24.0000 + 8.48528i 0.788263 + 0.278693i
\(928\) 0 0
\(929\) 15.5563i 0.510387i 0.966890 + 0.255194i \(0.0821392\pi\)
−0.966890 + 0.255194i \(0.917861\pi\)
\(930\) 0 0
\(931\) 46.6690i 1.52952i
\(932\) 0 0
\(933\) 6.00000 + 8.48528i 0.196431 + 0.277796i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20.0000 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(938\) 0 0
\(939\) 10.0000 + 14.1421i 0.326338 + 0.461511i
\(940\) 0 0
\(941\) 1.41421i 0.0461020i 0.999734 + 0.0230510i \(0.00733802\pi\)
−0.999734 + 0.0230510i \(0.992662\pi\)
\(942\) 0 0
\(943\) 8.48528i 0.276319i
\(944\) 0 0
\(945\) −30.0000 + 8.48528i −0.975900 + 0.276026i
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) 14.0000 9.89949i 0.453981 0.321013i
\(952\) 0 0
\(953\) 31.1127i 1.00784i −0.863751 0.503920i \(-0.831891\pi\)
0.863751 0.503920i \(-0.168109\pi\)
\(954\) 0 0
\(955\) 8.48528i 0.274577i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −66.0000 −2.13125
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 12.0000 33.9411i 0.386695 1.09374i
\(964\) 0 0
\(965\) 19.7990i 0.637352i
\(966\) 0 0
\(967\) 21.2132i 0.682171i −0.940032 0.341085i \(-0.889205\pi\)
0.940032 0.341085i \(-0.110795\pi\)
\(968\) 0 0
\(969\) −24.0000 33.9411i −0.770991 1.09035i
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 3.00000 + 4.24264i 0.0960769 + 0.135873i
\(976\) 0 0
\(977\) 49.4975i 1.58356i 0.610803 + 0.791782i \(0.290847\pi\)
−0.610803 + 0.791782i \(0.709153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 2.00000 5.65685i 0.0638551 0.180609i
\(982\) 0 0
\(983\) −12.0000 −0.382741 −0.191370 0.981518i \(-0.561293\pi\)
−0.191370 + 0.981518i \(0.561293\pi\)
\(984\) 0 0
\(985\) 10.0000 0.318626
\(986\) 0 0
\(987\) −72.0000 + 50.9117i −2.29179 + 1.62054i
\(988\) 0 0
\(989\) 50.9117i 1.61890i
\(990\) 0 0
\(991\) 33.9411i 1.07818i −0.842250 0.539088i \(-0.818769\pi\)
0.842250 0.539088i \(-0.181231\pi\)
\(992\) 0 0
\(993\) 30.0000 21.2132i 0.952021 0.673181i
\(994\) 0 0
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) 46.0000 1.45683 0.728417 0.685134i \(-0.240256\pi\)
0.728417 + 0.685134i \(0.240256\pi\)
\(998\) 0 0
\(999\) −10.0000 + 2.82843i −0.316386 + 0.0894875i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.d.b.1535.1 2
3.2 odd 2 2496.2.d.g.1535.1 2
4.3 odd 2 2496.2.d.g.1535.2 2
8.3 odd 2 156.2.c.a.131.2 yes 2
8.5 even 2 156.2.c.b.131.2 yes 2
12.11 even 2 inner 2496.2.d.b.1535.2 2
24.5 odd 2 156.2.c.a.131.1 2
24.11 even 2 156.2.c.b.131.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.c.a.131.1 2 24.5 odd 2
156.2.c.a.131.2 yes 2 8.3 odd 2
156.2.c.b.131.1 yes 2 24.11 even 2
156.2.c.b.131.2 yes 2 8.5 even 2
2496.2.d.b.1535.1 2 1.1 even 1 trivial
2496.2.d.b.1535.2 2 12.11 even 2 inner
2496.2.d.g.1535.1 2 3.2 odd 2
2496.2.d.g.1535.2 2 4.3 odd 2