Properties

Label 2496.2.c.r.961.5
Level $2496$
Weight $2$
Character 2496.961
Analytic conductor $19.931$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(961,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,0,0,0,0,8,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.134560000.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{6} + 13x^{4} + 7x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 1248)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.5
Root \(0.477260i\) of defining polynomial
Character \(\chi\) \(=\) 2496.961
Dual form 2496.2.c.r.961.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +0.954520i q^{5} -4.78051i q^{7} +1.00000 q^{9} -2.64614i q^{11} +(1.58993 + 3.23607i) q^{13} +0.954520i q^{15} +4.47214 q^{17} +2.30838i q^{19} -4.78051i q^{21} -8.38118 q^{23} +4.08889 q^{25} +1.00000 q^{27} +3.90904 q^{29} -2.87147i q^{31} -2.64614i q^{33} +4.56310 q^{35} -8.38118i q^{37} +(1.58993 + 3.23607i) q^{39} +4.95452i q^{41} +7.65199 q^{43} +0.954520i q^{45} -10.2981i q^{47} -15.8533 q^{49} +4.47214 q^{51} -10.3812 q^{53} +2.52580 q^{55} +2.30838i q^{57} -4.55518i q^{59} +14.0332 q^{61} -4.78051i q^{63} +(-3.08889 + 1.51762i) q^{65} +0.399338i q^{67} -8.38118 q^{69} -3.44482i q^{71} -12.2687i q^{73} +4.08889 q^{75} -12.6499 q^{77} -12.7624 q^{79} +1.00000 q^{81} -0.737102i q^{83} +4.26874i q^{85} +3.90904 q^{87} -11.8078i q^{89} +(15.4701 - 7.60066i) q^{91} -2.87147i q^{93} -2.20339 q^{95} -6.09096i q^{97} -2.64614i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 8 q^{9} - 8 q^{23} - 16 q^{25} + 8 q^{27} + 8 q^{29} + 24 q^{35} - 32 q^{49} - 24 q^{53} - 16 q^{55} - 8 q^{61} + 24 q^{65} - 8 q^{69} - 16 q^{75} + 32 q^{77} + 16 q^{79} + 8 q^{81} + 8 q^{87}+ \cdots - 56 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0.954520i 0.426874i 0.976957 + 0.213437i \(0.0684659\pi\)
−0.976957 + 0.213437i \(0.931534\pi\)
\(6\) 0 0
\(7\) 4.78051i 1.80686i −0.428731 0.903432i \(-0.641039\pi\)
0.428731 0.903432i \(-0.358961\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.64614i 0.797842i −0.916985 0.398921i \(-0.869385\pi\)
0.916985 0.398921i \(-0.130615\pi\)
\(12\) 0 0
\(13\) 1.58993 + 3.23607i 0.440966 + 0.897524i
\(14\) 0 0
\(15\) 0.954520i 0.246456i
\(16\) 0 0
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) 0 0
\(19\) 2.30838i 0.529578i 0.964306 + 0.264789i \(0.0853023\pi\)
−0.964306 + 0.264789i \(0.914698\pi\)
\(20\) 0 0
\(21\) 4.78051i 1.04319i
\(22\) 0 0
\(23\) −8.38118 −1.74760 −0.873798 0.486289i \(-0.838350\pi\)
−0.873798 + 0.486289i \(0.838350\pi\)
\(24\) 0 0
\(25\) 4.08889 0.817778
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.90904 0.725891 0.362945 0.931810i \(-0.381771\pi\)
0.362945 + 0.931810i \(0.381771\pi\)
\(30\) 0 0
\(31\) 2.87147i 0.515732i −0.966181 0.257866i \(-0.916981\pi\)
0.966181 0.257866i \(-0.0830193\pi\)
\(32\) 0 0
\(33\) 2.64614i 0.460634i
\(34\) 0 0
\(35\) 4.56310 0.771304
\(36\) 0 0
\(37\) 8.38118i 1.37786i −0.724829 0.688928i \(-0.758081\pi\)
0.724829 0.688928i \(-0.241919\pi\)
\(38\) 0 0
\(39\) 1.58993 + 3.23607i 0.254592 + 0.518186i
\(40\) 0 0
\(41\) 4.95452i 0.773766i 0.922129 + 0.386883i \(0.126448\pi\)
−0.922129 + 0.386883i \(0.873552\pi\)
\(42\) 0 0
\(43\) 7.65199 1.16692 0.583459 0.812143i \(-0.301699\pi\)
0.583459 + 0.812143i \(0.301699\pi\)
\(44\) 0 0
\(45\) 0.954520i 0.142291i
\(46\) 0 0
\(47\) 10.2981i 1.50214i −0.660225 0.751068i \(-0.729539\pi\)
0.660225 0.751068i \(-0.270461\pi\)
\(48\) 0 0
\(49\) −15.8533 −2.26476
\(50\) 0 0
\(51\) 4.47214 0.626224
\(52\) 0 0
\(53\) −10.3812 −1.42596 −0.712982 0.701182i \(-0.752656\pi\)
−0.712982 + 0.701182i \(0.752656\pi\)
\(54\) 0 0
\(55\) 2.52580 0.340578
\(56\) 0 0
\(57\) 2.30838i 0.305752i
\(58\) 0 0
\(59\) 4.55518i 0.593034i −0.955028 0.296517i \(-0.904175\pi\)
0.955028 0.296517i \(-0.0958252\pi\)
\(60\) 0 0
\(61\) 14.0332 1.79676 0.898381 0.439217i \(-0.144744\pi\)
0.898381 + 0.439217i \(0.144744\pi\)
\(62\) 0 0
\(63\) 4.78051i 0.602288i
\(64\) 0 0
\(65\) −3.08889 + 1.51762i −0.383130 + 0.188237i
\(66\) 0 0
\(67\) 0.399338i 0.0487869i 0.999702 + 0.0243934i \(0.00776544\pi\)
−0.999702 + 0.0243934i \(0.992235\pi\)
\(68\) 0 0
\(69\) −8.38118 −1.00898
\(70\) 0 0
\(71\) 3.44482i 0.408825i −0.978885 0.204412i \(-0.934472\pi\)
0.978885 0.204412i \(-0.0655283\pi\)
\(72\) 0 0
\(73\) 12.2687i 1.43595i −0.696070 0.717974i \(-0.745070\pi\)
0.696070 0.717974i \(-0.254930\pi\)
\(74\) 0 0
\(75\) 4.08889 0.472145
\(76\) 0 0
\(77\) −12.6499 −1.44159
\(78\) 0 0
\(79\) −12.7624 −1.43588 −0.717938 0.696107i \(-0.754914\pi\)
−0.717938 + 0.696107i \(0.754914\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.737102i 0.0809075i −0.999181 0.0404537i \(-0.987120\pi\)
0.999181 0.0404537i \(-0.0128803\pi\)
\(84\) 0 0
\(85\) 4.26874i 0.463010i
\(86\) 0 0
\(87\) 3.90904 0.419093
\(88\) 0 0
\(89\) 11.8078i 1.25163i −0.779972 0.625814i \(-0.784767\pi\)
0.779972 0.625814i \(-0.215233\pi\)
\(90\) 0 0
\(91\) 15.4701 7.60066i 1.62170 0.796766i
\(92\) 0 0
\(93\) 2.87147i 0.297758i
\(94\) 0 0
\(95\) −2.20339 −0.226063
\(96\) 0 0
\(97\) 6.09096i 0.618443i −0.950990 0.309222i \(-0.899932\pi\)
0.950990 0.309222i \(-0.100068\pi\)
\(98\) 0 0
\(99\) 2.64614i 0.265947i
\(100\) 0 0
\(101\) 6.38118 0.634951 0.317475 0.948267i \(-0.397165\pi\)
0.317475 + 0.948267i \(0.397165\pi\)
\(102\) 0 0
\(103\) −0.348012 −0.0342907 −0.0171453 0.999853i \(-0.505458\pi\)
−0.0171453 + 0.999853i \(0.505458\pi\)
\(104\) 0 0
\(105\) 4.56310 0.445313
\(106\) 0 0
\(107\) −2.02147 −0.195423 −0.0977116 0.995215i \(-0.531152\pi\)
−0.0977116 + 0.995215i \(0.531152\pi\)
\(108\) 0 0
\(109\) 8.83184i 0.845937i 0.906144 + 0.422968i \(0.139012\pi\)
−0.906144 + 0.422968i \(0.860988\pi\)
\(110\) 0 0
\(111\) 8.38118i 0.795506i
\(112\) 0 0
\(113\) −10.8318 −1.01897 −0.509487 0.860478i \(-0.670165\pi\)
−0.509487 + 0.860478i \(0.670165\pi\)
\(114\) 0 0
\(115\) 8.00000i 0.746004i
\(116\) 0 0
\(117\) 1.58993 + 3.23607i 0.146989 + 0.299175i
\(118\) 0 0
\(119\) 21.3791i 1.95982i
\(120\) 0 0
\(121\) 3.99793 0.363448
\(122\) 0 0
\(123\) 4.95452i 0.446734i
\(124\) 0 0
\(125\) 8.67553i 0.775963i
\(126\) 0 0
\(127\) 19.3040 1.71295 0.856475 0.516188i \(-0.172649\pi\)
0.856475 + 0.516188i \(0.172649\pi\)
\(128\) 0 0
\(129\) 7.65199 0.673720
\(130\) 0 0
\(131\) −0.563096 −0.0491979 −0.0245990 0.999697i \(-0.507831\pi\)
−0.0245990 + 0.999697i \(0.507831\pi\)
\(132\) 0 0
\(133\) 11.0352 0.956876
\(134\) 0 0
\(135\) 0.954520i 0.0821520i
\(136\) 0 0
\(137\) 14.1675i 1.21041i 0.796068 + 0.605207i \(0.206910\pi\)
−0.796068 + 0.605207i \(0.793090\pi\)
\(138\) 0 0
\(139\) −1.11036 −0.0941799 −0.0470899 0.998891i \(-0.514995\pi\)
−0.0470899 + 0.998891i \(0.514995\pi\)
\(140\) 0 0
\(141\) 10.2981i 0.867259i
\(142\) 0 0
\(143\) 8.56310 4.20717i 0.716082 0.351821i
\(144\) 0 0
\(145\) 3.73126i 0.309864i
\(146\) 0 0
\(147\) −15.8533 −1.30756
\(148\) 0 0
\(149\) 0.954520i 0.0781973i −0.999235 0.0390987i \(-0.987551\pi\)
0.999235 0.0390987i \(-0.0124487\pi\)
\(150\) 0 0
\(151\) 10.0728i 0.819713i 0.912150 + 0.409856i \(0.134421\pi\)
−0.912150 + 0.409856i \(0.865579\pi\)
\(152\) 0 0
\(153\) 4.47214 0.361551
\(154\) 0 0
\(155\) 2.74088 0.220153
\(156\) 0 0
\(157\) 7.90904 0.631210 0.315605 0.948891i \(-0.397793\pi\)
0.315605 + 0.948891i \(0.397793\pi\)
\(158\) 0 0
\(159\) −10.3812 −0.823281
\(160\) 0 0
\(161\) 40.0663i 3.15767i
\(162\) 0 0
\(163\) 3.86941i 0.303075i −0.988451 0.151538i \(-0.951578\pi\)
0.988451 0.151538i \(-0.0484225\pi\)
\(164\) 0 0
\(165\) 2.52580 0.196633
\(166\) 0 0
\(167\) 24.8239i 1.92093i 0.278396 + 0.960467i \(0.410197\pi\)
−0.278396 + 0.960467i \(0.589803\pi\)
\(168\) 0 0
\(169\) −7.94427 + 10.2902i −0.611098 + 0.791555i
\(170\) 0 0
\(171\) 2.30838i 0.176526i
\(172\) 0 0
\(173\) −16.9228 −1.28662 −0.643308 0.765607i \(-0.722439\pi\)
−0.643308 + 0.765607i \(0.722439\pi\)
\(174\) 0 0
\(175\) 19.5470i 1.47761i
\(176\) 0 0
\(177\) 4.55518i 0.342388i
\(178\) 0 0
\(179\) 16.1993 1.21079 0.605395 0.795925i \(-0.293015\pi\)
0.605395 + 0.795925i \(0.293015\pi\)
\(180\) 0 0
\(181\) 7.90904 0.587874 0.293937 0.955825i \(-0.405034\pi\)
0.293937 + 0.955825i \(0.405034\pi\)
\(182\) 0 0
\(183\) 14.0332 1.03736
\(184\) 0 0
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) 11.8339i 0.865381i
\(188\) 0 0
\(189\) 4.78051i 0.347731i
\(190\) 0 0
\(191\) 22.5590 1.63231 0.816154 0.577834i \(-0.196102\pi\)
0.816154 + 0.577834i \(0.196102\pi\)
\(192\) 0 0
\(193\) 19.1221i 1.37644i −0.725504 0.688218i \(-0.758393\pi\)
0.725504 0.688218i \(-0.241607\pi\)
\(194\) 0 0
\(195\) −3.08889 + 1.51762i −0.221200 + 0.108679i
\(196\) 0 0
\(197\) 3.53909i 0.252150i 0.992021 + 0.126075i \(0.0402379\pi\)
−0.992021 + 0.126075i \(0.959762\pi\)
\(198\) 0 0
\(199\) 6.58457 0.466768 0.233384 0.972385i \(-0.425020\pi\)
0.233384 + 0.972385i \(0.425020\pi\)
\(200\) 0 0
\(201\) 0.399338i 0.0281671i
\(202\) 0 0
\(203\) 18.6872i 1.31159i
\(204\) 0 0
\(205\) −4.72919 −0.330301
\(206\) 0 0
\(207\) −8.38118 −0.582532
\(208\) 0 0
\(209\) 6.10830 0.422520
\(210\) 0 0
\(211\) −10.1778 −0.700667 −0.350334 0.936625i \(-0.613932\pi\)
−0.350334 + 0.936625i \(0.613932\pi\)
\(212\) 0 0
\(213\) 3.44482i 0.236035i
\(214\) 0 0
\(215\) 7.30398i 0.498127i
\(216\) 0 0
\(217\) −13.7271 −0.931858
\(218\) 0 0
\(219\) 12.2687i 0.829045i
\(220\) 0 0
\(221\) 7.11036 + 14.4721i 0.478295 + 0.973501i
\(222\) 0 0
\(223\) 8.51177i 0.569990i −0.958529 0.284995i \(-0.908008\pi\)
0.958529 0.284995i \(-0.0919920\pi\)
\(224\) 0 0
\(225\) 4.08889 0.272593
\(226\) 0 0
\(227\) 19.7565i 1.31129i 0.755071 + 0.655643i \(0.227602\pi\)
−0.755071 + 0.655643i \(0.772398\pi\)
\(228\) 0 0
\(229\) 3.41641i 0.225763i −0.993608 0.112881i \(-0.963992\pi\)
0.993608 0.112881i \(-0.0360080\pi\)
\(230\) 0 0
\(231\) −12.6499 −0.832304
\(232\) 0 0
\(233\) 12.5846 0.824443 0.412221 0.911084i \(-0.364753\pi\)
0.412221 + 0.911084i \(0.364753\pi\)
\(234\) 0 0
\(235\) 9.82977 0.641224
\(236\) 0 0
\(237\) −12.7624 −0.829004
\(238\) 0 0
\(239\) 13.7887i 0.891916i 0.895054 + 0.445958i \(0.147137\pi\)
−0.895054 + 0.445958i \(0.852863\pi\)
\(240\) 0 0
\(241\) 3.03523i 0.195516i −0.995210 0.0977582i \(-0.968833\pi\)
0.995210 0.0977582i \(-0.0311672\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 15.1323i 0.966767i
\(246\) 0 0
\(247\) −7.47007 + 3.67015i −0.475309 + 0.233526i
\(248\) 0 0
\(249\) 0.737102i 0.0467120i
\(250\) 0 0
\(251\) −10.1778 −0.642416 −0.321208 0.947009i \(-0.604089\pi\)
−0.321208 + 0.947009i \(0.604089\pi\)
\(252\) 0 0
\(253\) 22.1778i 1.39431i
\(254\) 0 0
\(255\) 4.26874i 0.267319i
\(256\) 0 0
\(257\) 4.58457 0.285978 0.142989 0.989724i \(-0.454329\pi\)
0.142989 + 0.989724i \(0.454329\pi\)
\(258\) 0 0
\(259\) −40.0663 −2.48960
\(260\) 0 0
\(261\) 3.90904 0.241964
\(262\) 0 0
\(263\) 10.5846 0.652672 0.326336 0.945254i \(-0.394186\pi\)
0.326336 + 0.945254i \(0.394186\pi\)
\(264\) 0 0
\(265\) 9.90904i 0.608707i
\(266\) 0 0
\(267\) 11.8078i 0.722628i
\(268\) 0 0
\(269\) −27.0311 −1.64811 −0.824057 0.566506i \(-0.808295\pi\)
−0.824057 + 0.566506i \(0.808295\pi\)
\(270\) 0 0
\(271\) 5.54287i 0.336705i −0.985727 0.168353i \(-0.946155\pi\)
0.985727 0.168353i \(-0.0538447\pi\)
\(272\) 0 0
\(273\) 15.4701 7.60066i 0.936291 0.460013i
\(274\) 0 0
\(275\) 10.8198i 0.652458i
\(276\) 0 0
\(277\) 3.12619 0.187835 0.0939173 0.995580i \(-0.470061\pi\)
0.0939173 + 0.995580i \(0.470061\pi\)
\(278\) 0 0
\(279\) 2.87147i 0.171911i
\(280\) 0 0
\(281\) 11.1323i 0.664098i −0.943262 0.332049i \(-0.892260\pi\)
0.943262 0.332049i \(-0.107740\pi\)
\(282\) 0 0
\(283\) −28.0663 −1.66837 −0.834185 0.551485i \(-0.814061\pi\)
−0.834185 + 0.551485i \(0.814061\pi\)
\(284\) 0 0
\(285\) −2.20339 −0.130518
\(286\) 0 0
\(287\) 23.6852 1.39809
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 6.09096i 0.357058i
\(292\) 0 0
\(293\) 28.0766i 1.64025i 0.572184 + 0.820126i \(0.306096\pi\)
−0.572184 + 0.820126i \(0.693904\pi\)
\(294\) 0 0
\(295\) 4.34801 0.253151
\(296\) 0 0
\(297\) 2.64614i 0.153545i
\(298\) 0 0
\(299\) −13.3254 27.1221i −0.770631 1.56851i
\(300\) 0 0
\(301\) 36.5804i 2.10846i
\(302\) 0 0
\(303\) 6.38118 0.366589
\(304\) 0 0
\(305\) 13.3949i 0.766992i
\(306\) 0 0
\(307\) 19.7463i 1.12698i 0.826123 + 0.563489i \(0.190541\pi\)
−0.826123 + 0.563489i \(0.809459\pi\)
\(308\) 0 0
\(309\) −0.348012 −0.0197977
\(310\) 0 0
\(311\) −13.7966 −0.782334 −0.391167 0.920320i \(-0.627928\pi\)
−0.391167 + 0.920320i \(0.627928\pi\)
\(312\) 0 0
\(313\) −18.5268 −1.04720 −0.523598 0.851966i \(-0.675410\pi\)
−0.523598 + 0.851966i \(0.675410\pi\)
\(314\) 0 0
\(315\) 4.56310 0.257101
\(316\) 0 0
\(317\) 17.0208i 0.955986i 0.878364 + 0.477993i \(0.158636\pi\)
−0.878364 + 0.477993i \(0.841364\pi\)
\(318\) 0 0
\(319\) 10.3439i 0.579146i
\(320\) 0 0
\(321\) −2.02147 −0.112828
\(322\) 0 0
\(323\) 10.3234i 0.574408i
\(324\) 0 0
\(325\) 6.50103 + 13.2319i 0.360612 + 0.733975i
\(326\) 0 0
\(327\) 8.83184i 0.488402i
\(328\) 0 0
\(329\) −49.2304 −2.71416
\(330\) 0 0
\(331\) 7.27315i 0.399768i 0.979820 + 0.199884i \(0.0640566\pi\)
−0.979820 + 0.199884i \(0.935943\pi\)
\(332\) 0 0
\(333\) 8.38118i 0.459286i
\(334\) 0 0
\(335\) −0.381176 −0.0208259
\(336\) 0 0
\(337\) −7.94220 −0.432639 −0.216320 0.976323i \(-0.569405\pi\)
−0.216320 + 0.976323i \(0.569405\pi\)
\(338\) 0 0
\(339\) −10.8318 −0.588305
\(340\) 0 0
\(341\) −7.59833 −0.411473
\(342\) 0 0
\(343\) 42.3234i 2.28525i
\(344\) 0 0
\(345\) 8.00000i 0.430706i
\(346\) 0 0
\(347\) 10.8738 0.583737 0.291868 0.956459i \(-0.405723\pi\)
0.291868 + 0.956459i \(0.405723\pi\)
\(348\) 0 0
\(349\) 21.3254i 1.14153i −0.821115 0.570763i \(-0.806648\pi\)
0.821115 0.570763i \(-0.193352\pi\)
\(350\) 0 0
\(351\) 1.58993 + 3.23607i 0.0848640 + 0.172729i
\(352\) 0 0
\(353\) 3.72101i 0.198049i 0.995085 + 0.0990247i \(0.0315723\pi\)
−0.995085 + 0.0990247i \(0.968428\pi\)
\(354\) 0 0
\(355\) 3.28815 0.174517
\(356\) 0 0
\(357\) 21.3791i 1.13150i
\(358\) 0 0
\(359\) 13.0058i 0.686422i 0.939258 + 0.343211i \(0.111515\pi\)
−0.939258 + 0.343211i \(0.888485\pi\)
\(360\) 0 0
\(361\) 13.6714 0.719547
\(362\) 0 0
\(363\) 3.99793 0.209837
\(364\) 0 0
\(365\) 11.7108 0.612969
\(366\) 0 0
\(367\) 25.5405 1.33320 0.666602 0.745413i \(-0.267748\pi\)
0.666602 + 0.745413i \(0.267748\pi\)
\(368\) 0 0
\(369\) 4.95452i 0.257922i
\(370\) 0 0
\(371\) 49.6274i 2.57652i
\(372\) 0 0
\(373\) −10.9979 −0.569451 −0.284726 0.958609i \(-0.591903\pi\)
−0.284726 + 0.958609i \(0.591903\pi\)
\(374\) 0 0
\(375\) 8.67553i 0.448002i
\(376\) 0 0
\(377\) 6.21508 + 12.6499i 0.320093 + 0.651504i
\(378\) 0 0
\(379\) 35.0707i 1.80146i 0.434377 + 0.900731i \(0.356969\pi\)
−0.434377 + 0.900731i \(0.643031\pi\)
\(380\) 0 0
\(381\) 19.3040 0.988973
\(382\) 0 0
\(383\) 8.40959i 0.429710i −0.976646 0.214855i \(-0.931072\pi\)
0.976646 0.214855i \(-0.0689279\pi\)
\(384\) 0 0
\(385\) 12.0746i 0.615379i
\(386\) 0 0
\(387\) 7.65199 0.388972
\(388\) 0 0
\(389\) 27.2130 1.37975 0.689877 0.723926i \(-0.257664\pi\)
0.689877 + 0.723926i \(0.257664\pi\)
\(390\) 0 0
\(391\) −37.4818 −1.89553
\(392\) 0 0
\(393\) −0.563096 −0.0284044
\(394\) 0 0
\(395\) 12.1819i 0.612939i
\(396\) 0 0
\(397\) 26.7409i 1.34209i −0.741418 0.671043i \(-0.765847\pi\)
0.741418 0.671043i \(-0.234153\pi\)
\(398\) 0 0
\(399\) 11.0352 0.552453
\(400\) 0 0
\(401\) 24.3014i 1.21356i 0.794871 + 0.606778i \(0.207538\pi\)
−0.794871 + 0.606778i \(0.792462\pi\)
\(402\) 0 0
\(403\) 9.29228 4.56543i 0.462882 0.227420i
\(404\) 0 0
\(405\) 0.954520i 0.0474305i
\(406\) 0 0
\(407\) −22.1778 −1.09931
\(408\) 0 0
\(409\) 21.3949i 1.05791i −0.848649 0.528956i \(-0.822584\pi\)
0.848649 0.528956i \(-0.177416\pi\)
\(410\) 0 0
\(411\) 14.1675i 0.698833i
\(412\) 0 0
\(413\) −21.7761 −1.07153
\(414\) 0 0
\(415\) 0.703579 0.0345373
\(416\) 0 0
\(417\) −1.11036 −0.0543748
\(418\) 0 0
\(419\) −5.97853 −0.292070 −0.146035 0.989279i \(-0.546651\pi\)
−0.146035 + 0.989279i \(0.546651\pi\)
\(420\) 0 0
\(421\) 3.35008i 0.163273i 0.996662 + 0.0816365i \(0.0260146\pi\)
−0.996662 + 0.0816365i \(0.973985\pi\)
\(422\) 0 0
\(423\) 10.2981i 0.500712i
\(424\) 0 0
\(425\) 18.2861 0.887005
\(426\) 0 0
\(427\) 67.0857i 3.24651i
\(428\) 0 0
\(429\) 8.56310 4.20717i 0.413430 0.203124i
\(430\) 0 0
\(431\) 23.7136i 1.14224i −0.820866 0.571121i \(-0.806509\pi\)
0.820866 0.571121i \(-0.193491\pi\)
\(432\) 0 0
\(433\) −13.0889 −0.629012 −0.314506 0.949255i \(-0.601839\pi\)
−0.314506 + 0.949255i \(0.601839\pi\)
\(434\) 0 0
\(435\) 3.73126i 0.178900i
\(436\) 0 0
\(437\) 19.3469i 0.925489i
\(438\) 0 0
\(439\) 25.8727 1.23484 0.617419 0.786635i \(-0.288178\pi\)
0.617419 + 0.786635i \(0.288178\pi\)
\(440\) 0 0
\(441\) −15.8533 −0.754920
\(442\) 0 0
\(443\) −21.6147 −1.02694 −0.513472 0.858106i \(-0.671641\pi\)
−0.513472 + 0.858106i \(0.671641\pi\)
\(444\) 0 0
\(445\) 11.2708 0.534288
\(446\) 0 0
\(447\) 0.954520i 0.0451472i
\(448\) 0 0
\(449\) 13.0413i 0.615459i −0.951474 0.307730i \(-0.900431\pi\)
0.951474 0.307730i \(-0.0995692\pi\)
\(450\) 0 0
\(451\) 13.1104 0.617343
\(452\) 0 0
\(453\) 10.0728i 0.473261i
\(454\) 0 0
\(455\) 7.25498 + 14.7665i 0.340119 + 0.692264i
\(456\) 0 0
\(457\) 12.1298i 0.567407i −0.958912 0.283703i \(-0.908437\pi\)
0.958912 0.283703i \(-0.0915631\pi\)
\(458\) 0 0
\(459\) 4.47214 0.208741
\(460\) 0 0
\(461\) 26.8431i 1.25021i 0.780542 + 0.625103i \(0.214943\pi\)
−0.780542 + 0.625103i \(0.785057\pi\)
\(462\) 0 0
\(463\) 23.7999i 1.10608i 0.833156 + 0.553038i \(0.186532\pi\)
−0.833156 + 0.553038i \(0.813468\pi\)
\(464\) 0 0
\(465\) 2.74088 0.127105
\(466\) 0 0
\(467\) −27.3040 −1.26348 −0.631739 0.775181i \(-0.717658\pi\)
−0.631739 + 0.775181i \(0.717658\pi\)
\(468\) 0 0
\(469\) 1.90904 0.0881513
\(470\) 0 0
\(471\) 7.90904 0.364429
\(472\) 0 0
\(473\) 20.2482i 0.931015i
\(474\) 0 0
\(475\) 9.43871i 0.433078i
\(476\) 0 0
\(477\) −10.3812 −0.475321
\(478\) 0 0
\(479\) 32.0411i 1.46399i 0.681308 + 0.731997i \(0.261412\pi\)
−0.681308 + 0.731997i \(0.738588\pi\)
\(480\) 0 0
\(481\) 27.1221 13.3254i 1.23666 0.607588i
\(482\) 0 0
\(483\) 40.0663i 1.82308i
\(484\) 0 0
\(485\) 5.81394 0.263998
\(486\) 0 0
\(487\) 13.9272i 0.631102i −0.948909 0.315551i \(-0.897811\pi\)
0.948909 0.315551i \(-0.102189\pi\)
\(488\) 0 0
\(489\) 3.86941i 0.174981i
\(490\) 0 0
\(491\) 28.4302 1.28304 0.641518 0.767108i \(-0.278305\pi\)
0.641518 + 0.767108i \(0.278305\pi\)
\(492\) 0 0
\(493\) 17.4818 0.787339
\(494\) 0 0
\(495\) 2.52580 0.113526
\(496\) 0 0
\(497\) −16.4680 −0.738691
\(498\) 0 0
\(499\) 31.9945i 1.43227i 0.697961 + 0.716135i \(0.254091\pi\)
−0.697961 + 0.716135i \(0.745909\pi\)
\(500\) 0 0
\(501\) 24.8239i 1.10905i
\(502\) 0 0
\(503\) −22.2441 −0.991816 −0.495908 0.868375i \(-0.665165\pi\)
−0.495908 + 0.868375i \(0.665165\pi\)
\(504\) 0 0
\(505\) 6.09096i 0.271044i
\(506\) 0 0
\(507\) −7.94427 + 10.2902i −0.352818 + 0.457005i
\(508\) 0 0
\(509\) 1.63005i 0.0722506i −0.999347 0.0361253i \(-0.988498\pi\)
0.999347 0.0361253i \(-0.0115015\pi\)
\(510\) 0 0
\(511\) −58.6509 −2.59456
\(512\) 0 0
\(513\) 2.30838i 0.101917i
\(514\) 0 0
\(515\) 0.332185i 0.0146378i
\(516\) 0 0
\(517\) −27.2503 −1.19847
\(518\) 0 0
\(519\) −16.9228 −0.742828
\(520\) 0 0
\(521\) 5.93051 0.259820 0.129910 0.991526i \(-0.458531\pi\)
0.129910 + 0.991526i \(0.458531\pi\)
\(522\) 0 0
\(523\) 31.2881 1.36814 0.684068 0.729419i \(-0.260209\pi\)
0.684068 + 0.729419i \(0.260209\pi\)
\(524\) 0 0
\(525\) 19.5470i 0.853101i
\(526\) 0 0
\(527\) 12.8416i 0.559390i
\(528\) 0 0
\(529\) 47.2441 2.05409
\(530\) 0 0
\(531\) 4.55518i 0.197678i
\(532\) 0 0
\(533\) −16.0332 + 7.87732i −0.694473 + 0.341205i
\(534\) 0 0
\(535\) 1.92954i 0.0834211i
\(536\) 0 0
\(537\) 16.1993 0.699049
\(538\) 0 0
\(539\) 41.9501i 1.80692i
\(540\) 0 0
\(541\) 28.5109i 1.22578i 0.790168 + 0.612891i \(0.209993\pi\)
−0.790168 + 0.612891i \(0.790007\pi\)
\(542\) 0 0
\(543\) 7.90904 0.339409
\(544\) 0 0
\(545\) −8.43017 −0.361109
\(546\) 0 0
\(547\) 18.2366 0.779739 0.389869 0.920870i \(-0.372520\pi\)
0.389869 + 0.920870i \(0.372520\pi\)
\(548\) 0 0
\(549\) 14.0332 0.598921
\(550\) 0 0
\(551\) 9.02354i 0.384416i
\(552\) 0 0
\(553\) 61.0106i 2.59443i
\(554\) 0 0
\(555\) 8.00000 0.339581
\(556\) 0 0
\(557\) 29.5350i 1.25144i 0.780049 + 0.625718i \(0.215194\pi\)
−0.780049 + 0.625718i \(0.784806\pi\)
\(558\) 0 0
\(559\) 12.1661 + 24.7624i 0.514571 + 1.04734i
\(560\) 0 0
\(561\) 11.8339i 0.499628i
\(562\) 0 0
\(563\) −38.7409 −1.63273 −0.816367 0.577534i \(-0.804015\pi\)
−0.816367 + 0.577534i \(0.804015\pi\)
\(564\) 0 0
\(565\) 10.3392i 0.434974i
\(566\) 0 0
\(567\) 4.78051i 0.200763i
\(568\) 0 0
\(569\) −0.584569 −0.0245064 −0.0122532 0.999925i \(-0.503900\pi\)
−0.0122532 + 0.999925i \(0.503900\pi\)
\(570\) 0 0
\(571\) −8.28924 −0.346894 −0.173447 0.984843i \(-0.555491\pi\)
−0.173447 + 0.984843i \(0.555491\pi\)
\(572\) 0 0
\(573\) 22.5590 0.942414
\(574\) 0 0
\(575\) −34.2697 −1.42915
\(576\) 0 0
\(577\) 0.696025i 0.0289759i −0.999895 0.0144879i \(-0.995388\pi\)
0.999895 0.0144879i \(-0.00461182\pi\)
\(578\) 0 0
\(579\) 19.1221i 0.794685i
\(580\) 0 0
\(581\) −3.52373 −0.146189
\(582\) 0 0
\(583\) 27.4701i 1.13769i
\(584\) 0 0
\(585\) −3.08889 + 1.51762i −0.127710 + 0.0627457i
\(586\) 0 0
\(587\) 2.62565i 0.108372i −0.998531 0.0541860i \(-0.982744\pi\)
0.998531 0.0541860i \(-0.0172564\pi\)
\(588\) 0 0
\(589\) 6.62845 0.273120
\(590\) 0 0
\(591\) 3.53909i 0.145579i
\(592\) 0 0
\(593\) 18.8001i 0.772028i 0.922493 + 0.386014i \(0.126148\pi\)
−0.922493 + 0.386014i \(0.873852\pi\)
\(594\) 0 0
\(595\) 20.4068 0.836597
\(596\) 0 0
\(597\) 6.58457 0.269488
\(598\) 0 0
\(599\) −22.5416 −0.921026 −0.460513 0.887653i \(-0.652334\pi\)
−0.460513 + 0.887653i \(0.652334\pi\)
\(600\) 0 0
\(601\) 40.8865 1.66779 0.833897 0.551920i \(-0.186105\pi\)
0.833897 + 0.551920i \(0.186105\pi\)
\(602\) 0 0
\(603\) 0.399338i 0.0162623i
\(604\) 0 0
\(605\) 3.81611i 0.155147i
\(606\) 0 0
\(607\) 6.88964 0.279642 0.139821 0.990177i \(-0.455347\pi\)
0.139821 + 0.990177i \(0.455347\pi\)
\(608\) 0 0
\(609\) 18.6872i 0.757244i
\(610\) 0 0
\(611\) 33.3254 16.3733i 1.34820 0.662391i
\(612\) 0 0
\(613\) 2.31071i 0.0933288i −0.998911 0.0466644i \(-0.985141\pi\)
0.998911 0.0466644i \(-0.0148591\pi\)
\(614\) 0 0
\(615\) −4.72919 −0.190699
\(616\) 0 0
\(617\) 4.41703i 0.177823i 0.996040 + 0.0889115i \(0.0283388\pi\)
−0.996040 + 0.0889115i \(0.971661\pi\)
\(618\) 0 0
\(619\) 12.9798i 0.521701i 0.965379 + 0.260850i \(0.0840030\pi\)
−0.965379 + 0.260850i \(0.915997\pi\)
\(620\) 0 0
\(621\) −8.38118 −0.336325
\(622\) 0 0
\(623\) −56.4475 −2.26152
\(624\) 0 0
\(625\) 12.1635 0.486540
\(626\) 0 0
\(627\) 6.10830 0.243942
\(628\) 0 0
\(629\) 37.4818i 1.49450i
\(630\) 0 0
\(631\) 1.17147i 0.0466356i 0.999728 + 0.0233178i \(0.00742295\pi\)
−0.999728 + 0.0233178i \(0.992577\pi\)
\(632\) 0 0
\(633\) −10.1778 −0.404531
\(634\) 0 0
\(635\) 18.4260i 0.731215i
\(636\) 0 0
\(637\) −25.2056 51.3024i −0.998682 2.03267i
\(638\) 0 0
\(639\) 3.44482i 0.136275i
\(640\) 0 0
\(641\) −18.8318 −0.743813 −0.371906 0.928270i \(-0.621296\pi\)
−0.371906 + 0.928270i \(0.621296\pi\)
\(642\) 0 0
\(643\) 26.7590i 1.05527i 0.849470 + 0.527637i \(0.176922\pi\)
−0.849470 + 0.527637i \(0.823078\pi\)
\(644\) 0 0
\(645\) 7.30398i 0.287594i
\(646\) 0 0
\(647\) 9.45838 0.371847 0.185924 0.982564i \(-0.440472\pi\)
0.185924 + 0.982564i \(0.440472\pi\)
\(648\) 0 0
\(649\) −12.0537 −0.473148
\(650\) 0 0
\(651\) −13.7271 −0.538008
\(652\) 0 0
\(653\) 33.0782 1.29445 0.647225 0.762299i \(-0.275930\pi\)
0.647225 + 0.762299i \(0.275930\pi\)
\(654\) 0 0
\(655\) 0.537486i 0.0210013i
\(656\) 0 0
\(657\) 12.2687i 0.478649i
\(658\) 0 0
\(659\) −0.719406 −0.0280241 −0.0140120 0.999902i \(-0.504460\pi\)
−0.0140120 + 0.999902i \(0.504460\pi\)
\(660\) 0 0
\(661\) 28.8543i 1.12230i 0.827714 + 0.561151i \(0.189641\pi\)
−0.827714 + 0.561151i \(0.810359\pi\)
\(662\) 0 0
\(663\) 7.11036 + 14.4721i 0.276144 + 0.562051i
\(664\) 0 0
\(665\) 10.5333i 0.408466i
\(666\) 0 0
\(667\) −32.7624 −1.26856
\(668\) 0 0
\(669\) 8.51177i 0.329084i
\(670\) 0 0
\(671\) 37.1337i 1.43353i
\(672\) 0 0
\(673\) −20.1339 −0.776105 −0.388053 0.921637i \(-0.626852\pi\)
−0.388053 + 0.921637i \(0.626852\pi\)
\(674\) 0 0
\(675\) 4.08889 0.157382
\(676\) 0 0
\(677\) −27.8396 −1.06996 −0.534980 0.844864i \(-0.679681\pi\)
−0.534980 + 0.844864i \(0.679681\pi\)
\(678\) 0 0
\(679\) −29.1179 −1.11744
\(680\) 0 0
\(681\) 19.7565i 0.757071i
\(682\) 0 0
\(683\) 20.6578i 0.790450i 0.918584 + 0.395225i \(0.129333\pi\)
−0.918584 + 0.395225i \(0.870667\pi\)
\(684\) 0 0
\(685\) −13.5232 −0.516695
\(686\) 0 0
\(687\) 3.41641i 0.130344i
\(688\) 0 0
\(689\) −16.5053 33.5942i −0.628802 1.27984i
\(690\) 0 0
\(691\) 43.1892i 1.64299i 0.570212 + 0.821497i \(0.306861\pi\)
−0.570212 + 0.821497i \(0.693139\pi\)
\(692\) 0 0
\(693\) −12.6499 −0.480531
\(694\) 0 0
\(695\) 1.05986i 0.0402030i
\(696\) 0 0
\(697\) 22.1573i 0.839267i
\(698\) 0 0
\(699\) 12.5846 0.475992
\(700\) 0 0
\(701\) 22.4936 0.849572 0.424786 0.905294i \(-0.360349\pi\)
0.424786 + 0.905294i \(0.360349\pi\)
\(702\) 0 0
\(703\) 19.3469 0.729683
\(704\) 0 0
\(705\) 9.82977 0.370211
\(706\) 0 0
\(707\) 30.5053i 1.14727i
\(708\) 0 0
\(709\) 14.9433i 0.561207i −0.959824 0.280604i \(-0.909465\pi\)
0.959824 0.280604i \(-0.0905346\pi\)
\(710\) 0 0
\(711\) −12.7624 −0.478626
\(712\) 0 0
\(713\) 24.0663i 0.901291i
\(714\) 0 0
\(715\) 4.01583 + 8.17365i 0.150183 + 0.305677i
\(716\) 0 0
\(717\) 13.7887i 0.514948i
\(718\) 0 0
\(719\) 10.2697 0.382996 0.191498 0.981493i \(-0.438665\pi\)
0.191498 + 0.981493i \(0.438665\pi\)
\(720\) 0 0
\(721\) 1.66368i 0.0619586i
\(722\) 0 0
\(723\) 3.03523i 0.112881i
\(724\) 0 0
\(725\) 15.9836 0.593618
\(726\) 0 0
\(727\) −15.5932 −0.578320 −0.289160 0.957281i \(-0.593376\pi\)
−0.289160 + 0.957281i \(0.593376\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 34.2207 1.26570
\(732\) 0 0
\(733\) 8.76551i 0.323762i 0.986810 + 0.161881i \(0.0517560\pi\)
−0.986810 + 0.161881i \(0.948244\pi\)
\(734\) 0 0
\(735\) 15.1323i 0.558163i
\(736\) 0 0
\(737\) 1.05670 0.0389242
\(738\) 0 0
\(739\) 21.7421i 0.799797i 0.916559 + 0.399898i \(0.130955\pi\)
−0.916559 + 0.399898i \(0.869045\pi\)
\(740\) 0 0
\(741\) −7.47007 + 3.67015i −0.274420 + 0.134826i
\(742\) 0 0
\(743\) 45.5070i 1.66949i −0.550637 0.834745i \(-0.685615\pi\)
0.550637 0.834745i \(-0.314385\pi\)
\(744\) 0 0
\(745\) 0.911108 0.0333804
\(746\) 0 0
\(747\) 0.737102i 0.0269692i
\(748\) 0 0
\(749\) 9.66368i 0.353103i
\(750\) 0 0
\(751\) −3.36275 −0.122708 −0.0613542 0.998116i \(-0.519542\pi\)
−0.0613542 + 0.998116i \(0.519542\pi\)
\(752\) 0 0
\(753\) −10.1778 −0.370899
\(754\) 0 0
\(755\) −9.61469 −0.349914
\(756\) 0 0
\(757\) −35.1594 −1.27789 −0.638944 0.769253i \(-0.720629\pi\)
−0.638944 + 0.769253i \(0.720629\pi\)
\(758\) 0 0
\(759\) 22.1778i 0.805003i
\(760\) 0 0
\(761\) 26.8001i 0.971504i −0.874097 0.485752i \(-0.838546\pi\)
0.874097 0.485752i \(-0.161454\pi\)
\(762\) 0 0
\(763\) 42.2207 1.52849
\(764\) 0 0
\(765\) 4.26874i 0.154337i
\(766\) 0 0
\(767\) 14.7409 7.24240i 0.532262 0.261508i
\(768\) 0 0
\(769\) 2.22073i 0.0800815i −0.999198 0.0400408i \(-0.987251\pi\)
0.999198 0.0400408i \(-0.0127488\pi\)
\(770\) 0 0
\(771\) 4.58457 0.165109
\(772\) 0 0
\(773\) 47.8947i 1.72265i −0.508054 0.861326i \(-0.669635\pi\)
0.508054 0.861326i \(-0.330365\pi\)
\(774\) 0 0
\(775\) 11.7411i 0.421754i
\(776\) 0 0
\(777\) −40.0663 −1.43737
\(778\) 0 0
\(779\) −11.4369 −0.409770
\(780\) 0 0
\(781\) −9.11548 −0.326177
\(782\) 0 0
\(783\) 3.90904 0.139698
\(784\) 0 0
\(785\) 7.54934i 0.269447i
\(786\) 0 0
\(787\) 9.49387i 0.338420i 0.985580 + 0.169210i \(0.0541216\pi\)
−0.985580 + 0.169210i \(0.945878\pi\)
\(788\) 0 0
\(789\) 10.5846 0.376821
\(790\) 0 0
\(791\) 51.7818i 1.84115i
\(792\) 0 0
\(793\) 22.3117 + 45.4123i 0.792311 + 1.61264i
\(794\) 0 0
\(795\) 9.90904i 0.351437i
\(796\) 0 0
\(797\) −8.38020 −0.296842 −0.148421 0.988924i \(-0.547419\pi\)
−0.148421 + 0.988924i \(0.547419\pi\)
\(798\) 0 0
\(799\) 46.0546i 1.62930i
\(800\) 0 0
\(801\) 11.8078i 0.417209i
\(802\) 0 0
\(803\) −32.4648 −1.14566
\(804\) 0 0
\(805\) −38.2441 −1.34793
\(806\) 0 0
\(807\) −27.0311 −0.951540
\(808\) 0 0
\(809\) 11.7098 0.411694 0.205847 0.978584i \(-0.434005\pi\)
0.205847 + 0.978584i \(0.434005\pi\)
\(810\) 0 0
\(811\) 41.8009i 1.46783i −0.679242 0.733914i \(-0.737692\pi\)
0.679242 0.733914i \(-0.262308\pi\)
\(812\) 0 0
\(813\) 5.54287i 0.194397i
\(814\) 0 0
\(815\) 3.69342 0.129375
\(816\) 0 0
\(817\) 17.6637i 0.617974i
\(818\) 0 0
\(819\) 15.4701 7.60066i 0.540568 0.265589i
\(820\) 0 0
\(821\) 49.5788i 1.73031i 0.501502 + 0.865157i \(0.332781\pi\)
−0.501502 + 0.865157i \(0.667219\pi\)
\(822\) 0 0
\(823\) −17.4742 −0.609112 −0.304556 0.952494i \(-0.598508\pi\)
−0.304556 + 0.952494i \(0.598508\pi\)
\(824\) 0 0
\(825\) 10.8198i 0.376697i
\(826\) 0 0
\(827\) 29.0722i 1.01094i −0.862845 0.505469i \(-0.831319\pi\)
0.862845 0.505469i \(-0.168681\pi\)
\(828\) 0 0
\(829\) 0.981572 0.0340914 0.0170457 0.999855i \(-0.494574\pi\)
0.0170457 + 0.999855i \(0.494574\pi\)
\(830\) 0 0
\(831\) 3.12619 0.108446
\(832\) 0 0
\(833\) −70.8982 −2.45648
\(834\) 0 0
\(835\) −23.6949 −0.819997
\(836\) 0 0
\(837\) 2.87147i 0.0992527i
\(838\) 0 0
\(839\) 49.2019i 1.69864i 0.527879 + 0.849320i \(0.322988\pi\)
−0.527879 + 0.849320i \(0.677012\pi\)
\(840\) 0 0
\(841\) −13.7194 −0.473083
\(842\) 0 0
\(843\) 11.1323i 0.383417i
\(844\) 0 0
\(845\) −9.82222 7.58297i −0.337895 0.260862i
\(846\) 0 0
\(847\) 19.1122i 0.656702i
\(848\) 0 0
\(849\) −28.0663 −0.963234
\(850\) 0 0
\(851\) 70.2441i 2.40794i
\(852\) 0 0
\(853\) 7.68515i 0.263135i 0.991307 + 0.131567i \(0.0420009\pi\)
−0.991307 + 0.131567i \(0.957999\pi\)
\(854\) 0 0
\(855\) −2.20339 −0.0753544
\(856\) 0 0
\(857\) −3.16914 −0.108256 −0.0541278 0.998534i \(-0.517238\pi\)
−0.0541278 + 0.998534i \(0.517238\pi\)
\(858\) 0 0
\(859\) −35.3040 −1.20456 −0.602278 0.798286i \(-0.705740\pi\)
−0.602278 + 0.798286i \(0.705740\pi\)
\(860\) 0 0
\(861\) 23.6852 0.807188
\(862\) 0 0
\(863\) 13.0058i 0.442724i 0.975192 + 0.221362i \(0.0710503\pi\)
−0.975192 + 0.221362i \(0.928950\pi\)
\(864\) 0 0
\(865\) 16.1532i 0.549224i
\(866\) 0 0
\(867\) 3.00000 0.101885
\(868\) 0 0
\(869\) 33.7710i 1.14560i
\(870\) 0 0
\(871\) −1.29228 + 0.634918i −0.0437874 + 0.0215134i
\(872\) 0 0
\(873\) 6.09096i 0.206148i
\(874\) 0 0
\(875\) 41.4735 1.40206
\(876\) 0 0
\(877\) 42.4946i 1.43494i 0.696589 + 0.717470i \(0.254700\pi\)
−0.696589 + 0.717470i \(0.745300\pi\)
\(878\) 0 0
\(879\) 28.0766i 0.946999i
\(880\) 0 0
\(881\) 3.82222 0.128774 0.0643869 0.997925i \(-0.479491\pi\)
0.0643869 + 0.997925i \(0.479491\pi\)
\(882\) 0 0
\(883\) −3.23765 −0.108956 −0.0544778 0.998515i \(-0.517349\pi\)
−0.0544778 + 0.998515i \(0.517349\pi\)
\(884\) 0 0
\(885\) 4.34801 0.146157
\(886\) 0 0
\(887\) 20.3382 0.682891 0.341445 0.939902i \(-0.389084\pi\)
0.341445 + 0.939902i \(0.389084\pi\)
\(888\) 0 0
\(889\) 92.2829i 3.09507i
\(890\) 0 0
\(891\) 2.64614i 0.0886491i
\(892\) 0 0
\(893\) 23.7720 0.795499
\(894\) 0 0
\(895\) 15.4625i 0.516855i
\(896\) 0 0
\(897\) −13.3254 27.1221i −0.444924 0.905579i
\(898\) 0 0
\(899\) 11.2247i 0.374365i
\(900\) 0 0
\(901\) −46.4260 −1.54668
\(902\) 0 0
\(903\) 36.5804i 1.21732i
\(904\) 0 0
\(905\) 7.54934i 0.250948i
\(906\) 0 0
\(907\) 6.13484 0.203704 0.101852 0.994800i \(-0.467523\pi\)
0.101852 + 0.994800i \(0.467523\pi\)
\(908\) 0 0
\(909\) 6.38118 0.211650
\(910\) 0 0
\(911\) −44.1583 −1.46303 −0.731514 0.681826i \(-0.761186\pi\)
−0.731514 + 0.681826i \(0.761186\pi\)
\(912\) 0 0
\(913\) −1.95048 −0.0645514
\(914\) 0 0
\(915\) 13.3949i 0.442823i
\(916\) 0 0
\(917\) 2.69189i 0.0888940i
\(918\) 0 0
\(919\) 53.8885 1.77762 0.888810 0.458277i \(-0.151533\pi\)
0.888810 + 0.458277i \(0.151533\pi\)
\(920\) 0 0
\(921\) 19.7463i 0.650661i
\(922\) 0 0
\(923\) 11.1477 5.47700i 0.366930 0.180278i
\(924\) 0 0
\(925\) 34.2697i 1.12678i
\(926\) 0 0
\(927\) −0.348012 −0.0114302
\(928\) 0 0
\(929\) 33.5350i 1.10025i 0.835084 + 0.550123i \(0.185419\pi\)
−0.835084 + 0.550123i \(0.814581\pi\)
\(930\) 0 0
\(931\) 36.5954i 1.19937i
\(932\) 0 0
\(933\) −13.7966 −0.451681
\(934\) 0 0
\(935\) 11.2957 0.369409
\(936\) 0 0
\(937\) 52.0720 1.70112 0.850559 0.525880i \(-0.176264\pi\)
0.850559 + 0.525880i \(0.176264\pi\)
\(938\) 0 0
\(939\) −18.5268 −0.604598
\(940\) 0 0
\(941\) 23.5830i 0.768783i 0.923170 + 0.384391i \(0.125589\pi\)
−0.923170 + 0.384391i \(0.874411\pi\)
\(942\) 0 0
\(943\) 41.5247i 1.35223i
\(944\) 0 0
\(945\) 4.56310 0.148438
\(946\) 0 0
\(947\) 49.2746i 1.60121i −0.599193 0.800604i \(-0.704512\pi\)
0.599193 0.800604i \(-0.295488\pi\)
\(948\) 0 0
\(949\) 39.7025 19.5064i 1.28880 0.633204i
\(950\) 0 0
\(951\) 17.0208i 0.551939i
\(952\) 0 0
\(953\) 50.1327 1.62396 0.811978 0.583688i \(-0.198391\pi\)
0.811978 + 0.583688i \(0.198391\pi\)
\(954\) 0 0
\(955\) 21.5330i 0.696791i
\(956\) 0 0
\(957\) 10.3439i 0.334370i
\(958\) 0 0
\(959\) 67.7281 2.18705
\(960\) 0 0
\(961\) 22.7546 0.734021
\(962\) 0 0
\(963\) −2.02147 −0.0651410
\(964\) 0 0
\(965\) 18.2524 0.587565
\(966\) 0 0
\(967\) 4.55472i 0.146470i −0.997315 0.0732349i \(-0.976668\pi\)
0.997315 0.0732349i \(-0.0233323\pi\)
\(968\) 0 0
\(969\) 10.3234i 0.331635i
\(970\) 0 0
\(971\) 48.0234 1.54114 0.770572 0.637353i \(-0.219971\pi\)
0.770572 + 0.637353i \(0.219971\pi\)
\(972\) 0 0
\(973\) 5.30811i 0.170170i
\(974\) 0 0
\(975\) 6.50103 + 13.2319i 0.208200 + 0.423761i
\(976\) 0 0
\(977\) 22.9820i 0.735261i −0.929972 0.367630i \(-0.880169\pi\)
0.929972 0.367630i \(-0.119831\pi\)
\(978\) 0 0
\(979\) −31.2452 −0.998601
\(980\) 0 0
\(981\) 8.83184i 0.281979i
\(982\) 0 0
\(983\) 9.63843i 0.307418i 0.988116 + 0.153709i \(0.0491219\pi\)
−0.988116 + 0.153709i \(0.950878\pi\)
\(984\) 0 0
\(985\) −3.37813 −0.107636
\(986\) 0 0
\(987\) −49.2304 −1.56702
\(988\) 0 0
\(989\) −64.1327 −2.03930
\(990\) 0 0
\(991\) −10.2366 −0.325175 −0.162587 0.986694i \(-0.551984\pi\)
−0.162587 + 0.986694i \(0.551984\pi\)
\(992\) 0 0
\(993\) 7.27315i 0.230806i
\(994\) 0 0
\(995\) 6.28510i 0.199251i
\(996\) 0 0
\(997\) 30.3556 0.961370 0.480685 0.876893i \(-0.340388\pi\)
0.480685 + 0.876893i \(0.340388\pi\)
\(998\) 0 0
\(999\) 8.38118i 0.265169i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.c.r.961.5 8
4.3 odd 2 2496.2.c.q.961.5 8
8.3 odd 2 1248.2.c.d.961.4 yes 8
8.5 even 2 1248.2.c.c.961.4 8
13.12 even 2 inner 2496.2.c.r.961.4 8
24.5 odd 2 3744.2.c.p.3457.5 8
24.11 even 2 3744.2.c.o.3457.5 8
52.51 odd 2 2496.2.c.q.961.4 8
104.51 odd 2 1248.2.c.d.961.5 yes 8
104.77 even 2 1248.2.c.c.961.5 yes 8
312.77 odd 2 3744.2.c.p.3457.4 8
312.155 even 2 3744.2.c.o.3457.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.c.c.961.4 8 8.5 even 2
1248.2.c.c.961.5 yes 8 104.77 even 2
1248.2.c.d.961.4 yes 8 8.3 odd 2
1248.2.c.d.961.5 yes 8 104.51 odd 2
2496.2.c.q.961.4 8 52.51 odd 2
2496.2.c.q.961.5 8 4.3 odd 2
2496.2.c.r.961.4 8 13.12 even 2 inner
2496.2.c.r.961.5 8 1.1 even 1 trivial
3744.2.c.o.3457.4 8 312.155 even 2
3744.2.c.o.3457.5 8 24.11 even 2
3744.2.c.p.3457.4 8 312.77 odd 2
3744.2.c.p.3457.5 8 24.5 odd 2