Properties

Label 2496.2.c.k.961.2
Level $2496$
Weight $2$
Character 2496.961
Analytic conductor $19.931$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.2
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2496.961
Dual form 2496.2.c.k.961.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.46410i q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +3.46410i q^{7} +1.00000 q^{9} -3.46410i q^{11} +(1.00000 + 3.46410i) q^{13} -6.00000 q^{17} +3.46410i q^{19} +3.46410i q^{21} +5.00000 q^{25} +1.00000 q^{27} -6.00000 q^{29} +3.46410i q^{31} -3.46410i q^{33} +6.92820i q^{37} +(1.00000 + 3.46410i) q^{39} +6.92820i q^{41} +4.00000 q^{43} -3.46410i q^{47} -5.00000 q^{49} -6.00000 q^{51} -6.00000 q^{53} +3.46410i q^{57} +10.3923i q^{59} +2.00000 q^{61} +3.46410i q^{63} -10.3923i q^{67} -3.46410i q^{71} +5.00000 q^{75} +12.0000 q^{77} -8.00000 q^{79} +1.00000 q^{81} -3.46410i q^{83} -6.00000 q^{87} +6.92820i q^{89} +(-12.0000 + 3.46410i) q^{91} +3.46410i q^{93} +13.8564i q^{97} -3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 2 q^{9} + 2 q^{13} - 12 q^{17} + 10 q^{25} + 2 q^{27} - 12 q^{29} + 2 q^{39} + 8 q^{43} - 10 q^{49} - 12 q^{51} - 12 q^{53} + 4 q^{61} + 10 q^{75} + 24 q^{77} - 16 q^{79} + 2 q^{81} - 12 q^{87} - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 3.46410i 1.30931i 0.755929 + 0.654654i \(0.227186\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.46410i 1.04447i −0.852803 0.522233i \(-0.825099\pi\)
0.852803 0.522233i \(-0.174901\pi\)
\(12\) 0 0
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 3.46410i 0.794719i 0.917663 + 0.397360i \(0.130073\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 3.46410i 0.755929i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 0 0
\(33\) 3.46410i 0.603023i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.92820i 1.13899i 0.821995 + 0.569495i \(0.192861\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 1.00000 + 3.46410i 0.160128 + 0.554700i
\(40\) 0 0
\(41\) 6.92820i 1.08200i 0.841021 + 0.541002i \(0.181955\pi\)
−0.841021 + 0.541002i \(0.818045\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.46410i 0.505291i −0.967559 0.252646i \(-0.918699\pi\)
0.967559 0.252646i \(-0.0813007\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.46410i 0.458831i
\(58\) 0 0
\(59\) 10.3923i 1.35296i 0.736460 + 0.676481i \(0.236496\pi\)
−0.736460 + 0.676481i \(0.763504\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 3.46410i 0.436436i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.3923i 1.26962i −0.772667 0.634811i \(-0.781078\pi\)
0.772667 0.634811i \(-0.218922\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.46410i 0.411113i −0.978645 0.205557i \(-0.934100\pi\)
0.978645 0.205557i \(-0.0659005\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 5.00000 0.577350
\(76\) 0 0
\(77\) 12.0000 1.36753
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 3.46410i 0.380235i −0.981761 0.190117i \(-0.939113\pi\)
0.981761 0.190117i \(-0.0608868\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) 6.92820i 0.734388i 0.930144 + 0.367194i \(0.119682\pi\)
−0.930144 + 0.367194i \(0.880318\pi\)
\(90\) 0 0
\(91\) −12.0000 + 3.46410i −1.25794 + 0.363137i
\(92\) 0 0
\(93\) 3.46410i 0.359211i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.8564i 1.40690i 0.710742 + 0.703452i \(0.248359\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 6.92820i 0.663602i 0.943349 + 0.331801i \(0.107656\pi\)
−0.943349 + 0.331801i \(0.892344\pi\)
\(110\) 0 0
\(111\) 6.92820i 0.657596i
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000 + 3.46410i 0.0924500 + 0.320256i
\(118\) 0 0
\(119\) 20.7846i 1.90532i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 6.92820i 0.624695i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.7846i 1.77575i 0.460086 + 0.887875i \(0.347819\pi\)
−0.460086 + 0.887875i \(0.652181\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 3.46410i 0.291730i
\(142\) 0 0
\(143\) 12.0000 3.46410i 1.00349 0.289683i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.00000 −0.412393
\(148\) 0 0
\(149\) 13.8564i 1.13516i 0.823318 + 0.567581i \(0.192120\pi\)
−0.823318 + 0.567581i \(0.807880\pi\)
\(150\) 0 0
\(151\) 10.3923i 0.845714i −0.906196 0.422857i \(-0.861027\pi\)
0.906196 0.422857i \(-0.138973\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.46410i 0.271329i 0.990755 + 0.135665i \(0.0433170\pi\)
−0.990755 + 0.135665i \(0.956683\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.3205i 1.34030i −0.742225 0.670151i \(-0.766230\pi\)
0.742225 0.670151i \(-0.233770\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 3.46410i 0.264906i
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 17.3205i 1.30931i
\(176\) 0 0
\(177\) 10.3923i 0.781133i
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 20.7846i 1.51992i
\(188\) 0 0
\(189\) 3.46410i 0.251976i
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 10.3923i 0.733017i
\(202\) 0 0
\(203\) 20.7846i 1.45879i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 3.46410i 0.237356i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12.0000 −0.814613
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 20.7846i −0.403604 1.39812i
\(222\) 0 0
\(223\) 3.46410i 0.231973i 0.993251 + 0.115987i \(0.0370030\pi\)
−0.993251 + 0.115987i \(0.962997\pi\)
\(224\) 0 0
\(225\) 5.00000 0.333333
\(226\) 0 0
\(227\) 17.3205i 1.14960i −0.818293 0.574801i \(-0.805079\pi\)
0.818293 0.574801i \(-0.194921\pi\)
\(228\) 0 0
\(229\) 6.92820i 0.457829i −0.973447 0.228914i \(-0.926482\pi\)
0.973447 0.228914i \(-0.0735176\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 0 0
\(241\) 13.8564i 0.892570i −0.894891 0.446285i \(-0.852747\pi\)
0.894891 0.446285i \(-0.147253\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.0000 + 3.46410i −0.763542 + 0.220416i
\(248\) 0 0
\(249\) 3.46410i 0.219529i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −24.0000 −1.49129
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6.92820i 0.423999i
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 10.3923i 0.631288i −0.948878 0.315644i \(-0.897780\pi\)
0.948878 0.315644i \(-0.102220\pi\)
\(272\) 0 0
\(273\) −12.0000 + 3.46410i −0.726273 + 0.209657i
\(274\) 0 0
\(275\) 17.3205i 1.04447i
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 3.46410i 0.207390i
\(280\) 0 0
\(281\) 6.92820i 0.413302i −0.978415 0.206651i \(-0.933744\pi\)
0.978415 0.206651i \(-0.0662565\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 13.8564i 0.812277i
\(292\) 0 0
\(293\) 27.7128i 1.61900i 0.587120 + 0.809500i \(0.300262\pi\)
−0.587120 + 0.809500i \(0.699738\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.46410i 0.201008i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 13.8564i 0.798670i
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10.3923i 0.593120i −0.955014 0.296560i \(-0.904160\pi\)
0.955014 0.296560i \(-0.0958395\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.8564i 0.778253i 0.921184 + 0.389127i \(0.127223\pi\)
−0.921184 + 0.389127i \(0.872777\pi\)
\(318\) 0 0
\(319\) 20.7846i 1.16371i
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 20.7846i 1.15649i
\(324\) 0 0
\(325\) 5.00000 + 17.3205i 0.277350 + 0.960769i
\(326\) 0 0
\(327\) 6.92820i 0.383131i
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) 3.46410i 0.190404i 0.995458 + 0.0952021i \(0.0303497\pi\)
−0.995458 + 0.0952021i \(0.969650\pi\)
\(332\) 0 0
\(333\) 6.92820i 0.379663i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −36.0000 −1.93258 −0.966291 0.257454i \(-0.917117\pi\)
−0.966291 + 0.257454i \(0.917117\pi\)
\(348\) 0 0
\(349\) 6.92820i 0.370858i −0.982658 0.185429i \(-0.940632\pi\)
0.982658 0.185429i \(-0.0593675\pi\)
\(350\) 0 0
\(351\) 1.00000 + 3.46410i 0.0533761 + 0.184900i
\(352\) 0 0
\(353\) 34.6410i 1.84376i −0.387481 0.921878i \(-0.626655\pi\)
0.387481 0.921878i \(-0.373345\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 20.7846i 1.10004i
\(358\) 0 0
\(359\) 17.3205i 0.914141i −0.889430 0.457071i \(-0.848899\pi\)
0.889430 0.457071i \(-0.151101\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) 0 0
\(369\) 6.92820i 0.360668i
\(370\) 0 0
\(371\) 20.7846i 1.07908i
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.00000 20.7846i −0.309016 1.07046i
\(378\) 0 0
\(379\) 17.3205i 0.889695i 0.895606 + 0.444847i \(0.146742\pi\)
−0.895606 + 0.444847i \(0.853258\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 3.46410i 0.177007i −0.996076 0.0885037i \(-0.971792\pi\)
0.996076 0.0885037i \(-0.0282085\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 34.6410i 1.73858i −0.494300 0.869291i \(-0.664576\pi\)
0.494300 0.869291i \(-0.335424\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) 6.92820i 0.345978i −0.984924 0.172989i \(-0.944657\pi\)
0.984924 0.172989i \(-0.0553425\pi\)
\(402\) 0 0
\(403\) −12.0000 + 3.46410i −0.597763 + 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 27.7128i 1.37031i −0.728397 0.685155i \(-0.759734\pi\)
0.728397 0.685155i \(-0.240266\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 0 0
\(413\) −36.0000 −1.77144
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 34.6410i 1.68830i −0.536107 0.844150i \(-0.680106\pi\)
0.536107 0.844150i \(-0.319894\pi\)
\(422\) 0 0
\(423\) 3.46410i 0.168430i
\(424\) 0 0
\(425\) −30.0000 −1.45521
\(426\) 0 0
\(427\) 6.92820i 0.335279i
\(428\) 0 0
\(429\) 12.0000 3.46410i 0.579365 0.167248i
\(430\) 0 0
\(431\) 24.2487i 1.16802i 0.811747 + 0.584010i \(0.198517\pi\)
−0.811747 + 0.584010i \(0.801483\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.8564i 0.655386i
\(448\) 0 0
\(449\) 6.92820i 0.326962i −0.986546 0.163481i \(-0.947728\pi\)
0.986546 0.163481i \(-0.0522723\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 10.3923i 0.488273i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.7128i 1.29635i 0.761491 + 0.648175i \(0.224468\pi\)
−0.761491 + 0.648175i \(0.775532\pi\)
\(458\) 0 0
\(459\) −6.00000 −0.280056
\(460\) 0 0
\(461\) 13.8564i 0.645357i −0.946509 0.322679i \(-0.895417\pi\)
0.946509 0.322679i \(-0.104583\pi\)
\(462\) 0 0
\(463\) 17.3205i 0.804952i 0.915430 + 0.402476i \(0.131850\pi\)
−0.915430 + 0.402476i \(0.868150\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 36.0000 1.66233
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) 0 0
\(473\) 13.8564i 0.637118i
\(474\) 0 0
\(475\) 17.3205i 0.794719i
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 10.3923i 0.474837i 0.971408 + 0.237418i \(0.0763012\pi\)
−0.971408 + 0.237418i \(0.923699\pi\)
\(480\) 0 0
\(481\) −24.0000 + 6.92820i −1.09431 + 0.315899i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 38.1051i 1.72671i −0.504599 0.863354i \(-0.668360\pi\)
0.504599 0.863354i \(-0.331640\pi\)
\(488\) 0 0
\(489\) 3.46410i 0.156652i
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) 10.3923i 0.465223i −0.972570 0.232612i \(-0.925273\pi\)
0.972570 0.232612i \(-0.0747271\pi\)
\(500\) 0 0
\(501\) 17.3205i 0.773823i
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −11.0000 + 6.92820i −0.488527 + 0.307692i
\(508\) 0 0
\(509\) 41.5692i 1.84252i −0.388943 0.921262i \(-0.627160\pi\)
0.388943 0.921262i \(-0.372840\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 3.46410i 0.152944i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 0 0
\(525\) 17.3205i 0.755929i
\(526\) 0 0
\(527\) 20.7846i 0.905392i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 10.3923i 0.450988i
\(532\) 0 0
\(533\) −24.0000 + 6.92820i −1.03956 + 0.300094i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) 17.3205i 0.746047i
\(540\) 0 0
\(541\) 6.92820i 0.297867i 0.988847 + 0.148933i \(0.0475840\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 20.7846i 0.885454i
\(552\) 0 0
\(553\) 27.7128i 1.17847i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.8564i 0.587115i 0.955941 + 0.293557i \(0.0948392\pi\)
−0.955941 + 0.293557i \(0.905161\pi\)
\(558\) 0 0
\(559\) 4.00000 + 13.8564i 0.169182 + 0.586064i
\(560\) 0 0
\(561\) 20.7846i 0.877527i
\(562\) 0 0
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.46410i 0.145479i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 20.7846i 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.3923i 0.428936i 0.976731 + 0.214468i \(0.0688018\pi\)
−0.976731 + 0.214468i \(0.931198\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.92820i 0.284507i −0.989830 0.142254i \(-0.954565\pi\)
0.989830 0.142254i \(-0.0454349\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.0000 0.654836
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 10.3923i 0.423207i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 20.7846i 0.842235i
\(610\) 0 0
\(611\) 12.0000 3.46410i 0.485468 0.140143i
\(612\) 0 0
\(613\) 20.7846i 0.839482i −0.907644 0.419741i \(-0.862121\pi\)
0.907644 0.419741i \(-0.137879\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.92820i 0.278919i 0.990228 + 0.139459i \(0.0445365\pi\)
−0.990228 + 0.139459i \(0.955464\pi\)
\(618\) 0 0
\(619\) 31.1769i 1.25311i 0.779379 + 0.626553i \(0.215535\pi\)
−0.779379 + 0.626553i \(0.784465\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −24.0000 −0.961540
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 12.0000 0.479234
\(628\) 0 0
\(629\) 41.5692i 1.65747i
\(630\) 0 0
\(631\) 38.1051i 1.51694i −0.651707 0.758470i \(-0.725947\pi\)
0.651707 0.758470i \(-0.274053\pi\)
\(632\) 0 0
\(633\) 20.0000 0.794929
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.00000 17.3205i −0.198107 0.686264i
\(638\) 0 0
\(639\) 3.46410i 0.137038i
\(640\) 0 0
\(641\) −6.00000 −0.236986 −0.118493 0.992955i \(-0.537806\pi\)
−0.118493 + 0.992955i \(0.537806\pi\)
\(642\) 0 0
\(643\) 10.3923i 0.409832i −0.978780 0.204916i \(-0.934308\pi\)
0.978780 0.204916i \(-0.0656922\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) −12.0000 −0.470317
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 20.7846i 0.808428i −0.914665 0.404214i \(-0.867545\pi\)
0.914665 0.404214i \(-0.132455\pi\)
\(662\) 0 0
\(663\) −6.00000 20.7846i −0.233021 0.807207i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 3.46410i 0.133930i
\(670\) 0 0
\(671\) 6.92820i 0.267460i
\(672\) 0 0
\(673\) −46.0000 −1.77317 −0.886585 0.462566i \(-0.846929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) −48.0000 −1.84207
\(680\) 0 0
\(681\) 17.3205i 0.663723i
\(682\) 0 0
\(683\) 31.1769i 1.19295i −0.802631 0.596476i \(-0.796567\pi\)
0.802631 0.596476i \(-0.203433\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6.92820i 0.264327i
\(688\) 0 0
\(689\) −6.00000 20.7846i −0.228582 0.791831i
\(690\) 0 0
\(691\) 45.0333i 1.71315i 0.516024 + 0.856574i \(0.327412\pi\)
−0.516024 + 0.856574i \(0.672588\pi\)
\(692\) 0 0
\(693\) 12.0000 0.455842
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 41.5692i 1.57455i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.7846i 0.781686i
\(708\) 0 0
\(709\) 6.92820i 0.260194i −0.991501 0.130097i \(-0.958471\pi\)
0.991501 0.130097i \(-0.0415289\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.3923i 0.388108i
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 27.7128i 1.03208i
\(722\) 0 0
\(723\) 13.8564i 0.515325i
\(724\) 0 0
\(725\) −30.0000 −1.11417
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 34.6410i 1.27950i 0.768585 + 0.639748i \(0.220961\pi\)
−0.768585 + 0.639748i \(0.779039\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.0000 −1.32608
\(738\) 0 0
\(739\) 38.1051i 1.40172i −0.713299 0.700860i \(-0.752800\pi\)
0.713299 0.700860i \(-0.247200\pi\)
\(740\) 0 0
\(741\) −12.0000 + 3.46410i −0.440831 + 0.127257i
\(742\) 0 0
\(743\) 3.46410i 0.127086i −0.997979 0.0635428i \(-0.979760\pi\)
0.997979 0.0635428i \(-0.0202399\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.46410i 0.126745i
\(748\) 0 0
\(749\) 41.5692i 1.51891i
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 48.4974i 1.75803i 0.476794 + 0.879015i \(0.341799\pi\)
−0.476794 + 0.879015i \(0.658201\pi\)
\(762\) 0 0
\(763\) −24.0000 −0.868858
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −36.0000 + 10.3923i −1.29988 + 0.375244i
\(768\) 0 0
\(769\) 27.7128i 0.999350i −0.866213 0.499675i \(-0.833453\pi\)
0.866213 0.499675i \(-0.166547\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) 13.8564i 0.498380i −0.968455 0.249190i \(-0.919836\pi\)
0.968455 0.249190i \(-0.0801644\pi\)
\(774\) 0 0
\(775\) 17.3205i 0.622171i
\(776\) 0 0
\(777\) −24.0000 −0.860995
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 10.3923i 0.370446i −0.982697 0.185223i \(-0.940699\pi\)
0.982697 0.185223i \(-0.0593007\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 20.7846i 0.739016i
\(792\) 0 0
\(793\) 2.00000 + 6.92820i 0.0710221 + 0.246028i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) 20.7846i 0.735307i
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0