# Properties

 Label 2496.2.a.k Level $2496$ Weight $2$ Character orbit 2496.a Self dual yes Analytic conductor $19.931$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2496,2,Mod(1,2496)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2496, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2496.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2496 = 2^{6} \cdot 3 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2496.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$19.9306603445$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 312) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} + 2 q^{5} - 4 q^{7} + q^{9}+O(q^{10})$$ q - q^3 + 2 * q^5 - 4 * q^7 + q^9 $$q - q^{3} + 2 q^{5} - 4 q^{7} + q^{9} - q^{13} - 2 q^{15} + 2 q^{17} + 8 q^{19} + 4 q^{21} - 8 q^{23} - q^{25} - q^{27} + 2 q^{29} - 4 q^{31} - 8 q^{35} + 10 q^{37} + q^{39} + 2 q^{41} - 4 q^{43} + 2 q^{45} + 12 q^{47} + 9 q^{49} - 2 q^{51} - 6 q^{53} - 8 q^{57} + 2 q^{61} - 4 q^{63} - 2 q^{65} + 8 q^{67} + 8 q^{69} + 12 q^{71} + 10 q^{73} + q^{75} + 8 q^{79} + q^{81} + 4 q^{85} - 2 q^{87} - 14 q^{89} + 4 q^{91} + 4 q^{93} + 16 q^{95} + 2 q^{97}+O(q^{100})$$ q - q^3 + 2 * q^5 - 4 * q^7 + q^9 - q^13 - 2 * q^15 + 2 * q^17 + 8 * q^19 + 4 * q^21 - 8 * q^23 - q^25 - q^27 + 2 * q^29 - 4 * q^31 - 8 * q^35 + 10 * q^37 + q^39 + 2 * q^41 - 4 * q^43 + 2 * q^45 + 12 * q^47 + 9 * q^49 - 2 * q^51 - 6 * q^53 - 8 * q^57 + 2 * q^61 - 4 * q^63 - 2 * q^65 + 8 * q^67 + 8 * q^69 + 12 * q^71 + 10 * q^73 + q^75 + 8 * q^79 + q^81 + 4 * q^85 - 2 * q^87 - 14 * q^89 + 4 * q^91 + 4 * q^93 + 16 * q^95 + 2 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 2.00000 0 −4.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.2.a.k 1
3.b odd 2 1 7488.2.a.i 1
4.b odd 2 1 2496.2.a.bb 1
8.b even 2 1 624.2.a.f 1
8.d odd 2 1 312.2.a.a 1
12.b even 2 1 7488.2.a.t 1
24.f even 2 1 936.2.a.h 1
24.h odd 2 1 1872.2.a.n 1
40.e odd 2 1 7800.2.a.n 1
104.e even 2 1 8112.2.a.bg 1
104.h odd 2 1 4056.2.a.g 1
104.m even 4 2 4056.2.c.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.a.a 1 8.d odd 2 1
624.2.a.f 1 8.b even 2 1
936.2.a.h 1 24.f even 2 1
1872.2.a.n 1 24.h odd 2 1
2496.2.a.k 1 1.a even 1 1 trivial
2496.2.a.bb 1 4.b odd 2 1
4056.2.a.g 1 104.h odd 2 1
4056.2.c.c 2 104.m even 4 2
7488.2.a.i 1 3.b odd 2 1
7488.2.a.t 1 12.b even 2 1
7800.2.a.n 1 40.e odd 2 1
8112.2.a.bg 1 104.e even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2496))$$:

 $$T_{5} - 2$$ T5 - 2 $$T_{7} + 4$$ T7 + 4 $$T_{11}$$ T11 $$T_{17} - 2$$ T17 - 2 $$T_{19} - 8$$ T19 - 8

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T - 2$$
$7$ $$T + 4$$
$11$ $$T$$
$13$ $$T + 1$$
$17$ $$T - 2$$
$19$ $$T - 8$$
$23$ $$T + 8$$
$29$ $$T - 2$$
$31$ $$T + 4$$
$37$ $$T - 10$$
$41$ $$T - 2$$
$43$ $$T + 4$$
$47$ $$T - 12$$
$53$ $$T + 6$$
$59$ $$T$$
$61$ $$T - 2$$
$67$ $$T - 8$$
$71$ $$T - 12$$
$73$ $$T - 10$$
$79$ $$T - 8$$
$83$ $$T$$
$89$ $$T + 14$$
$97$ $$T - 2$$