Properties

Label 2496.2.a.bl.1.1
Level $2496$
Weight $2$
Character 2496.1
Self dual yes
Analytic conductor $19.931$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(1,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,-2,0,0,0,3,0,4,0,-3,0,-2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -4.34017 q^{5} +1.07838 q^{7} +1.00000 q^{9} -3.41855 q^{11} -1.00000 q^{13} -4.34017 q^{15} +2.00000 q^{17} +1.07838 q^{19} +1.07838 q^{21} -2.15676 q^{23} +13.8371 q^{25} +1.00000 q^{27} -2.00000 q^{29} -5.75872 q^{31} -3.41855 q^{33} -4.68035 q^{35} +6.68035 q^{37} -1.00000 q^{39} -0.340173 q^{41} +10.8371 q^{43} -4.34017 q^{45} +7.41855 q^{47} -5.83710 q^{49} +2.00000 q^{51} +2.68035 q^{53} +14.8371 q^{55} +1.07838 q^{57} +9.26180 q^{59} +4.52359 q^{61} +1.07838 q^{63} +4.34017 q^{65} -15.9155 q^{67} -2.15676 q^{69} +5.26180 q^{71} +14.6803 q^{73} +13.8371 q^{75} -3.68649 q^{77} +12.0000 q^{79} +1.00000 q^{81} -1.26180 q^{83} -8.68035 q^{85} -2.00000 q^{87} -13.0205 q^{89} -1.07838 q^{91} -5.75872 q^{93} -4.68035 q^{95} +6.68035 q^{97} -3.41855 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 2 q^{5} + 3 q^{9} + 4 q^{11} - 3 q^{13} - 2 q^{15} + 6 q^{17} + 13 q^{25} + 3 q^{27} - 6 q^{29} + 8 q^{31} + 4 q^{33} + 8 q^{35} - 2 q^{37} - 3 q^{39} + 10 q^{41} + 4 q^{43} - 2 q^{45} + 8 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −4.34017 −1.94098 −0.970492 0.241133i \(-0.922481\pi\)
−0.970492 + 0.241133i \(0.922481\pi\)
\(6\) 0 0
\(7\) 1.07838 0.407588 0.203794 0.979014i \(-0.434673\pi\)
0.203794 + 0.979014i \(0.434673\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.41855 −1.03073 −0.515366 0.856970i \(-0.672344\pi\)
−0.515366 + 0.856970i \(0.672344\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −4.34017 −1.12063
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 1.07838 0.247397 0.123698 0.992320i \(-0.460524\pi\)
0.123698 + 0.992320i \(0.460524\pi\)
\(20\) 0 0
\(21\) 1.07838 0.235321
\(22\) 0 0
\(23\) −2.15676 −0.449715 −0.224857 0.974392i \(-0.572192\pi\)
−0.224857 + 0.974392i \(0.572192\pi\)
\(24\) 0 0
\(25\) 13.8371 2.76742
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −5.75872 −1.03430 −0.517149 0.855896i \(-0.673007\pi\)
−0.517149 + 0.855896i \(0.673007\pi\)
\(32\) 0 0
\(33\) −3.41855 −0.595093
\(34\) 0 0
\(35\) −4.68035 −0.791123
\(36\) 0 0
\(37\) 6.68035 1.09824 0.549121 0.835743i \(-0.314963\pi\)
0.549121 + 0.835743i \(0.314963\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −0.340173 −0.0531261 −0.0265630 0.999647i \(-0.508456\pi\)
−0.0265630 + 0.999647i \(0.508456\pi\)
\(42\) 0 0
\(43\) 10.8371 1.65264 0.826321 0.563199i \(-0.190430\pi\)
0.826321 + 0.563199i \(0.190430\pi\)
\(44\) 0 0
\(45\) −4.34017 −0.646995
\(46\) 0 0
\(47\) 7.41855 1.08211 0.541053 0.840988i \(-0.318026\pi\)
0.541053 + 0.840988i \(0.318026\pi\)
\(48\) 0 0
\(49\) −5.83710 −0.833872
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) 2.68035 0.368174 0.184087 0.982910i \(-0.441067\pi\)
0.184087 + 0.982910i \(0.441067\pi\)
\(54\) 0 0
\(55\) 14.8371 2.00063
\(56\) 0 0
\(57\) 1.07838 0.142835
\(58\) 0 0
\(59\) 9.26180 1.20578 0.602892 0.797823i \(-0.294015\pi\)
0.602892 + 0.797823i \(0.294015\pi\)
\(60\) 0 0
\(61\) 4.52359 0.579186 0.289593 0.957150i \(-0.406480\pi\)
0.289593 + 0.957150i \(0.406480\pi\)
\(62\) 0 0
\(63\) 1.07838 0.135863
\(64\) 0 0
\(65\) 4.34017 0.538332
\(66\) 0 0
\(67\) −15.9155 −1.94439 −0.972193 0.234183i \(-0.924759\pi\)
−0.972193 + 0.234183i \(0.924759\pi\)
\(68\) 0 0
\(69\) −2.15676 −0.259643
\(70\) 0 0
\(71\) 5.26180 0.624460 0.312230 0.950007i \(-0.398924\pi\)
0.312230 + 0.950007i \(0.398924\pi\)
\(72\) 0 0
\(73\) 14.6803 1.71820 0.859102 0.511804i \(-0.171023\pi\)
0.859102 + 0.511804i \(0.171023\pi\)
\(74\) 0 0
\(75\) 13.8371 1.59777
\(76\) 0 0
\(77\) −3.68649 −0.420114
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −1.26180 −0.138500 −0.0692500 0.997599i \(-0.522061\pi\)
−0.0692500 + 0.997599i \(0.522061\pi\)
\(84\) 0 0
\(85\) −8.68035 −0.941516
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −13.0205 −1.38017 −0.690086 0.723727i \(-0.742427\pi\)
−0.690086 + 0.723727i \(0.742427\pi\)
\(90\) 0 0
\(91\) −1.07838 −0.113045
\(92\) 0 0
\(93\) −5.75872 −0.597152
\(94\) 0 0
\(95\) −4.68035 −0.480193
\(96\) 0 0
\(97\) 6.68035 0.678286 0.339143 0.940735i \(-0.389863\pi\)
0.339143 + 0.940735i \(0.389863\pi\)
\(98\) 0 0
\(99\) −3.41855 −0.343577
\(100\) 0 0
\(101\) −6.31351 −0.628218 −0.314109 0.949387i \(-0.601706\pi\)
−0.314109 + 0.949387i \(0.601706\pi\)
\(102\) 0 0
\(103\) 14.5236 1.43105 0.715526 0.698586i \(-0.246187\pi\)
0.715526 + 0.698586i \(0.246187\pi\)
\(104\) 0 0
\(105\) −4.68035 −0.456755
\(106\) 0 0
\(107\) 19.2039 1.85651 0.928257 0.371939i \(-0.121307\pi\)
0.928257 + 0.371939i \(0.121307\pi\)
\(108\) 0 0
\(109\) 6.31351 0.604725 0.302362 0.953193i \(-0.402225\pi\)
0.302362 + 0.953193i \(0.402225\pi\)
\(110\) 0 0
\(111\) 6.68035 0.634070
\(112\) 0 0
\(113\) −14.9939 −1.41050 −0.705252 0.708957i \(-0.749166\pi\)
−0.705252 + 0.708957i \(0.749166\pi\)
\(114\) 0 0
\(115\) 9.36069 0.872889
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 2.15676 0.197709
\(120\) 0 0
\(121\) 0.686489 0.0624081
\(122\) 0 0
\(123\) −0.340173 −0.0306724
\(124\) 0 0
\(125\) −38.3545 −3.43054
\(126\) 0 0
\(127\) 9.84324 0.873447 0.436723 0.899596i \(-0.356139\pi\)
0.436723 + 0.899596i \(0.356139\pi\)
\(128\) 0 0
\(129\) 10.8371 0.954154
\(130\) 0 0
\(131\) 15.5174 1.35577 0.677883 0.735170i \(-0.262898\pi\)
0.677883 + 0.735170i \(0.262898\pi\)
\(132\) 0 0
\(133\) 1.16290 0.100836
\(134\) 0 0
\(135\) −4.34017 −0.373543
\(136\) 0 0
\(137\) 13.3340 1.13920 0.569602 0.821921i \(-0.307098\pi\)
0.569602 + 0.821921i \(0.307098\pi\)
\(138\) 0 0
\(139\) −0.680346 −0.0577062 −0.0288531 0.999584i \(-0.509186\pi\)
−0.0288531 + 0.999584i \(0.509186\pi\)
\(140\) 0 0
\(141\) 7.41855 0.624755
\(142\) 0 0
\(143\) 3.41855 0.285874
\(144\) 0 0
\(145\) 8.68035 0.720863
\(146\) 0 0
\(147\) −5.83710 −0.481436
\(148\) 0 0
\(149\) −9.02052 −0.738990 −0.369495 0.929233i \(-0.620469\pi\)
−0.369495 + 0.929233i \(0.620469\pi\)
\(150\) 0 0
\(151\) −3.60197 −0.293124 −0.146562 0.989201i \(-0.546821\pi\)
−0.146562 + 0.989201i \(0.546821\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 24.9939 2.00755
\(156\) 0 0
\(157\) 18.1978 1.45234 0.726171 0.687514i \(-0.241298\pi\)
0.726171 + 0.687514i \(0.241298\pi\)
\(158\) 0 0
\(159\) 2.68035 0.212565
\(160\) 0 0
\(161\) −2.32580 −0.183298
\(162\) 0 0
\(163\) −14.1256 −1.10640 −0.553200 0.833049i \(-0.686593\pi\)
−0.553200 + 0.833049i \(0.686593\pi\)
\(164\) 0 0
\(165\) 14.8371 1.15507
\(166\) 0 0
\(167\) 16.7792 1.29842 0.649208 0.760611i \(-0.275100\pi\)
0.649208 + 0.760611i \(0.275100\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.07838 0.0824656
\(172\) 0 0
\(173\) 7.36069 0.559623 0.279812 0.960055i \(-0.409728\pi\)
0.279812 + 0.960055i \(0.409728\pi\)
\(174\) 0 0
\(175\) 14.9216 1.12797
\(176\) 0 0
\(177\) 9.26180 0.696159
\(178\) 0 0
\(179\) 7.31965 0.547097 0.273548 0.961858i \(-0.411803\pi\)
0.273548 + 0.961858i \(0.411803\pi\)
\(180\) 0 0
\(181\) −0.523590 −0.0389182 −0.0194591 0.999811i \(-0.506194\pi\)
−0.0194591 + 0.999811i \(0.506194\pi\)
\(182\) 0 0
\(183\) 4.52359 0.334393
\(184\) 0 0
\(185\) −28.9939 −2.13167
\(186\) 0 0
\(187\) −6.83710 −0.499978
\(188\) 0 0
\(189\) 1.07838 0.0784404
\(190\) 0 0
\(191\) −22.0410 −1.59483 −0.797417 0.603429i \(-0.793801\pi\)
−0.797417 + 0.603429i \(0.793801\pi\)
\(192\) 0 0
\(193\) −19.0472 −1.37105 −0.685523 0.728051i \(-0.740426\pi\)
−0.685523 + 0.728051i \(0.740426\pi\)
\(194\) 0 0
\(195\) 4.34017 0.310806
\(196\) 0 0
\(197\) 17.3340 1.23500 0.617499 0.786571i \(-0.288146\pi\)
0.617499 + 0.786571i \(0.288146\pi\)
\(198\) 0 0
\(199\) 15.5174 1.10000 0.550001 0.835164i \(-0.314627\pi\)
0.550001 + 0.835164i \(0.314627\pi\)
\(200\) 0 0
\(201\) −15.9155 −1.12259
\(202\) 0 0
\(203\) −2.15676 −0.151375
\(204\) 0 0
\(205\) 1.47641 0.103117
\(206\) 0 0
\(207\) −2.15676 −0.149905
\(208\) 0 0
\(209\) −3.68649 −0.255000
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 5.26180 0.360532
\(214\) 0 0
\(215\) −47.0349 −3.20775
\(216\) 0 0
\(217\) −6.21008 −0.421568
\(218\) 0 0
\(219\) 14.6803 0.992006
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) −23.1194 −1.54819 −0.774095 0.633069i \(-0.781795\pi\)
−0.774095 + 0.633069i \(0.781795\pi\)
\(224\) 0 0
\(225\) 13.8371 0.922473
\(226\) 0 0
\(227\) 3.41855 0.226897 0.113449 0.993544i \(-0.463810\pi\)
0.113449 + 0.993544i \(0.463810\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) −3.68649 −0.242553
\(232\) 0 0
\(233\) 14.6803 0.961741 0.480871 0.876792i \(-0.340321\pi\)
0.480871 + 0.876792i \(0.340321\pi\)
\(234\) 0 0
\(235\) −32.1978 −2.10035
\(236\) 0 0
\(237\) 12.0000 0.779484
\(238\) 0 0
\(239\) 9.57531 0.619375 0.309688 0.950838i \(-0.399776\pi\)
0.309688 + 0.950838i \(0.399776\pi\)
\(240\) 0 0
\(241\) −28.0410 −1.80628 −0.903141 0.429344i \(-0.858745\pi\)
−0.903141 + 0.429344i \(0.858745\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 25.3340 1.61853
\(246\) 0 0
\(247\) −1.07838 −0.0686155
\(248\) 0 0
\(249\) −1.26180 −0.0799630
\(250\) 0 0
\(251\) 5.16290 0.325879 0.162940 0.986636i \(-0.447902\pi\)
0.162940 + 0.986636i \(0.447902\pi\)
\(252\) 0 0
\(253\) 7.37298 0.463535
\(254\) 0 0
\(255\) −8.68035 −0.543584
\(256\) 0 0
\(257\) −18.6803 −1.16525 −0.582624 0.812742i \(-0.697974\pi\)
−0.582624 + 0.812742i \(0.697974\pi\)
\(258\) 0 0
\(259\) 7.20394 0.447631
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) −22.8371 −1.40820 −0.704098 0.710103i \(-0.748648\pi\)
−0.704098 + 0.710103i \(0.748648\pi\)
\(264\) 0 0
\(265\) −11.6332 −0.714620
\(266\) 0 0
\(267\) −13.0205 −0.796843
\(268\) 0 0
\(269\) 7.36069 0.448789 0.224395 0.974498i \(-0.427960\pi\)
0.224395 + 0.974498i \(0.427960\pi\)
\(270\) 0 0
\(271\) 26.4391 1.60606 0.803030 0.595939i \(-0.203220\pi\)
0.803030 + 0.595939i \(0.203220\pi\)
\(272\) 0 0
\(273\) −1.07838 −0.0652664
\(274\) 0 0
\(275\) −47.3028 −2.85247
\(276\) 0 0
\(277\) −15.3607 −0.922935 −0.461467 0.887157i \(-0.652677\pi\)
−0.461467 + 0.887157i \(0.652677\pi\)
\(278\) 0 0
\(279\) −5.75872 −0.344766
\(280\) 0 0
\(281\) −12.6537 −0.754855 −0.377428 0.926039i \(-0.623191\pi\)
−0.377428 + 0.926039i \(0.623191\pi\)
\(282\) 0 0
\(283\) 27.2039 1.61711 0.808553 0.588423i \(-0.200251\pi\)
0.808553 + 0.588423i \(0.200251\pi\)
\(284\) 0 0
\(285\) −4.68035 −0.277240
\(286\) 0 0
\(287\) −0.366835 −0.0216536
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 6.68035 0.391609
\(292\) 0 0
\(293\) 12.6537 0.739236 0.369618 0.929184i \(-0.379489\pi\)
0.369618 + 0.929184i \(0.379489\pi\)
\(294\) 0 0
\(295\) −40.1978 −2.34041
\(296\) 0 0
\(297\) −3.41855 −0.198364
\(298\) 0 0
\(299\) 2.15676 0.124728
\(300\) 0 0
\(301\) 11.6865 0.673598
\(302\) 0 0
\(303\) −6.31351 −0.362702
\(304\) 0 0
\(305\) −19.6332 −1.12419
\(306\) 0 0
\(307\) −8.08452 −0.461408 −0.230704 0.973024i \(-0.574103\pi\)
−0.230704 + 0.973024i \(0.574103\pi\)
\(308\) 0 0
\(309\) 14.5236 0.826218
\(310\) 0 0
\(311\) 23.8310 1.35133 0.675665 0.737209i \(-0.263857\pi\)
0.675665 + 0.737209i \(0.263857\pi\)
\(312\) 0 0
\(313\) 5.68649 0.321419 0.160710 0.987002i \(-0.448622\pi\)
0.160710 + 0.987002i \(0.448622\pi\)
\(314\) 0 0
\(315\) −4.68035 −0.263708
\(316\) 0 0
\(317\) −8.65368 −0.486039 −0.243020 0.970021i \(-0.578138\pi\)
−0.243020 + 0.970021i \(0.578138\pi\)
\(318\) 0 0
\(319\) 6.83710 0.382804
\(320\) 0 0
\(321\) 19.2039 1.07186
\(322\) 0 0
\(323\) 2.15676 0.120005
\(324\) 0 0
\(325\) −13.8371 −0.767544
\(326\) 0 0
\(327\) 6.31351 0.349138
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 5.75872 0.316528 0.158264 0.987397i \(-0.449410\pi\)
0.158264 + 0.987397i \(0.449410\pi\)
\(332\) 0 0
\(333\) 6.68035 0.366081
\(334\) 0 0
\(335\) 69.0759 3.77402
\(336\) 0 0
\(337\) 22.3135 1.21549 0.607747 0.794131i \(-0.292073\pi\)
0.607747 + 0.794131i \(0.292073\pi\)
\(338\) 0 0
\(339\) −14.9939 −0.814355
\(340\) 0 0
\(341\) 19.6865 1.06608
\(342\) 0 0
\(343\) −13.8432 −0.747465
\(344\) 0 0
\(345\) 9.36069 0.503963
\(346\) 0 0
\(347\) −17.0472 −0.915141 −0.457570 0.889173i \(-0.651280\pi\)
−0.457570 + 0.889173i \(0.651280\pi\)
\(348\) 0 0
\(349\) 5.31965 0.284755 0.142377 0.989812i \(-0.454525\pi\)
0.142377 + 0.989812i \(0.454525\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −4.65368 −0.247691 −0.123845 0.992302i \(-0.539523\pi\)
−0.123845 + 0.992302i \(0.539523\pi\)
\(354\) 0 0
\(355\) −22.8371 −1.21207
\(356\) 0 0
\(357\) 2.15676 0.114148
\(358\) 0 0
\(359\) −34.5692 −1.82449 −0.912245 0.409644i \(-0.865653\pi\)
−0.912245 + 0.409644i \(0.865653\pi\)
\(360\) 0 0
\(361\) −17.8371 −0.938795
\(362\) 0 0
\(363\) 0.686489 0.0360313
\(364\) 0 0
\(365\) −63.7152 −3.33501
\(366\) 0 0
\(367\) 4.36683 0.227947 0.113973 0.993484i \(-0.463642\pi\)
0.113973 + 0.993484i \(0.463642\pi\)
\(368\) 0 0
\(369\) −0.340173 −0.0177087
\(370\) 0 0
\(371\) 2.89043 0.150063
\(372\) 0 0
\(373\) −32.7214 −1.69425 −0.847125 0.531394i \(-0.821668\pi\)
−0.847125 + 0.531394i \(0.821668\pi\)
\(374\) 0 0
\(375\) −38.3545 −1.98062
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 13.3919 0.687895 0.343948 0.938989i \(-0.388236\pi\)
0.343948 + 0.938989i \(0.388236\pi\)
\(380\) 0 0
\(381\) 9.84324 0.504285
\(382\) 0 0
\(383\) 16.5814 0.847272 0.423636 0.905832i \(-0.360753\pi\)
0.423636 + 0.905832i \(0.360753\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) 10.8371 0.550881
\(388\) 0 0
\(389\) −1.63317 −0.0828048 −0.0414024 0.999143i \(-0.513183\pi\)
−0.0414024 + 0.999143i \(0.513183\pi\)
\(390\) 0 0
\(391\) −4.31351 −0.218144
\(392\) 0 0
\(393\) 15.5174 0.782752
\(394\) 0 0
\(395\) −52.0821 −2.62053
\(396\) 0 0
\(397\) −10.6803 −0.536031 −0.268016 0.963415i \(-0.586368\pi\)
−0.268016 + 0.963415i \(0.586368\pi\)
\(398\) 0 0
\(399\) 1.16290 0.0582177
\(400\) 0 0
\(401\) 10.0144 0.500094 0.250047 0.968234i \(-0.419554\pi\)
0.250047 + 0.968234i \(0.419554\pi\)
\(402\) 0 0
\(403\) 5.75872 0.286862
\(404\) 0 0
\(405\) −4.34017 −0.215665
\(406\) 0 0
\(407\) −22.8371 −1.13199
\(408\) 0 0
\(409\) −1.31965 −0.0652527 −0.0326263 0.999468i \(-0.510387\pi\)
−0.0326263 + 0.999468i \(0.510387\pi\)
\(410\) 0 0
\(411\) 13.3340 0.657719
\(412\) 0 0
\(413\) 9.98771 0.491463
\(414\) 0 0
\(415\) 5.47641 0.268826
\(416\) 0 0
\(417\) −0.680346 −0.0333167
\(418\) 0 0
\(419\) 16.8781 0.824551 0.412276 0.911059i \(-0.364734\pi\)
0.412276 + 0.911059i \(0.364734\pi\)
\(420\) 0 0
\(421\) 30.3135 1.47739 0.738695 0.674040i \(-0.235442\pi\)
0.738695 + 0.674040i \(0.235442\pi\)
\(422\) 0 0
\(423\) 7.41855 0.360702
\(424\) 0 0
\(425\) 27.6742 1.34240
\(426\) 0 0
\(427\) 4.87814 0.236070
\(428\) 0 0
\(429\) 3.41855 0.165049
\(430\) 0 0
\(431\) −2.37137 −0.114225 −0.0571124 0.998368i \(-0.518189\pi\)
−0.0571124 + 0.998368i \(0.518189\pi\)
\(432\) 0 0
\(433\) −6.19779 −0.297847 −0.148923 0.988849i \(-0.547581\pi\)
−0.148923 + 0.988849i \(0.547581\pi\)
\(434\) 0 0
\(435\) 8.68035 0.416191
\(436\) 0 0
\(437\) −2.32580 −0.111258
\(438\) 0 0
\(439\) −15.8843 −0.758115 −0.379058 0.925373i \(-0.623752\pi\)
−0.379058 + 0.925373i \(0.623752\pi\)
\(440\) 0 0
\(441\) −5.83710 −0.277957
\(442\) 0 0
\(443\) 15.5174 0.737256 0.368628 0.929577i \(-0.379828\pi\)
0.368628 + 0.929577i \(0.379828\pi\)
\(444\) 0 0
\(445\) 56.5113 2.67889
\(446\) 0 0
\(447\) −9.02052 −0.426656
\(448\) 0 0
\(449\) −7.97334 −0.376285 −0.188143 0.982142i \(-0.560247\pi\)
−0.188143 + 0.982142i \(0.560247\pi\)
\(450\) 0 0
\(451\) 1.16290 0.0547588
\(452\) 0 0
\(453\) −3.60197 −0.169235
\(454\) 0 0
\(455\) 4.68035 0.219418
\(456\) 0 0
\(457\) 34.9939 1.63694 0.818472 0.574547i \(-0.194822\pi\)
0.818472 + 0.574547i \(0.194822\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 29.0205 1.35162 0.675810 0.737076i \(-0.263794\pi\)
0.675810 + 0.737076i \(0.263794\pi\)
\(462\) 0 0
\(463\) 33.4740 1.55567 0.777834 0.628470i \(-0.216319\pi\)
0.777834 + 0.628470i \(0.216319\pi\)
\(464\) 0 0
\(465\) 24.9939 1.15906
\(466\) 0 0
\(467\) 6.52359 0.301876 0.150938 0.988543i \(-0.451771\pi\)
0.150938 + 0.988543i \(0.451771\pi\)
\(468\) 0 0
\(469\) −17.1629 −0.792509
\(470\) 0 0
\(471\) 18.1978 0.838510
\(472\) 0 0
\(473\) −37.0472 −1.70343
\(474\) 0 0
\(475\) 14.9216 0.684651
\(476\) 0 0
\(477\) 2.68035 0.122725
\(478\) 0 0
\(479\) 3.47187 0.158634 0.0793170 0.996849i \(-0.474726\pi\)
0.0793170 + 0.996849i \(0.474726\pi\)
\(480\) 0 0
\(481\) −6.68035 −0.304598
\(482\) 0 0
\(483\) −2.32580 −0.105827
\(484\) 0 0
\(485\) −28.9939 −1.31654
\(486\) 0 0
\(487\) 20.2290 0.916663 0.458332 0.888781i \(-0.348447\pi\)
0.458332 + 0.888781i \(0.348447\pi\)
\(488\) 0 0
\(489\) −14.1256 −0.638780
\(490\) 0 0
\(491\) 2.21008 0.0997395 0.0498697 0.998756i \(-0.484119\pi\)
0.0498697 + 0.998756i \(0.484119\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 14.8371 0.666878
\(496\) 0 0
\(497\) 5.67420 0.254523
\(498\) 0 0
\(499\) 13.7587 0.615925 0.307963 0.951398i \(-0.400353\pi\)
0.307963 + 0.951398i \(0.400353\pi\)
\(500\) 0 0
\(501\) 16.7792 0.749641
\(502\) 0 0
\(503\) 28.5113 1.27126 0.635628 0.771995i \(-0.280741\pi\)
0.635628 + 0.771995i \(0.280741\pi\)
\(504\) 0 0
\(505\) 27.4017 1.21936
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −34.0144 −1.50766 −0.753830 0.657069i \(-0.771796\pi\)
−0.753830 + 0.657069i \(0.771796\pi\)
\(510\) 0 0
\(511\) 15.8310 0.700320
\(512\) 0 0
\(513\) 1.07838 0.0476115
\(514\) 0 0
\(515\) −63.0349 −2.77765
\(516\) 0 0
\(517\) −25.3607 −1.11536
\(518\) 0 0
\(519\) 7.36069 0.323099
\(520\) 0 0
\(521\) −8.35455 −0.366019 −0.183010 0.983111i \(-0.558584\pi\)
−0.183010 + 0.983111i \(0.558584\pi\)
\(522\) 0 0
\(523\) −20.3668 −0.890580 −0.445290 0.895387i \(-0.646899\pi\)
−0.445290 + 0.895387i \(0.646899\pi\)
\(524\) 0 0
\(525\) 14.9216 0.651233
\(526\) 0 0
\(527\) −11.5174 −0.501708
\(528\) 0 0
\(529\) −18.3484 −0.797757
\(530\) 0 0
\(531\) 9.26180 0.401928
\(532\) 0 0
\(533\) 0.340173 0.0147345
\(534\) 0 0
\(535\) −83.3484 −3.60347
\(536\) 0 0
\(537\) 7.31965 0.315866
\(538\) 0 0
\(539\) 19.9544 0.859498
\(540\) 0 0
\(541\) −4.63931 −0.199459 −0.0997297 0.995015i \(-0.531798\pi\)
−0.0997297 + 0.995015i \(0.531798\pi\)
\(542\) 0 0
\(543\) −0.523590 −0.0224694
\(544\) 0 0
\(545\) −27.4017 −1.17376
\(546\) 0 0
\(547\) 18.0410 0.771379 0.385690 0.922629i \(-0.373964\pi\)
0.385690 + 0.922629i \(0.373964\pi\)
\(548\) 0 0
\(549\) 4.52359 0.193062
\(550\) 0 0
\(551\) −2.15676 −0.0918809
\(552\) 0 0
\(553\) 12.9405 0.550287
\(554\) 0 0
\(555\) −28.9939 −1.23072
\(556\) 0 0
\(557\) −17.0205 −0.721183 −0.360591 0.932724i \(-0.617425\pi\)
−0.360591 + 0.932724i \(0.617425\pi\)
\(558\) 0 0
\(559\) −10.8371 −0.458361
\(560\) 0 0
\(561\) −6.83710 −0.288663
\(562\) 0 0
\(563\) 31.7152 1.33664 0.668319 0.743875i \(-0.267014\pi\)
0.668319 + 0.743875i \(0.267014\pi\)
\(564\) 0 0
\(565\) 65.0759 2.73777
\(566\) 0 0
\(567\) 1.07838 0.0452876
\(568\) 0 0
\(569\) 45.7152 1.91648 0.958241 0.285961i \(-0.0923127\pi\)
0.958241 + 0.285961i \(0.0923127\pi\)
\(570\) 0 0
\(571\) −16.8781 −0.706328 −0.353164 0.935561i \(-0.614894\pi\)
−0.353164 + 0.935561i \(0.614894\pi\)
\(572\) 0 0
\(573\) −22.0410 −0.920778
\(574\) 0 0
\(575\) −29.8432 −1.24455
\(576\) 0 0
\(577\) −41.3484 −1.72136 −0.860678 0.509149i \(-0.829960\pi\)
−0.860678 + 0.509149i \(0.829960\pi\)
\(578\) 0 0
\(579\) −19.0472 −0.791574
\(580\) 0 0
\(581\) −1.36069 −0.0564510
\(582\) 0 0
\(583\) −9.16290 −0.379488
\(584\) 0 0
\(585\) 4.34017 0.179444
\(586\) 0 0
\(587\) −37.5753 −1.55090 −0.775449 0.631410i \(-0.782477\pi\)
−0.775449 + 0.631410i \(0.782477\pi\)
\(588\) 0 0
\(589\) −6.21008 −0.255882
\(590\) 0 0
\(591\) 17.3340 0.713027
\(592\) 0 0
\(593\) 28.9672 1.18954 0.594770 0.803896i \(-0.297243\pi\)
0.594770 + 0.803896i \(0.297243\pi\)
\(594\) 0 0
\(595\) −9.36069 −0.383751
\(596\) 0 0
\(597\) 15.5174 0.635087
\(598\) 0 0
\(599\) −6.21008 −0.253737 −0.126868 0.991920i \(-0.540493\pi\)
−0.126868 + 0.991920i \(0.540493\pi\)
\(600\) 0 0
\(601\) −26.3135 −1.07335 −0.536675 0.843789i \(-0.680320\pi\)
−0.536675 + 0.843789i \(0.680320\pi\)
\(602\) 0 0
\(603\) −15.9155 −0.648128
\(604\) 0 0
\(605\) −2.97948 −0.121133
\(606\) 0 0
\(607\) −24.6803 −1.00174 −0.500872 0.865521i \(-0.666987\pi\)
−0.500872 + 0.865521i \(0.666987\pi\)
\(608\) 0 0
\(609\) −2.15676 −0.0873961
\(610\) 0 0
\(611\) −7.41855 −0.300122
\(612\) 0 0
\(613\) 20.3545 0.822112 0.411056 0.911610i \(-0.365160\pi\)
0.411056 + 0.911610i \(0.365160\pi\)
\(614\) 0 0
\(615\) 1.47641 0.0595346
\(616\) 0 0
\(617\) −27.0616 −1.08946 −0.544729 0.838612i \(-0.683367\pi\)
−0.544729 + 0.838612i \(0.683367\pi\)
\(618\) 0 0
\(619\) 15.9155 0.639697 0.319849 0.947469i \(-0.396368\pi\)
0.319849 + 0.947469i \(0.396368\pi\)
\(620\) 0 0
\(621\) −2.15676 −0.0865476
\(622\) 0 0
\(623\) −14.0410 −0.562542
\(624\) 0 0
\(625\) 97.2799 3.89119
\(626\) 0 0
\(627\) −3.68649 −0.147224
\(628\) 0 0
\(629\) 13.3607 0.532726
\(630\) 0 0
\(631\) −10.2413 −0.407699 −0.203849 0.979002i \(-0.565345\pi\)
−0.203849 + 0.979002i \(0.565345\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) −42.7214 −1.69535
\(636\) 0 0
\(637\) 5.83710 0.231274
\(638\) 0 0
\(639\) 5.26180 0.208153
\(640\) 0 0
\(641\) 11.3607 0.448720 0.224360 0.974506i \(-0.427971\pi\)
0.224360 + 0.974506i \(0.427971\pi\)
\(642\) 0 0
\(643\) 3.77101 0.148714 0.0743571 0.997232i \(-0.476310\pi\)
0.0743571 + 0.997232i \(0.476310\pi\)
\(644\) 0 0
\(645\) −47.0349 −1.85200
\(646\) 0 0
\(647\) −33.9877 −1.33619 −0.668097 0.744074i \(-0.732891\pi\)
−0.668097 + 0.744074i \(0.732891\pi\)
\(648\) 0 0
\(649\) −31.6619 −1.24284
\(650\) 0 0
\(651\) −6.21008 −0.243392
\(652\) 0 0
\(653\) 10.3135 0.403599 0.201799 0.979427i \(-0.435321\pi\)
0.201799 + 0.979427i \(0.435321\pi\)
\(654\) 0 0
\(655\) −67.3484 −2.63152
\(656\) 0 0
\(657\) 14.6803 0.572735
\(658\) 0 0
\(659\) 13.3607 0.520459 0.260229 0.965547i \(-0.416202\pi\)
0.260229 + 0.965547i \(0.416202\pi\)
\(660\) 0 0
\(661\) −27.3074 −1.06213 −0.531067 0.847330i \(-0.678209\pi\)
−0.531067 + 0.847330i \(0.678209\pi\)
\(662\) 0 0
\(663\) −2.00000 −0.0776736
\(664\) 0 0
\(665\) −5.04718 −0.195721
\(666\) 0 0
\(667\) 4.31351 0.167020
\(668\) 0 0
\(669\) −23.1194 −0.893848
\(670\) 0 0
\(671\) −15.4641 −0.596986
\(672\) 0 0
\(673\) 46.5113 1.79288 0.896440 0.443166i \(-0.146145\pi\)
0.896440 + 0.443166i \(0.146145\pi\)
\(674\) 0 0
\(675\) 13.8371 0.532590
\(676\) 0 0
\(677\) −46.6803 −1.79407 −0.897036 0.441958i \(-0.854284\pi\)
−0.897036 + 0.441958i \(0.854284\pi\)
\(678\) 0 0
\(679\) 7.20394 0.276462
\(680\) 0 0
\(681\) 3.41855 0.130999
\(682\) 0 0
\(683\) 49.2905 1.88605 0.943025 0.332721i \(-0.107967\pi\)
0.943025 + 0.332721i \(0.107967\pi\)
\(684\) 0 0
\(685\) −57.8720 −2.21118
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) −2.68035 −0.102113
\(690\) 0 0
\(691\) −17.2762 −0.657217 −0.328608 0.944466i \(-0.606580\pi\)
−0.328608 + 0.944466i \(0.606580\pi\)
\(692\) 0 0
\(693\) −3.68649 −0.140038
\(694\) 0 0
\(695\) 2.95282 0.112007
\(696\) 0 0
\(697\) −0.680346 −0.0257699
\(698\) 0 0
\(699\) 14.6803 0.555262
\(700\) 0 0
\(701\) −6.68035 −0.252313 −0.126157 0.992010i \(-0.540264\pi\)
−0.126157 + 0.992010i \(0.540264\pi\)
\(702\) 0 0
\(703\) 7.20394 0.271702
\(704\) 0 0
\(705\) −32.1978 −1.21264
\(706\) 0 0
\(707\) −6.80835 −0.256054
\(708\) 0 0
\(709\) −35.6742 −1.33977 −0.669886 0.742464i \(-0.733657\pi\)
−0.669886 + 0.742464i \(0.733657\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 0 0
\(713\) 12.4202 0.465139
\(714\) 0 0
\(715\) −14.8371 −0.554876
\(716\) 0 0
\(717\) 9.57531 0.357596
\(718\) 0 0
\(719\) −15.2039 −0.567011 −0.283506 0.958971i \(-0.591497\pi\)
−0.283506 + 0.958971i \(0.591497\pi\)
\(720\) 0 0
\(721\) 15.6619 0.583280
\(722\) 0 0
\(723\) −28.0410 −1.04286
\(724\) 0 0
\(725\) −27.6742 −1.02779
\(726\) 0 0
\(727\) 30.8904 1.14566 0.572831 0.819673i \(-0.305845\pi\)
0.572831 + 0.819673i \(0.305845\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 21.6742 0.801649
\(732\) 0 0
\(733\) 9.37298 0.346199 0.173099 0.984904i \(-0.444622\pi\)
0.173099 + 0.984904i \(0.444622\pi\)
\(734\) 0 0
\(735\) 25.3340 0.934460
\(736\) 0 0
\(737\) 54.4079 2.00414
\(738\) 0 0
\(739\) −26.8059 −0.986071 −0.493036 0.870009i \(-0.664113\pi\)
−0.493036 + 0.870009i \(0.664113\pi\)
\(740\) 0 0
\(741\) −1.07838 −0.0396152
\(742\) 0 0
\(743\) −12.0989 −0.443865 −0.221933 0.975062i \(-0.571237\pi\)
−0.221933 + 0.975062i \(0.571237\pi\)
\(744\) 0 0
\(745\) 39.1506 1.43437
\(746\) 0 0
\(747\) −1.26180 −0.0461667
\(748\) 0 0
\(749\) 20.7091 0.756694
\(750\) 0 0
\(751\) 25.4764 0.929647 0.464824 0.885403i \(-0.346118\pi\)
0.464824 + 0.885403i \(0.346118\pi\)
\(752\) 0 0
\(753\) 5.16290 0.188146
\(754\) 0 0
\(755\) 15.6332 0.568949
\(756\) 0 0
\(757\) −18.5113 −0.672805 −0.336402 0.941718i \(-0.609210\pi\)
−0.336402 + 0.941718i \(0.609210\pi\)
\(758\) 0 0
\(759\) 7.37298 0.267622
\(760\) 0 0
\(761\) −8.96719 −0.325061 −0.162530 0.986704i \(-0.551966\pi\)
−0.162530 + 0.986704i \(0.551966\pi\)
\(762\) 0 0
\(763\) 6.80835 0.246479
\(764\) 0 0
\(765\) −8.68035 −0.313839
\(766\) 0 0
\(767\) −9.26180 −0.334424
\(768\) 0 0
\(769\) 32.4079 1.16866 0.584329 0.811517i \(-0.301358\pi\)
0.584329 + 0.811517i \(0.301358\pi\)
\(770\) 0 0
\(771\) −18.6803 −0.672756
\(772\) 0 0
\(773\) 3.29299 0.118441 0.0592203 0.998245i \(-0.481139\pi\)
0.0592203 + 0.998245i \(0.481139\pi\)
\(774\) 0 0
\(775\) −79.6840 −2.86234
\(776\) 0 0
\(777\) 7.20394 0.258440
\(778\) 0 0
\(779\) −0.366835 −0.0131432
\(780\) 0 0
\(781\) −17.9877 −0.643651
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) −78.9816 −2.81897
\(786\) 0 0
\(787\) −18.8059 −0.670358 −0.335179 0.942154i \(-0.608797\pi\)
−0.335179 + 0.942154i \(0.608797\pi\)
\(788\) 0 0
\(789\) −22.8371 −0.813022
\(790\) 0 0
\(791\) −16.1690 −0.574905
\(792\) 0 0
\(793\) −4.52359 −0.160637
\(794\) 0 0
\(795\) −11.6332 −0.412586
\(796\) 0 0
\(797\) −30.6803 −1.08675 −0.543377 0.839489i \(-0.682854\pi\)
−0.543377 + 0.839489i \(0.682854\pi\)
\(798\) 0 0
\(799\) 14.8371 0.524899
\(800\) 0 0
\(801\) −13.0205 −0.460057
\(802\) 0 0
\(803\) −50.1855 −1.77101
\(804\) 0 0
\(805\) 10.0944 0.355780
\(806\) 0 0
\(807\) 7.36069 0.259109
\(808\) 0 0
\(809\) −22.3668 −0.786376 −0.393188 0.919458i \(-0.628628\pi\)
−0.393188 + 0.919458i \(0.628628\pi\)
\(810\) 0 0
\(811\) 43.7998 1.53802 0.769009 0.639238i \(-0.220750\pi\)
0.769009 + 0.639238i \(0.220750\pi\)
\(812\) 0 0
\(813\) 26.4391 0.927259
\(814\) 0 0
\(815\) 61.3074 2.14750
\(816\) 0 0
\(817\) 11.6865 0.408858
\(818\) 0 0
\(819\) −1.07838 −0.0376816
\(820\) 0 0
\(821\) −6.06770 −0.211764 −0.105882 0.994379i \(-0.533767\pi\)
−0.105882 + 0.994379i \(0.533767\pi\)
\(822\) 0 0
\(823\) −36.8248 −1.28363 −0.641816 0.766859i \(-0.721819\pi\)
−0.641816 + 0.766859i \(0.721819\pi\)
\(824\) 0 0
\(825\) −47.3028 −1.64687
\(826\) 0 0
\(827\) 34.9893 1.21670 0.608349 0.793670i \(-0.291832\pi\)
0.608349 + 0.793670i \(0.291832\pi\)
\(828\) 0 0
\(829\) 14.5113 0.503998 0.251999 0.967727i \(-0.418912\pi\)
0.251999 + 0.967727i \(0.418912\pi\)
\(830\) 0 0
\(831\) −15.3607 −0.532856
\(832\) 0 0
\(833\) −11.6742 −0.404487
\(834\) 0 0
\(835\) −72.8248 −2.52021
\(836\) 0 0
\(837\) −5.75872 −0.199051
\(838\) 0 0
\(839\) 40.4124 1.39519 0.697596 0.716492i \(-0.254253\pi\)
0.697596 + 0.716492i \(0.254253\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −12.6537 −0.435816
\(844\) 0 0
\(845\) −4.34017 −0.149306
\(846\) 0 0
\(847\) 0.740294 0.0254368
\(848\) 0 0
\(849\) 27.2039 0.933637
\(850\) 0 0
\(851\) −14.4079 −0.493896
\(852\) 0 0
\(853\) 29.7152 1.01743 0.508715 0.860935i \(-0.330121\pi\)
0.508715 + 0.860935i \(0.330121\pi\)
\(854\) 0 0
\(855\) −4.68035 −0.160064
\(856\) 0 0
\(857\) 52.3545 1.78840 0.894199 0.447670i \(-0.147746\pi\)
0.894199 + 0.447670i \(0.147746\pi\)
\(858\) 0 0
\(859\) 11.3730 0.388041 0.194021 0.980997i \(-0.437847\pi\)
0.194021 + 0.980997i \(0.437847\pi\)
\(860\) 0 0
\(861\) −0.366835 −0.0125017
\(862\) 0 0
\(863\) 9.20847 0.313460 0.156730 0.987641i \(-0.449905\pi\)
0.156730 + 0.987641i \(0.449905\pi\)
\(864\) 0 0
\(865\) −31.9467 −1.08622
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) −41.0226 −1.39160
\(870\) 0 0
\(871\) 15.9155 0.539275
\(872\) 0 0
\(873\) 6.68035 0.226095
\(874\) 0 0
\(875\) −41.3607 −1.39825
\(876\) 0 0
\(877\) 23.3074 0.787034 0.393517 0.919317i \(-0.371258\pi\)
0.393517 + 0.919317i \(0.371258\pi\)
\(878\) 0 0
\(879\) 12.6537 0.426798
\(880\) 0 0
\(881\) −38.9939 −1.31374 −0.656868 0.754005i \(-0.728119\pi\)
−0.656868 + 0.754005i \(0.728119\pi\)
\(882\) 0 0
\(883\) 36.5646 1.23050 0.615249 0.788333i \(-0.289056\pi\)
0.615249 + 0.788333i \(0.289056\pi\)
\(884\) 0 0
\(885\) −40.1978 −1.35123
\(886\) 0 0
\(887\) −30.0410 −1.00868 −0.504340 0.863505i \(-0.668264\pi\)
−0.504340 + 0.863505i \(0.668264\pi\)
\(888\) 0 0
\(889\) 10.6147 0.356007
\(890\) 0 0
\(891\) −3.41855 −0.114526
\(892\) 0 0
\(893\) 8.00000 0.267710
\(894\) 0 0
\(895\) −31.7686 −1.06191
\(896\) 0 0
\(897\) 2.15676 0.0720120
\(898\) 0 0
\(899\) 11.5174 0.384128
\(900\) 0 0
\(901\) 5.36069 0.178591
\(902\) 0 0
\(903\) 11.6865 0.388902
\(904\) 0 0
\(905\) 2.27247 0.0755396
\(906\) 0 0
\(907\) 11.8310 0.392841 0.196420 0.980520i \(-0.437068\pi\)
0.196420 + 0.980520i \(0.437068\pi\)
\(908\) 0 0
\(909\) −6.31351 −0.209406
\(910\) 0 0
\(911\) −44.3423 −1.46912 −0.734562 0.678541i \(-0.762612\pi\)
−0.734562 + 0.678541i \(0.762612\pi\)
\(912\) 0 0
\(913\) 4.31351 0.142756
\(914\) 0 0
\(915\) −19.6332 −0.649052
\(916\) 0 0
\(917\) 16.7337 0.552594
\(918\) 0 0
\(919\) 32.0821 1.05829 0.529145 0.848531i \(-0.322513\pi\)
0.529145 + 0.848531i \(0.322513\pi\)
\(920\) 0 0
\(921\) −8.08452 −0.266394
\(922\) 0 0
\(923\) −5.26180 −0.173194
\(924\) 0 0
\(925\) 92.4366 3.03930
\(926\) 0 0
\(927\) 14.5236 0.477017
\(928\) 0 0
\(929\) −34.4345 −1.12976 −0.564880 0.825173i \(-0.691078\pi\)
−0.564880 + 0.825173i \(0.691078\pi\)
\(930\) 0 0
\(931\) −6.29460 −0.206297
\(932\) 0 0
\(933\) 23.8310 0.780191
\(934\) 0 0
\(935\) 29.6742 0.970450
\(936\) 0 0
\(937\) 34.1978 1.11719 0.558597 0.829439i \(-0.311340\pi\)
0.558597 + 0.829439i \(0.311340\pi\)
\(938\) 0 0
\(939\) 5.68649 0.185572
\(940\) 0 0
\(941\) 17.7009 0.577032 0.288516 0.957475i \(-0.406838\pi\)
0.288516 + 0.957475i \(0.406838\pi\)
\(942\) 0 0
\(943\) 0.733670 0.0238916
\(944\) 0 0
\(945\) −4.68035 −0.152252
\(946\) 0 0
\(947\) −16.7259 −0.543519 −0.271760 0.962365i \(-0.587606\pi\)
−0.271760 + 0.962365i \(0.587606\pi\)
\(948\) 0 0
\(949\) −14.6803 −0.476544
\(950\) 0 0
\(951\) −8.65368 −0.280615
\(952\) 0 0
\(953\) 10.9939 0.356126 0.178063 0.984019i \(-0.443017\pi\)
0.178063 + 0.984019i \(0.443017\pi\)
\(954\) 0 0
\(955\) 95.6619 3.09555
\(956\) 0 0
\(957\) 6.83710 0.221012
\(958\) 0 0
\(959\) 14.3791 0.464326
\(960\) 0 0
\(961\) 2.16290 0.0697709
\(962\) 0 0
\(963\) 19.2039 0.618838
\(964\) 0 0
\(965\) 82.6681 2.66118
\(966\) 0 0
\(967\) 40.3111 1.29632 0.648158 0.761506i \(-0.275540\pi\)
0.648158 + 0.761506i \(0.275540\pi\)
\(968\) 0 0
\(969\) 2.15676 0.0692850
\(970\) 0 0
\(971\) 1.67420 0.0537277 0.0268639 0.999639i \(-0.491448\pi\)
0.0268639 + 0.999639i \(0.491448\pi\)
\(972\) 0 0
\(973\) −0.733670 −0.0235204
\(974\) 0 0
\(975\) −13.8371 −0.443142
\(976\) 0 0
\(977\) −11.0328 −0.352971 −0.176485 0.984303i \(-0.556473\pi\)
−0.176485 + 0.984303i \(0.556473\pi\)
\(978\) 0 0
\(979\) 44.5113 1.42259
\(980\) 0 0
\(981\) 6.31351 0.201575
\(982\) 0 0
\(983\) 50.4001 1.60751 0.803757 0.594958i \(-0.202831\pi\)
0.803757 + 0.594958i \(0.202831\pi\)
\(984\) 0 0
\(985\) −75.2327 −2.39711
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 0 0
\(989\) −23.3730 −0.743217
\(990\) 0 0
\(991\) −23.7152 −0.753339 −0.376670 0.926348i \(-0.622931\pi\)
−0.376670 + 0.926348i \(0.622931\pi\)
\(992\) 0 0
\(993\) 5.75872 0.182748
\(994\) 0 0
\(995\) −67.3484 −2.13509
\(996\) 0 0
\(997\) −5.37298 −0.170164 −0.0850820 0.996374i \(-0.527115\pi\)
−0.0850820 + 0.996374i \(0.527115\pi\)
\(998\) 0 0
\(999\) 6.68035 0.211357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.a.bl.1.1 3
3.2 odd 2 7488.2.a.cx.1.3 3
4.3 odd 2 2496.2.a.bk.1.1 3
8.3 odd 2 1248.2.a.p.1.3 yes 3
8.5 even 2 1248.2.a.o.1.3 3
12.11 even 2 7488.2.a.cy.1.3 3
24.5 odd 2 3744.2.a.ba.1.1 3
24.11 even 2 3744.2.a.z.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.a.o.1.3 3 8.5 even 2
1248.2.a.p.1.3 yes 3 8.3 odd 2
2496.2.a.bk.1.1 3 4.3 odd 2
2496.2.a.bl.1.1 3 1.1 even 1 trivial
3744.2.a.z.1.1 3 24.11 even 2
3744.2.a.ba.1.1 3 24.5 odd 2
7488.2.a.cx.1.3 3 3.2 odd 2
7488.2.a.cy.1.3 3 12.11 even 2