Properties

Label 2496.2.a
Level $2496$
Weight $2$
Character orbit 2496.a
Rep. character $\chi_{2496}(1,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $38$
Sturm bound $896$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 38 \)
Sturm bound: \(896\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2496))\).

Total New Old
Modular forms 472 48 424
Cusp forms 425 48 377
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(13\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(8\)
\(+\)\(-\)\(-\)\(+\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(8\)
Plus space\(+\)\(20\)
Minus space\(-\)\(28\)

Trace form

\( 48 q + 48 q^{9} + O(q^{10}) \) \( 48 q + 48 q^{9} + 48 q^{25} + 32 q^{29} + 32 q^{37} + 48 q^{49} + 32 q^{53} + 32 q^{61} + 32 q^{69} - 64 q^{77} + 48 q^{81} - 64 q^{85} + 32 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2496))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 13
2496.2.a.a 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(-4\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}+q^{9}-2q^{11}+q^{13}+\cdots\)
2496.2.a.b 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(-2\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}-4q^{7}+q^{9}-4q^{11}+\cdots\)
2496.2.a.c 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{9}-q^{13}+2q^{15}+\cdots\)
2496.2.a.d 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(-2\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+2q^{7}+q^{9}+2q^{11}+\cdots\)
2496.2.a.e 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(-2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+4q^{7}+q^{9}+4q^{11}+\cdots\)
2496.2.a.f 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\)
2496.2.a.g 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{9}-6q^{11}+q^{13}+2q^{17}+\cdots\)
2496.2.a.h 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{7}+q^{9}-q^{13}-6q^{17}+\cdots\)
2496.2.a.i 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{7}+q^{9}-q^{13}+2q^{17}+\cdots\)
2496.2.a.j 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(0\) \(4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+4q^{7}+q^{9}-2q^{11}+q^{13}+\cdots\)
2496.2.a.k 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(2\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-4q^{7}+q^{9}-q^{13}-2q^{15}+\cdots\)
2496.2.a.l 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+q^{9}+4q^{11}-q^{13}+\cdots\)
2496.2.a.m 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(2\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+2q^{7}+q^{9}+6q^{11}+\cdots\)
2496.2.a.n 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(4\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+4q^{5}-4q^{7}+q^{9}+2q^{11}+\cdots\)
2496.2.a.o 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(-1\) \(4\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+4q^{5}+2q^{7}+q^{9}-4q^{11}+\cdots\)
2496.2.a.p 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(-4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-4q^{5}+q^{9}+2q^{11}+q^{13}+\cdots\)
2496.2.a.q 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(-2\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}-4q^{7}+q^{9}-4q^{11}+\cdots\)
2496.2.a.r 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(-2\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}-2q^{7}+q^{9}-2q^{11}+\cdots\)
2496.2.a.s 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(-2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}+q^{9}-q^{13}-2q^{15}+\cdots\)
2496.2.a.t 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(-2\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}+4q^{7}+q^{9}+4q^{11}+\cdots\)
2496.2.a.u 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(0\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-4q^{7}+q^{9}+2q^{11}+q^{13}+\cdots\)
2496.2.a.v 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}+q^{9}-q^{13}-6q^{17}+\cdots\)
2496.2.a.w 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}+q^{9}-q^{13}+2q^{17}+\cdots\)
2496.2.a.x 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{9}+6q^{11}+q^{13}+2q^{17}+\cdots\)
2496.2.a.y 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(0\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{7}+q^{9}-4q^{11}-q^{13}+\cdots\)
2496.2.a.z 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(2\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}-2q^{7}+q^{9}-6q^{11}+\cdots\)
2496.2.a.ba 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}+q^{9}-4q^{11}-q^{13}+\cdots\)
2496.2.a.bb 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(2\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}+4q^{7}+q^{9}-q^{13}+2q^{15}+\cdots\)
2496.2.a.bc 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(4\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{5}-2q^{7}+q^{9}+4q^{11}+\cdots\)
2496.2.a.bd 2496.a 1.a $1$ $19.931$ \(\Q\) None \(0\) \(1\) \(4\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{5}+4q^{7}+q^{9}-2q^{11}+\cdots\)
2496.2.a.be 2496.a 1.a $2$ $19.931$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(-2\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta )q^{5}+(1+\beta )q^{7}+q^{9}+\cdots\)
2496.2.a.bf 2496.a 1.a $2$ $19.931$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta q^{5}+\beta q^{7}+q^{9}+2q^{11}+\cdots\)
2496.2.a.bg 2496.a 1.a $2$ $19.931$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(2\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}+(-3+\beta )q^{7}+q^{9}+\cdots\)
2496.2.a.bh 2496.a 1.a $2$ $19.931$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(-2\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1-\beta )q^{5}+(-1-\beta )q^{7}+\cdots\)
2496.2.a.bi 2496.a 1.a $2$ $19.931$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta q^{5}-\beta q^{7}+q^{9}-2q^{11}+\cdots\)
2496.2.a.bj 2496.a 1.a $2$ $19.931$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(2\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(1+\beta )q^{5}+(3-\beta )q^{7}+q^{9}+\cdots\)
2496.2.a.bk 2496.a 1.a $3$ $19.931$ 3.3.148.1 None \(0\) \(-3\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta _{1})q^{5}-\beta _{2}q^{7}+q^{9}+\cdots\)
2496.2.a.bl 2496.a 1.a $3$ $19.931$ 3.3.148.1 None \(0\) \(3\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1-\beta _{1})q^{5}+\beta _{2}q^{7}+q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2496))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2496)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(832))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1248))\)\(^{\oplus 2}\)