Properties

Label 2480.2.z
Level $2480$
Weight $2$
Character orbit 2480.z
Rep. character $\chi_{2480}(433,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $188$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2480 = 2^{4} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2480.z (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 155 \)
Character field: \(\Q(i)\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2480, [\chi])\).

Total New Old
Modular forms 792 196 596
Cusp forms 744 188 556
Eisenstein series 48 8 40

Trace form

\( 188 q - 4 q^{5} + 4 q^{7} - 4 q^{25} - 4 q^{31} + 24 q^{33} - 8 q^{35} - 8 q^{41} + 16 q^{45} + 40 q^{47} + 24 q^{51} - 36 q^{63} + 16 q^{67} - 24 q^{71} - 164 q^{81} + 16 q^{87} + 20 q^{93} + 44 q^{95}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2480, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2480, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(620, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1240, [\chi])\)\(^{\oplus 2}\)