Defining parameters
Level: | \( N \) | \(=\) | \( 2480 = 2^{4} \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2480.z (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 155 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(768\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2480, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 792 | 196 | 596 |
Cusp forms | 744 | 188 | 556 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2480, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2480, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(620, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1240, [\chi])\)\(^{\oplus 2}\)