Defining parameters
| Level: | \( N \) | \(=\) | \( 2480 = 2^{4} \cdot 5 \cdot 31 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 2480.ez (of order \(30\) and degree \(8\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1240 \) | 
| Character field: | \(\Q(\zeta_{30})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(768\) | ||
| Trace bound: | \(0\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2480, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3136 | 0 | 3136 | 
| Cusp forms | 3008 | 0 | 3008 | 
| Eisenstein series | 128 | 0 | 128 | 
Decomposition of \(S_{2}^{\mathrm{old}}(2480, [\chi])\) into lower level spaces
  \( S_{2}^{\mathrm{old}}(2480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1240, [\chi])\)\(^{\oplus 2}\)