Properties

Label 2475.4.a.v.1.3
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3368.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 825)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.76300\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.76300 q^{2} +6.16019 q^{4} +23.6321 q^{7} -6.92320 q^{8} +O(q^{10})\) \(q+3.76300 q^{2} +6.16019 q^{4} +23.6321 q^{7} -6.92320 q^{8} -11.0000 q^{11} -7.39511 q^{13} +88.9277 q^{14} -75.3336 q^{16} +8.68828 q^{17} -69.7002 q^{19} -41.3930 q^{22} -10.1643 q^{23} -27.8278 q^{26} +145.578 q^{28} +73.2803 q^{29} -290.970 q^{31} -228.095 q^{32} +32.6940 q^{34} +105.618 q^{37} -262.282 q^{38} -40.5108 q^{41} +77.3133 q^{43} -67.7621 q^{44} -38.2485 q^{46} -472.981 q^{47} +215.477 q^{49} -45.5553 q^{52} +205.479 q^{53} -163.610 q^{56} +275.754 q^{58} -330.261 q^{59} -931.991 q^{61} -1094.92 q^{62} -255.653 q^{64} +418.252 q^{67} +53.5215 q^{68} +506.329 q^{71} -612.497 q^{73} +397.441 q^{74} -429.367 q^{76} -259.953 q^{77} +54.6657 q^{79} -152.442 q^{82} +538.964 q^{83} +290.930 q^{86} +76.1552 q^{88} -781.086 q^{89} -174.762 q^{91} -62.6144 q^{92} -1779.83 q^{94} +531.762 q^{97} +810.839 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 7 q^{4} + 16 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 7 q^{4} + 16 q^{7} + 3 q^{8} - 33 q^{11} + 45 q^{13} + 116 q^{14} - 85 q^{16} + 58 q^{17} - 169 q^{19} + 11 q^{22} - 155 q^{23} - 167 q^{26} + 100 q^{28} + 277 q^{29} - 173 q^{31} - 97 q^{32} - 146 q^{34} + 60 q^{37} - 169 q^{38} - 44 q^{41} - 109 q^{43} - 77 q^{44} + 425 q^{46} - 270 q^{47} - 427 q^{49} + 45 q^{52} + 148 q^{53} - 168 q^{56} - 783 q^{58} + 684 q^{59} - 1038 q^{61} - 953 q^{62} - 1129 q^{64} + 314 q^{67} + 366 q^{68} + 1459 q^{71} - 1170 q^{73} + 1764 q^{74} + 211 q^{76} - 176 q^{77} - 506 q^{79} - 1040 q^{82} + 347 q^{83} + 527 q^{86} - 33 q^{88} + 607 q^{89} - 398 q^{91} - 687 q^{92} - 1822 q^{94} + 1263 q^{97} + 2273 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.76300 1.33042 0.665211 0.746655i \(-0.268341\pi\)
0.665211 + 0.746655i \(0.268341\pi\)
\(3\) 0 0
\(4\) 6.16019 0.770024
\(5\) 0 0
\(6\) 0 0
\(7\) 23.6321 1.27601 0.638007 0.770031i \(-0.279759\pi\)
0.638007 + 0.770031i \(0.279759\pi\)
\(8\) −6.92320 −0.305965
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −7.39511 −0.157772 −0.0788860 0.996884i \(-0.525136\pi\)
−0.0788860 + 0.996884i \(0.525136\pi\)
\(14\) 88.9277 1.69764
\(15\) 0 0
\(16\) −75.3336 −1.17709
\(17\) 8.68828 0.123954 0.0619770 0.998078i \(-0.480259\pi\)
0.0619770 + 0.998078i \(0.480259\pi\)
\(18\) 0 0
\(19\) −69.7002 −0.841597 −0.420798 0.907154i \(-0.638250\pi\)
−0.420798 + 0.907154i \(0.638250\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −41.3930 −0.401137
\(23\) −10.1643 −0.0921484 −0.0460742 0.998938i \(-0.514671\pi\)
−0.0460742 + 0.998938i \(0.514671\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −27.8278 −0.209903
\(27\) 0 0
\(28\) 145.578 0.982562
\(29\) 73.2803 0.469235 0.234617 0.972088i \(-0.424616\pi\)
0.234617 + 0.972088i \(0.424616\pi\)
\(30\) 0 0
\(31\) −290.970 −1.68580 −0.842898 0.538073i \(-0.819153\pi\)
−0.842898 + 0.538073i \(0.819153\pi\)
\(32\) −228.095 −1.26006
\(33\) 0 0
\(34\) 32.6940 0.164911
\(35\) 0 0
\(36\) 0 0
\(37\) 105.618 0.469284 0.234642 0.972082i \(-0.424608\pi\)
0.234642 + 0.972082i \(0.424608\pi\)
\(38\) −262.282 −1.11968
\(39\) 0 0
\(40\) 0 0
\(41\) −40.5108 −0.154310 −0.0771551 0.997019i \(-0.524584\pi\)
−0.0771551 + 0.997019i \(0.524584\pi\)
\(42\) 0 0
\(43\) 77.3133 0.274190 0.137095 0.990558i \(-0.456223\pi\)
0.137095 + 0.990558i \(0.456223\pi\)
\(44\) −67.7621 −0.232171
\(45\) 0 0
\(46\) −38.2485 −0.122596
\(47\) −472.981 −1.46790 −0.733951 0.679202i \(-0.762326\pi\)
−0.733951 + 0.679202i \(0.762326\pi\)
\(48\) 0 0
\(49\) 215.477 0.628212
\(50\) 0 0
\(51\) 0 0
\(52\) −45.5553 −0.121488
\(53\) 205.479 0.532541 0.266271 0.963898i \(-0.414208\pi\)
0.266271 + 0.963898i \(0.414208\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −163.610 −0.390416
\(57\) 0 0
\(58\) 275.754 0.624281
\(59\) −330.261 −0.728751 −0.364376 0.931252i \(-0.618718\pi\)
−0.364376 + 0.931252i \(0.618718\pi\)
\(60\) 0 0
\(61\) −931.991 −1.95622 −0.978109 0.208094i \(-0.933274\pi\)
−0.978109 + 0.208094i \(0.933274\pi\)
\(62\) −1094.92 −2.24282
\(63\) 0 0
\(64\) −255.653 −0.499323
\(65\) 0 0
\(66\) 0 0
\(67\) 418.252 0.762652 0.381326 0.924441i \(-0.375468\pi\)
0.381326 + 0.924441i \(0.375468\pi\)
\(68\) 53.5215 0.0954475
\(69\) 0 0
\(70\) 0 0
\(71\) 506.329 0.846340 0.423170 0.906050i \(-0.360917\pi\)
0.423170 + 0.906050i \(0.360917\pi\)
\(72\) 0 0
\(73\) −612.497 −0.982018 −0.491009 0.871154i \(-0.663372\pi\)
−0.491009 + 0.871154i \(0.663372\pi\)
\(74\) 397.441 0.624346
\(75\) 0 0
\(76\) −429.367 −0.648050
\(77\) −259.953 −0.384733
\(78\) 0 0
\(79\) 54.6657 0.0778528 0.0389264 0.999242i \(-0.487606\pi\)
0.0389264 + 0.999242i \(0.487606\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −152.442 −0.205298
\(83\) 538.964 0.712759 0.356379 0.934341i \(-0.384011\pi\)
0.356379 + 0.934341i \(0.384011\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 290.930 0.364788
\(87\) 0 0
\(88\) 76.1552 0.0922519
\(89\) −781.086 −0.930280 −0.465140 0.885237i \(-0.653996\pi\)
−0.465140 + 0.885237i \(0.653996\pi\)
\(90\) 0 0
\(91\) −174.762 −0.201319
\(92\) −62.6144 −0.0709565
\(93\) 0 0
\(94\) −1779.83 −1.95293
\(95\) 0 0
\(96\) 0 0
\(97\) 531.762 0.556621 0.278311 0.960491i \(-0.410226\pi\)
0.278311 + 0.960491i \(0.410226\pi\)
\(98\) 810.839 0.835787
\(99\) 0 0
\(100\) 0 0
\(101\) −1898.16 −1.87004 −0.935022 0.354591i \(-0.884620\pi\)
−0.935022 + 0.354591i \(0.884620\pi\)
\(102\) 0 0
\(103\) −1308.66 −1.25190 −0.625952 0.779861i \(-0.715290\pi\)
−0.625952 + 0.779861i \(0.715290\pi\)
\(104\) 51.1978 0.0482727
\(105\) 0 0
\(106\) 773.218 0.708505
\(107\) 206.655 0.186711 0.0933554 0.995633i \(-0.470241\pi\)
0.0933554 + 0.995633i \(0.470241\pi\)
\(108\) 0 0
\(109\) 595.701 0.523466 0.261733 0.965140i \(-0.415706\pi\)
0.261733 + 0.965140i \(0.415706\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1780.29 −1.50198
\(113\) 1513.00 1.25957 0.629785 0.776769i \(-0.283143\pi\)
0.629785 + 0.776769i \(0.283143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 451.421 0.361322
\(117\) 0 0
\(118\) −1242.77 −0.969547
\(119\) 205.322 0.158167
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −3507.09 −2.60260
\(123\) 0 0
\(124\) −1792.43 −1.29810
\(125\) 0 0
\(126\) 0 0
\(127\) −77.9297 −0.0544499 −0.0272250 0.999629i \(-0.508667\pi\)
−0.0272250 + 0.999629i \(0.508667\pi\)
\(128\) 862.735 0.595748
\(129\) 0 0
\(130\) 0 0
\(131\) 8.60213 0.00573719 0.00286859 0.999996i \(-0.499087\pi\)
0.00286859 + 0.999996i \(0.499087\pi\)
\(132\) 0 0
\(133\) −1647.16 −1.07389
\(134\) 1573.89 1.01465
\(135\) 0 0
\(136\) −60.1507 −0.0379256
\(137\) −665.161 −0.414807 −0.207403 0.978255i \(-0.566501\pi\)
−0.207403 + 0.978255i \(0.566501\pi\)
\(138\) 0 0
\(139\) 745.658 0.455006 0.227503 0.973777i \(-0.426944\pi\)
0.227503 + 0.973777i \(0.426944\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1905.32 1.12599
\(143\) 81.3462 0.0475700
\(144\) 0 0
\(145\) 0 0
\(146\) −2304.83 −1.30650
\(147\) 0 0
\(148\) 650.628 0.361360
\(149\) 2398.49 1.31874 0.659370 0.751819i \(-0.270823\pi\)
0.659370 + 0.751819i \(0.270823\pi\)
\(150\) 0 0
\(151\) −3254.28 −1.75384 −0.876920 0.480637i \(-0.840405\pi\)
−0.876920 + 0.480637i \(0.840405\pi\)
\(152\) 482.549 0.257499
\(153\) 0 0
\(154\) −978.205 −0.511857
\(155\) 0 0
\(156\) 0 0
\(157\) −2492.15 −1.26685 −0.633424 0.773805i \(-0.718351\pi\)
−0.633424 + 0.773805i \(0.718351\pi\)
\(158\) 205.707 0.103577
\(159\) 0 0
\(160\) 0 0
\(161\) −240.205 −0.117583
\(162\) 0 0
\(163\) 807.550 0.388050 0.194025 0.980997i \(-0.437846\pi\)
0.194025 + 0.980997i \(0.437846\pi\)
\(164\) −249.554 −0.118823
\(165\) 0 0
\(166\) 2028.12 0.948270
\(167\) 1833.28 0.849484 0.424742 0.905314i \(-0.360365\pi\)
0.424742 + 0.905314i \(0.360365\pi\)
\(168\) 0 0
\(169\) −2142.31 −0.975108
\(170\) 0 0
\(171\) 0 0
\(172\) 476.265 0.211133
\(173\) −1046.74 −0.460011 −0.230005 0.973189i \(-0.573874\pi\)
−0.230005 + 0.973189i \(0.573874\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 828.669 0.354905
\(177\) 0 0
\(178\) −2939.23 −1.23767
\(179\) −1880.80 −0.785348 −0.392674 0.919678i \(-0.628450\pi\)
−0.392674 + 0.919678i \(0.628450\pi\)
\(180\) 0 0
\(181\) −1921.82 −0.789216 −0.394608 0.918850i \(-0.629120\pi\)
−0.394608 + 0.918850i \(0.629120\pi\)
\(182\) −657.630 −0.267840
\(183\) 0 0
\(184\) 70.3698 0.0281942
\(185\) 0 0
\(186\) 0 0
\(187\) −95.5711 −0.0373735
\(188\) −2913.66 −1.13032
\(189\) 0 0
\(190\) 0 0
\(191\) −203.716 −0.0771747 −0.0385874 0.999255i \(-0.512286\pi\)
−0.0385874 + 0.999255i \(0.512286\pi\)
\(192\) 0 0
\(193\) −2858.36 −1.06606 −0.533030 0.846096i \(-0.678947\pi\)
−0.533030 + 0.846096i \(0.678947\pi\)
\(194\) 2001.02 0.740542
\(195\) 0 0
\(196\) 1327.38 0.483738
\(197\) −1140.57 −0.412499 −0.206250 0.978499i \(-0.566126\pi\)
−0.206250 + 0.978499i \(0.566126\pi\)
\(198\) 0 0
\(199\) −3223.56 −1.14830 −0.574151 0.818749i \(-0.694668\pi\)
−0.574151 + 0.818749i \(0.694668\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7142.80 −2.48795
\(203\) 1731.77 0.598750
\(204\) 0 0
\(205\) 0 0
\(206\) −4924.50 −1.66556
\(207\) 0 0
\(208\) 557.100 0.185711
\(209\) 766.703 0.253751
\(210\) 0 0
\(211\) 1679.38 0.547930 0.273965 0.961740i \(-0.411665\pi\)
0.273965 + 0.961740i \(0.411665\pi\)
\(212\) 1265.79 0.410070
\(213\) 0 0
\(214\) 777.642 0.248404
\(215\) 0 0
\(216\) 0 0
\(217\) −6876.23 −2.15110
\(218\) 2241.62 0.696431
\(219\) 0 0
\(220\) 0 0
\(221\) −64.2508 −0.0195565
\(222\) 0 0
\(223\) 6121.75 1.83831 0.919154 0.393898i \(-0.128874\pi\)
0.919154 + 0.393898i \(0.128874\pi\)
\(224\) −5390.36 −1.60785
\(225\) 0 0
\(226\) 5693.44 1.67576
\(227\) −1760.23 −0.514671 −0.257335 0.966322i \(-0.582845\pi\)
−0.257335 + 0.966322i \(0.582845\pi\)
\(228\) 0 0
\(229\) −5780.58 −1.66808 −0.834042 0.551700i \(-0.813979\pi\)
−0.834042 + 0.551700i \(0.813979\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −507.334 −0.143569
\(233\) 5433.94 1.52785 0.763925 0.645305i \(-0.223270\pi\)
0.763925 + 0.645305i \(0.223270\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2034.47 −0.561156
\(237\) 0 0
\(238\) 772.629 0.210429
\(239\) −583.827 −0.158011 −0.0790055 0.996874i \(-0.525174\pi\)
−0.0790055 + 0.996874i \(0.525174\pi\)
\(240\) 0 0
\(241\) 4217.86 1.12737 0.563686 0.825989i \(-0.309383\pi\)
0.563686 + 0.825989i \(0.309383\pi\)
\(242\) 455.323 0.120948
\(243\) 0 0
\(244\) −5741.25 −1.50633
\(245\) 0 0
\(246\) 0 0
\(247\) 515.441 0.132780
\(248\) 2014.44 0.515795
\(249\) 0 0
\(250\) 0 0
\(251\) 4836.75 1.21631 0.608153 0.793820i \(-0.291911\pi\)
0.608153 + 0.793820i \(0.291911\pi\)
\(252\) 0 0
\(253\) 111.808 0.0277838
\(254\) −293.250 −0.0724414
\(255\) 0 0
\(256\) 5291.70 1.29192
\(257\) −4654.14 −1.12964 −0.564819 0.825215i \(-0.691054\pi\)
−0.564819 + 0.825215i \(0.691054\pi\)
\(258\) 0 0
\(259\) 2495.98 0.598813
\(260\) 0 0
\(261\) 0 0
\(262\) 32.3698 0.00763288
\(263\) 5102.11 1.19624 0.598118 0.801408i \(-0.295916\pi\)
0.598118 + 0.801408i \(0.295916\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6198.28 −1.42873
\(267\) 0 0
\(268\) 2576.52 0.587260
\(269\) −4475.15 −1.01433 −0.507165 0.861849i \(-0.669306\pi\)
−0.507165 + 0.861849i \(0.669306\pi\)
\(270\) 0 0
\(271\) −7829.40 −1.75499 −0.877495 0.479586i \(-0.840787\pi\)
−0.877495 + 0.479586i \(0.840787\pi\)
\(272\) −654.519 −0.145905
\(273\) 0 0
\(274\) −2503.00 −0.551868
\(275\) 0 0
\(276\) 0 0
\(277\) −3692.51 −0.800943 −0.400472 0.916309i \(-0.631154\pi\)
−0.400472 + 0.916309i \(0.631154\pi\)
\(278\) 2805.91 0.605351
\(279\) 0 0
\(280\) 0 0
\(281\) 1296.21 0.275179 0.137589 0.990489i \(-0.456065\pi\)
0.137589 + 0.990489i \(0.456065\pi\)
\(282\) 0 0
\(283\) −1168.50 −0.245442 −0.122721 0.992441i \(-0.539162\pi\)
−0.122721 + 0.992441i \(0.539162\pi\)
\(284\) 3119.08 0.651703
\(285\) 0 0
\(286\) 306.106 0.0632882
\(287\) −957.355 −0.196902
\(288\) 0 0
\(289\) −4837.51 −0.984635
\(290\) 0 0
\(291\) 0 0
\(292\) −3773.10 −0.756178
\(293\) −8879.43 −1.77045 −0.885224 0.465164i \(-0.845995\pi\)
−0.885224 + 0.465164i \(0.845995\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −731.215 −0.143584
\(297\) 0 0
\(298\) 9025.54 1.75448
\(299\) 75.1665 0.0145384
\(300\) 0 0
\(301\) 1827.08 0.349870
\(302\) −12245.9 −2.33335
\(303\) 0 0
\(304\) 5250.77 0.990632
\(305\) 0 0
\(306\) 0 0
\(307\) 4724.14 0.878244 0.439122 0.898427i \(-0.355290\pi\)
0.439122 + 0.898427i \(0.355290\pi\)
\(308\) −1601.36 −0.296253
\(309\) 0 0
\(310\) 0 0
\(311\) −53.7156 −0.00979399 −0.00489700 0.999988i \(-0.501559\pi\)
−0.00489700 + 0.999988i \(0.501559\pi\)
\(312\) 0 0
\(313\) 4663.77 0.842210 0.421105 0.907012i \(-0.361642\pi\)
0.421105 + 0.907012i \(0.361642\pi\)
\(314\) −9377.96 −1.68544
\(315\) 0 0
\(316\) 336.751 0.0599486
\(317\) 8664.97 1.53525 0.767624 0.640901i \(-0.221439\pi\)
0.767624 + 0.640901i \(0.221439\pi\)
\(318\) 0 0
\(319\) −806.084 −0.141480
\(320\) 0 0
\(321\) 0 0
\(322\) −903.892 −0.156435
\(323\) −605.575 −0.104319
\(324\) 0 0
\(325\) 0 0
\(326\) 3038.81 0.516271
\(327\) 0 0
\(328\) 280.464 0.0472135
\(329\) −11177.5 −1.87306
\(330\) 0 0
\(331\) −3422.54 −0.568337 −0.284169 0.958774i \(-0.591718\pi\)
−0.284169 + 0.958774i \(0.591718\pi\)
\(332\) 3320.12 0.548841
\(333\) 0 0
\(334\) 6898.66 1.13017
\(335\) 0 0
\(336\) 0 0
\(337\) −118.863 −0.0192134 −0.00960668 0.999954i \(-0.503058\pi\)
−0.00960668 + 0.999954i \(0.503058\pi\)
\(338\) −8061.53 −1.29731
\(339\) 0 0
\(340\) 0 0
\(341\) 3200.67 0.508287
\(342\) 0 0
\(343\) −3013.65 −0.474407
\(344\) −535.255 −0.0838925
\(345\) 0 0
\(346\) −3938.87 −0.612009
\(347\) −10434.7 −1.61431 −0.807154 0.590341i \(-0.798993\pi\)
−0.807154 + 0.590341i \(0.798993\pi\)
\(348\) 0 0
\(349\) 7528.91 1.15477 0.577383 0.816473i \(-0.304074\pi\)
0.577383 + 0.816473i \(0.304074\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2509.04 0.379922
\(353\) −215.454 −0.0324857 −0.0162428 0.999868i \(-0.505170\pi\)
−0.0162428 + 0.999868i \(0.505170\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4811.64 −0.716338
\(357\) 0 0
\(358\) −7077.45 −1.04485
\(359\) −9105.02 −1.33856 −0.669282 0.743008i \(-0.733398\pi\)
−0.669282 + 0.743008i \(0.733398\pi\)
\(360\) 0 0
\(361\) −2000.88 −0.291715
\(362\) −7231.83 −1.04999
\(363\) 0 0
\(364\) −1076.57 −0.155021
\(365\) 0 0
\(366\) 0 0
\(367\) −3763.06 −0.535232 −0.267616 0.963526i \(-0.586236\pi\)
−0.267616 + 0.963526i \(0.586236\pi\)
\(368\) 765.717 0.108467
\(369\) 0 0
\(370\) 0 0
\(371\) 4855.90 0.679530
\(372\) 0 0
\(373\) −375.989 −0.0521929 −0.0260965 0.999659i \(-0.508308\pi\)
−0.0260965 + 0.999659i \(0.508308\pi\)
\(374\) −359.634 −0.0497226
\(375\) 0 0
\(376\) 3274.54 0.449127
\(377\) −541.916 −0.0740321
\(378\) 0 0
\(379\) 2967.48 0.402187 0.201094 0.979572i \(-0.435550\pi\)
0.201094 + 0.979572i \(0.435550\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −766.584 −0.102675
\(383\) −1550.93 −0.206916 −0.103458 0.994634i \(-0.532991\pi\)
−0.103458 + 0.994634i \(0.532991\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10756.0 −1.41831
\(387\) 0 0
\(388\) 3275.76 0.428612
\(389\) 7511.63 0.979061 0.489530 0.871986i \(-0.337168\pi\)
0.489530 + 0.871986i \(0.337168\pi\)
\(390\) 0 0
\(391\) −88.3107 −0.0114222
\(392\) −1491.79 −0.192211
\(393\) 0 0
\(394\) −4291.97 −0.548798
\(395\) 0 0
\(396\) 0 0
\(397\) −11125.1 −1.40643 −0.703217 0.710975i \(-0.748254\pi\)
−0.703217 + 0.710975i \(0.748254\pi\)
\(398\) −12130.3 −1.52773
\(399\) 0 0
\(400\) 0 0
\(401\) 13478.0 1.67845 0.839225 0.543784i \(-0.183009\pi\)
0.839225 + 0.543784i \(0.183009\pi\)
\(402\) 0 0
\(403\) 2151.75 0.265971
\(404\) −11693.1 −1.43998
\(405\) 0 0
\(406\) 6516.65 0.796591
\(407\) −1161.80 −0.141494
\(408\) 0 0
\(409\) 12911.4 1.56095 0.780474 0.625188i \(-0.214978\pi\)
0.780474 + 0.625188i \(0.214978\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8061.61 −0.963997
\(413\) −7804.76 −0.929897
\(414\) 0 0
\(415\) 0 0
\(416\) 1686.79 0.198802
\(417\) 0 0
\(418\) 2885.10 0.337596
\(419\) 8906.41 1.03844 0.519220 0.854640i \(-0.326222\pi\)
0.519220 + 0.854640i \(0.326222\pi\)
\(420\) 0 0
\(421\) 1852.36 0.214439 0.107219 0.994235i \(-0.465805\pi\)
0.107219 + 0.994235i \(0.465805\pi\)
\(422\) 6319.51 0.728978
\(423\) 0 0
\(424\) −1422.57 −0.162939
\(425\) 0 0
\(426\) 0 0
\(427\) −22024.9 −2.49616
\(428\) 1273.03 0.143772
\(429\) 0 0
\(430\) 0 0
\(431\) 4090.74 0.457178 0.228589 0.973523i \(-0.426589\pi\)
0.228589 + 0.973523i \(0.426589\pi\)
\(432\) 0 0
\(433\) −8253.94 −0.916071 −0.458036 0.888934i \(-0.651447\pi\)
−0.458036 + 0.888934i \(0.651447\pi\)
\(434\) −25875.3 −2.86187
\(435\) 0 0
\(436\) 3669.63 0.403082
\(437\) 708.458 0.0775518
\(438\) 0 0
\(439\) 979.240 0.106461 0.0532307 0.998582i \(-0.483048\pi\)
0.0532307 + 0.998582i \(0.483048\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −241.776 −0.0260183
\(443\) 89.5194 0.00960089 0.00480045 0.999988i \(-0.498472\pi\)
0.00480045 + 0.999988i \(0.498472\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 23036.2 2.44573
\(447\) 0 0
\(448\) −6041.63 −0.637143
\(449\) 17119.1 1.79933 0.899666 0.436579i \(-0.143810\pi\)
0.899666 + 0.436579i \(0.143810\pi\)
\(450\) 0 0
\(451\) 445.619 0.0465263
\(452\) 9320.40 0.969899
\(453\) 0 0
\(454\) −6623.74 −0.684730
\(455\) 0 0
\(456\) 0 0
\(457\) 1780.97 0.182298 0.0911492 0.995837i \(-0.470946\pi\)
0.0911492 + 0.995837i \(0.470946\pi\)
\(458\) −21752.3 −2.21926
\(459\) 0 0
\(460\) 0 0
\(461\) 7216.14 0.729043 0.364522 0.931195i \(-0.381233\pi\)
0.364522 + 0.931195i \(0.381233\pi\)
\(462\) 0 0
\(463\) −9451.28 −0.948679 −0.474339 0.880342i \(-0.657313\pi\)
−0.474339 + 0.880342i \(0.657313\pi\)
\(464\) −5520.47 −0.552330
\(465\) 0 0
\(466\) 20447.9 2.03269
\(467\) 7188.38 0.712289 0.356144 0.934431i \(-0.384091\pi\)
0.356144 + 0.934431i \(0.384091\pi\)
\(468\) 0 0
\(469\) 9884.19 0.973154
\(470\) 0 0
\(471\) 0 0
\(472\) 2286.46 0.222972
\(473\) −850.446 −0.0826714
\(474\) 0 0
\(475\) 0 0
\(476\) 1264.83 0.121792
\(477\) 0 0
\(478\) −2196.94 −0.210221
\(479\) 8224.85 0.784558 0.392279 0.919846i \(-0.371687\pi\)
0.392279 + 0.919846i \(0.371687\pi\)
\(480\) 0 0
\(481\) −781.058 −0.0740399
\(482\) 15871.8 1.49988
\(483\) 0 0
\(484\) 745.383 0.0700022
\(485\) 0 0
\(486\) 0 0
\(487\) 4817.49 0.448257 0.224129 0.974560i \(-0.428046\pi\)
0.224129 + 0.974560i \(0.428046\pi\)
\(488\) 6452.36 0.598534
\(489\) 0 0
\(490\) 0 0
\(491\) 4944.04 0.454422 0.227211 0.973846i \(-0.427039\pi\)
0.227211 + 0.973846i \(0.427039\pi\)
\(492\) 0 0
\(493\) 636.680 0.0581635
\(494\) 1939.61 0.176654
\(495\) 0 0
\(496\) 21919.8 1.98433
\(497\) 11965.6 1.07994
\(498\) 0 0
\(499\) −3616.97 −0.324485 −0.162242 0.986751i \(-0.551873\pi\)
−0.162242 + 0.986751i \(0.551873\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 18200.7 1.61820
\(503\) −1176.71 −0.104308 −0.0521540 0.998639i \(-0.516609\pi\)
−0.0521540 + 0.998639i \(0.516609\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 420.733 0.0369642
\(507\) 0 0
\(508\) −480.062 −0.0419278
\(509\) 14606.6 1.27196 0.635981 0.771705i \(-0.280596\pi\)
0.635981 + 0.771705i \(0.280596\pi\)
\(510\) 0 0
\(511\) −14474.6 −1.25307
\(512\) 13010.8 1.12305
\(513\) 0 0
\(514\) −17513.5 −1.50290
\(515\) 0 0
\(516\) 0 0
\(517\) 5202.79 0.442589
\(518\) 9392.38 0.796674
\(519\) 0 0
\(520\) 0 0
\(521\) −4175.52 −0.351119 −0.175559 0.984469i \(-0.556173\pi\)
−0.175559 + 0.984469i \(0.556173\pi\)
\(522\) 0 0
\(523\) −7136.72 −0.596686 −0.298343 0.954459i \(-0.596434\pi\)
−0.298343 + 0.954459i \(0.596434\pi\)
\(524\) 52.9908 0.00441777
\(525\) 0 0
\(526\) 19199.3 1.59150
\(527\) −2528.03 −0.208961
\(528\) 0 0
\(529\) −12063.7 −0.991509
\(530\) 0 0
\(531\) 0 0
\(532\) −10146.8 −0.826920
\(533\) 299.582 0.0243458
\(534\) 0 0
\(535\) 0 0
\(536\) −2895.64 −0.233345
\(537\) 0 0
\(538\) −16840.0 −1.34949
\(539\) −2370.24 −0.189413
\(540\) 0 0
\(541\) 18984.0 1.50866 0.754329 0.656496i \(-0.227962\pi\)
0.754329 + 0.656496i \(0.227962\pi\)
\(542\) −29462.1 −2.33488
\(543\) 0 0
\(544\) −1981.75 −0.156189
\(545\) 0 0
\(546\) 0 0
\(547\) −13084.1 −1.02273 −0.511366 0.859363i \(-0.670860\pi\)
−0.511366 + 0.859363i \(0.670860\pi\)
\(548\) −4097.52 −0.319411
\(549\) 0 0
\(550\) 0 0
\(551\) −5107.66 −0.394907
\(552\) 0 0
\(553\) 1291.87 0.0993413
\(554\) −13894.9 −1.06559
\(555\) 0 0
\(556\) 4593.40 0.350366
\(557\) −11677.1 −0.888284 −0.444142 0.895956i \(-0.646491\pi\)
−0.444142 + 0.895956i \(0.646491\pi\)
\(558\) 0 0
\(559\) −571.740 −0.0432595
\(560\) 0 0
\(561\) 0 0
\(562\) 4877.63 0.366104
\(563\) 13214.1 0.989180 0.494590 0.869127i \(-0.335318\pi\)
0.494590 + 0.869127i \(0.335318\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4397.06 −0.326541
\(567\) 0 0
\(568\) −3505.41 −0.258951
\(569\) 22207.0 1.63614 0.818070 0.575118i \(-0.195044\pi\)
0.818070 + 0.575118i \(0.195044\pi\)
\(570\) 0 0
\(571\) −7251.49 −0.531463 −0.265731 0.964047i \(-0.585613\pi\)
−0.265731 + 0.964047i \(0.585613\pi\)
\(572\) 501.109 0.0366301
\(573\) 0 0
\(574\) −3602.53 −0.261963
\(575\) 0 0
\(576\) 0 0
\(577\) 8190.57 0.590949 0.295475 0.955351i \(-0.404522\pi\)
0.295475 + 0.955351i \(0.404522\pi\)
\(578\) −18203.6 −1.30998
\(579\) 0 0
\(580\) 0 0
\(581\) 12736.9 0.909490
\(582\) 0 0
\(583\) −2260.27 −0.160567
\(584\) 4240.44 0.300463
\(585\) 0 0
\(586\) −33413.3 −2.35545
\(587\) 9678.56 0.680540 0.340270 0.940328i \(-0.389482\pi\)
0.340270 + 0.940328i \(0.389482\pi\)
\(588\) 0 0
\(589\) 20280.7 1.41876
\(590\) 0 0
\(591\) 0 0
\(592\) −7956.59 −0.552388
\(593\) −12938.6 −0.895994 −0.447997 0.894035i \(-0.647863\pi\)
−0.447997 + 0.894035i \(0.647863\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 14775.2 1.01546
\(597\) 0 0
\(598\) 282.852 0.0193423
\(599\) 11678.3 0.796601 0.398300 0.917255i \(-0.369600\pi\)
0.398300 + 0.917255i \(0.369600\pi\)
\(600\) 0 0
\(601\) 17335.0 1.17655 0.588277 0.808660i \(-0.299807\pi\)
0.588277 + 0.808660i \(0.299807\pi\)
\(602\) 6875.29 0.465475
\(603\) 0 0
\(604\) −20047.0 −1.35050
\(605\) 0 0
\(606\) 0 0
\(607\) −10259.9 −0.686057 −0.343028 0.939325i \(-0.611453\pi\)
−0.343028 + 0.939325i \(0.611453\pi\)
\(608\) 15898.3 1.06046
\(609\) 0 0
\(610\) 0 0
\(611\) 3497.75 0.231594
\(612\) 0 0
\(613\) −8691.75 −0.572686 −0.286343 0.958127i \(-0.592440\pi\)
−0.286343 + 0.958127i \(0.592440\pi\)
\(614\) 17777.0 1.16844
\(615\) 0 0
\(616\) 1799.71 0.117715
\(617\) 7438.86 0.485377 0.242688 0.970104i \(-0.421971\pi\)
0.242688 + 0.970104i \(0.421971\pi\)
\(618\) 0 0
\(619\) −8091.72 −0.525418 −0.262709 0.964875i \(-0.584616\pi\)
−0.262709 + 0.964875i \(0.584616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −202.132 −0.0130301
\(623\) −18458.7 −1.18705
\(624\) 0 0
\(625\) 0 0
\(626\) 17549.8 1.12050
\(627\) 0 0
\(628\) −15352.1 −0.975503
\(629\) 917.639 0.0581696
\(630\) 0 0
\(631\) 10374.5 0.654518 0.327259 0.944935i \(-0.393875\pi\)
0.327259 + 0.944935i \(0.393875\pi\)
\(632\) −378.462 −0.0238202
\(633\) 0 0
\(634\) 32606.3 2.04253
\(635\) 0 0
\(636\) 0 0
\(637\) −1593.47 −0.0991142
\(638\) −3033.29 −0.188228
\(639\) 0 0
\(640\) 0 0
\(641\) −25560.8 −1.57502 −0.787511 0.616300i \(-0.788631\pi\)
−0.787511 + 0.616300i \(0.788631\pi\)
\(642\) 0 0
\(643\) 22746.6 1.39508 0.697541 0.716544i \(-0.254277\pi\)
0.697541 + 0.716544i \(0.254277\pi\)
\(644\) −1479.71 −0.0905415
\(645\) 0 0
\(646\) −2278.78 −0.138789
\(647\) 24638.3 1.49711 0.748555 0.663073i \(-0.230748\pi\)
0.748555 + 0.663073i \(0.230748\pi\)
\(648\) 0 0
\(649\) 3632.87 0.219727
\(650\) 0 0
\(651\) 0 0
\(652\) 4974.66 0.298808
\(653\) −17926.1 −1.07428 −0.537139 0.843493i \(-0.680495\pi\)
−0.537139 + 0.843493i \(0.680495\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3051.82 0.181637
\(657\) 0 0
\(658\) −42061.1 −2.49197
\(659\) 28662.2 1.69426 0.847132 0.531382i \(-0.178327\pi\)
0.847132 + 0.531382i \(0.178327\pi\)
\(660\) 0 0
\(661\) 13447.8 0.791312 0.395656 0.918399i \(-0.370517\pi\)
0.395656 + 0.918399i \(0.370517\pi\)
\(662\) −12879.0 −0.756129
\(663\) 0 0
\(664\) −3731.35 −0.218079
\(665\) 0 0
\(666\) 0 0
\(667\) −744.847 −0.0432392
\(668\) 11293.4 0.654123
\(669\) 0 0
\(670\) 0 0
\(671\) 10251.9 0.589822
\(672\) 0 0
\(673\) 9621.01 0.551059 0.275529 0.961293i \(-0.411147\pi\)
0.275529 + 0.961293i \(0.411147\pi\)
\(674\) −447.283 −0.0255619
\(675\) 0 0
\(676\) −13197.1 −0.750857
\(677\) 15901.5 0.902723 0.451361 0.892341i \(-0.350939\pi\)
0.451361 + 0.892341i \(0.350939\pi\)
\(678\) 0 0
\(679\) 12566.7 0.710257
\(680\) 0 0
\(681\) 0 0
\(682\) 12044.1 0.676236
\(683\) 611.084 0.0342350 0.0171175 0.999853i \(-0.494551\pi\)
0.0171175 + 0.999853i \(0.494551\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −11340.4 −0.631162
\(687\) 0 0
\(688\) −5824.29 −0.322745
\(689\) −1519.54 −0.0840201
\(690\) 0 0
\(691\) 24067.1 1.32497 0.662487 0.749074i \(-0.269501\pi\)
0.662487 + 0.749074i \(0.269501\pi\)
\(692\) −6448.09 −0.354219
\(693\) 0 0
\(694\) −39265.9 −2.14771
\(695\) 0 0
\(696\) 0 0
\(697\) −351.969 −0.0191274
\(698\) 28331.3 1.53633
\(699\) 0 0
\(700\) 0 0
\(701\) −10093.5 −0.543834 −0.271917 0.962321i \(-0.587658\pi\)
−0.271917 + 0.962321i \(0.587658\pi\)
\(702\) 0 0
\(703\) −7361.61 −0.394948
\(704\) 2812.19 0.150551
\(705\) 0 0
\(706\) −810.753 −0.0432197
\(707\) −44857.6 −2.38620
\(708\) 0 0
\(709\) −4970.98 −0.263313 −0.131657 0.991295i \(-0.542030\pi\)
−0.131657 + 0.991295i \(0.542030\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 5407.61 0.284633
\(713\) 2957.52 0.155343
\(714\) 0 0
\(715\) 0 0
\(716\) −11586.1 −0.604737
\(717\) 0 0
\(718\) −34262.2 −1.78086
\(719\) 35411.6 1.83676 0.918381 0.395698i \(-0.129497\pi\)
0.918381 + 0.395698i \(0.129497\pi\)
\(720\) 0 0
\(721\) −30926.4 −1.59745
\(722\) −7529.30 −0.388105
\(723\) 0 0
\(724\) −11838.8 −0.607715
\(725\) 0 0
\(726\) 0 0
\(727\) −34598.6 −1.76505 −0.882525 0.470266i \(-0.844158\pi\)
−0.882525 + 0.470266i \(0.844158\pi\)
\(728\) 1209.91 0.0615966
\(729\) 0 0
\(730\) 0 0
\(731\) 671.719 0.0339869
\(732\) 0 0
\(733\) 32108.2 1.61793 0.808966 0.587856i \(-0.200028\pi\)
0.808966 + 0.587856i \(0.200028\pi\)
\(734\) −14160.4 −0.712085
\(735\) 0 0
\(736\) 2318.44 0.116112
\(737\) −4600.78 −0.229948
\(738\) 0 0
\(739\) −27536.9 −1.37072 −0.685359 0.728206i \(-0.740355\pi\)
−0.685359 + 0.728206i \(0.740355\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 18272.8 0.904062
\(743\) 2437.44 0.120351 0.0601757 0.998188i \(-0.480834\pi\)
0.0601757 + 0.998188i \(0.480834\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1414.85 −0.0694386
\(747\) 0 0
\(748\) −588.736 −0.0287785
\(749\) 4883.69 0.238246
\(750\) 0 0
\(751\) −29534.7 −1.43507 −0.717534 0.696523i \(-0.754729\pi\)
−0.717534 + 0.696523i \(0.754729\pi\)
\(752\) 35631.4 1.72785
\(753\) 0 0
\(754\) −2039.23 −0.0984940
\(755\) 0 0
\(756\) 0 0
\(757\) −747.476 −0.0358883 −0.0179442 0.999839i \(-0.505712\pi\)
−0.0179442 + 0.999839i \(0.505712\pi\)
\(758\) 11166.6 0.535079
\(759\) 0 0
\(760\) 0 0
\(761\) 21031.2 1.00181 0.500906 0.865502i \(-0.333000\pi\)
0.500906 + 0.865502i \(0.333000\pi\)
\(762\) 0 0
\(763\) 14077.7 0.667950
\(764\) −1254.93 −0.0594264
\(765\) 0 0
\(766\) −5836.15 −0.275286
\(767\) 2442.32 0.114976
\(768\) 0 0
\(769\) 23107.4 1.08358 0.541790 0.840514i \(-0.317747\pi\)
0.541790 + 0.840514i \(0.317747\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −17608.1 −0.820892
\(773\) −24367.7 −1.13382 −0.566912 0.823778i \(-0.691862\pi\)
−0.566912 + 0.823778i \(0.691862\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −3681.49 −0.170307
\(777\) 0 0
\(778\) 28266.3 1.30256
\(779\) 2823.61 0.129867
\(780\) 0 0
\(781\) −5569.62 −0.255181
\(782\) −332.313 −0.0151963
\(783\) 0 0
\(784\) −16232.6 −0.739460
\(785\) 0 0
\(786\) 0 0
\(787\) 11308.1 0.512188 0.256094 0.966652i \(-0.417564\pi\)
0.256094 + 0.966652i \(0.417564\pi\)
\(788\) −7026.14 −0.317634
\(789\) 0 0
\(790\) 0 0
\(791\) 35755.5 1.60723
\(792\) 0 0
\(793\) 6892.18 0.308636
\(794\) −41863.9 −1.87115
\(795\) 0 0
\(796\) −19857.8 −0.884221
\(797\) −43620.5 −1.93867 −0.969333 0.245752i \(-0.920965\pi\)
−0.969333 + 0.245752i \(0.920965\pi\)
\(798\) 0 0
\(799\) −4109.39 −0.181952
\(800\) 0 0
\(801\) 0 0
\(802\) 50717.7 2.23305
\(803\) 6737.47 0.296090
\(804\) 0 0
\(805\) 0 0
\(806\) 8097.06 0.353854
\(807\) 0 0
\(808\) 13141.4 0.572168
\(809\) 7491.05 0.325551 0.162776 0.986663i \(-0.447955\pi\)
0.162776 + 0.986663i \(0.447955\pi\)
\(810\) 0 0
\(811\) −7335.75 −0.317624 −0.158812 0.987309i \(-0.550766\pi\)
−0.158812 + 0.987309i \(0.550766\pi\)
\(812\) 10668.0 0.461052
\(813\) 0 0
\(814\) −4371.85 −0.188247
\(815\) 0 0
\(816\) 0 0
\(817\) −5388.76 −0.230757
\(818\) 48585.7 2.07672
\(819\) 0 0
\(820\) 0 0
\(821\) 37482.9 1.59338 0.796689 0.604390i \(-0.206583\pi\)
0.796689 + 0.604390i \(0.206583\pi\)
\(822\) 0 0
\(823\) 1213.87 0.0514128 0.0257064 0.999670i \(-0.491816\pi\)
0.0257064 + 0.999670i \(0.491816\pi\)
\(824\) 9060.12 0.383039
\(825\) 0 0
\(826\) −29369.4 −1.23716
\(827\) 7999.10 0.336343 0.168172 0.985758i \(-0.446214\pi\)
0.168172 + 0.985758i \(0.446214\pi\)
\(828\) 0 0
\(829\) −14809.5 −0.620451 −0.310225 0.950663i \(-0.600405\pi\)
−0.310225 + 0.950663i \(0.600405\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1890.58 0.0787791
\(833\) 1872.12 0.0778693
\(834\) 0 0
\(835\) 0 0
\(836\) 4723.04 0.195394
\(837\) 0 0
\(838\) 33514.8 1.38156
\(839\) 44598.1 1.83516 0.917578 0.397555i \(-0.130141\pi\)
0.917578 + 0.397555i \(0.130141\pi\)
\(840\) 0 0
\(841\) −19019.0 −0.779819
\(842\) 6970.45 0.285294
\(843\) 0 0
\(844\) 10345.3 0.421919
\(845\) 0 0
\(846\) 0 0
\(847\) 2859.49 0.116001
\(848\) −15479.5 −0.626848
\(849\) 0 0
\(850\) 0 0
\(851\) −1073.54 −0.0432438
\(852\) 0 0
\(853\) 28250.2 1.13396 0.566980 0.823732i \(-0.308112\pi\)
0.566980 + 0.823732i \(0.308112\pi\)
\(854\) −82879.9 −3.32095
\(855\) 0 0
\(856\) −1430.71 −0.0571270
\(857\) −28018.4 −1.11679 −0.558395 0.829575i \(-0.688583\pi\)
−0.558395 + 0.829575i \(0.688583\pi\)
\(858\) 0 0
\(859\) 17367.5 0.689837 0.344919 0.938633i \(-0.387906\pi\)
0.344919 + 0.938633i \(0.387906\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 15393.4 0.608240
\(863\) 49064.8 1.93532 0.967662 0.252252i \(-0.0811712\pi\)
0.967662 + 0.252252i \(0.0811712\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −31059.6 −1.21876
\(867\) 0 0
\(868\) −42358.9 −1.65640
\(869\) −601.323 −0.0234735
\(870\) 0 0
\(871\) −3093.02 −0.120325
\(872\) −4124.15 −0.160162
\(873\) 0 0
\(874\) 2665.93 0.103177
\(875\) 0 0
\(876\) 0 0
\(877\) 42355.0 1.63082 0.815409 0.578885i \(-0.196512\pi\)
0.815409 + 0.578885i \(0.196512\pi\)
\(878\) 3684.89 0.141639
\(879\) 0 0
\(880\) 0 0
\(881\) 36424.8 1.39294 0.696472 0.717584i \(-0.254752\pi\)
0.696472 + 0.717584i \(0.254752\pi\)
\(882\) 0 0
\(883\) −27158.6 −1.03506 −0.517532 0.855664i \(-0.673149\pi\)
−0.517532 + 0.855664i \(0.673149\pi\)
\(884\) −395.797 −0.0150589
\(885\) 0 0
\(886\) 336.862 0.0127732
\(887\) −45832.2 −1.73494 −0.867472 0.497486i \(-0.834257\pi\)
−0.867472 + 0.497486i \(0.834257\pi\)
\(888\) 0 0
\(889\) −1841.64 −0.0694789
\(890\) 0 0
\(891\) 0 0
\(892\) 37711.2 1.41554
\(893\) 32966.9 1.23538
\(894\) 0 0
\(895\) 0 0
\(896\) 20388.2 0.760183
\(897\) 0 0
\(898\) 64419.2 2.39387
\(899\) −21322.4 −0.791035
\(900\) 0 0
\(901\) 1785.26 0.0660106
\(902\) 1676.86 0.0618996
\(903\) 0 0
\(904\) −10474.8 −0.385384
\(905\) 0 0
\(906\) 0 0
\(907\) 42596.1 1.55940 0.779702 0.626151i \(-0.215371\pi\)
0.779702 + 0.626151i \(0.215371\pi\)
\(908\) −10843.3 −0.396309
\(909\) 0 0
\(910\) 0 0
\(911\) −45531.0 −1.65588 −0.827941 0.560816i \(-0.810488\pi\)
−0.827941 + 0.560816i \(0.810488\pi\)
\(912\) 0 0
\(913\) −5928.60 −0.214905
\(914\) 6701.80 0.242534
\(915\) 0 0
\(916\) −35609.5 −1.28447
\(917\) 203.286 0.00732073
\(918\) 0 0
\(919\) 14353.6 0.515215 0.257607 0.966250i \(-0.417066\pi\)
0.257607 + 0.966250i \(0.417066\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 27154.3 0.969936
\(923\) −3744.36 −0.133529
\(924\) 0 0
\(925\) 0 0
\(926\) −35565.2 −1.26214
\(927\) 0 0
\(928\) −16714.9 −0.591263
\(929\) −38477.7 −1.35890 −0.679448 0.733724i \(-0.737781\pi\)
−0.679448 + 0.733724i \(0.737781\pi\)
\(930\) 0 0
\(931\) −15018.8 −0.528701
\(932\) 33474.1 1.17648
\(933\) 0 0
\(934\) 27049.9 0.947645
\(935\) 0 0
\(936\) 0 0
\(937\) −6917.67 −0.241185 −0.120592 0.992702i \(-0.538479\pi\)
−0.120592 + 0.992702i \(0.538479\pi\)
\(938\) 37194.2 1.29471
\(939\) 0 0
\(940\) 0 0
\(941\) −41270.2 −1.42972 −0.714862 0.699265i \(-0.753511\pi\)
−0.714862 + 0.699265i \(0.753511\pi\)
\(942\) 0 0
\(943\) 411.766 0.0142194
\(944\) 24879.7 0.857803
\(945\) 0 0
\(946\) −3200.23 −0.109988
\(947\) 7099.57 0.243617 0.121808 0.992554i \(-0.461131\pi\)
0.121808 + 0.992554i \(0.461131\pi\)
\(948\) 0 0
\(949\) 4529.48 0.154935
\(950\) 0 0
\(951\) 0 0
\(952\) −1421.49 −0.0483935
\(953\) −27983.8 −0.951191 −0.475595 0.879664i \(-0.657767\pi\)
−0.475595 + 0.879664i \(0.657767\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3596.49 −0.121672
\(957\) 0 0
\(958\) 30950.2 1.04379
\(959\) −15719.2 −0.529299
\(960\) 0 0
\(961\) 54872.3 1.84191
\(962\) −2939.12 −0.0985043
\(963\) 0 0
\(964\) 25982.9 0.868103
\(965\) 0 0
\(966\) 0 0
\(967\) 22702.4 0.754972 0.377486 0.926015i \(-0.376789\pi\)
0.377486 + 0.926015i \(0.376789\pi\)
\(968\) −837.707 −0.0278150
\(969\) 0 0
\(970\) 0 0
\(971\) −11642.7 −0.384791 −0.192396 0.981317i \(-0.561626\pi\)
−0.192396 + 0.981317i \(0.561626\pi\)
\(972\) 0 0
\(973\) 17621.5 0.580595
\(974\) 18128.2 0.596372
\(975\) 0 0
\(976\) 70210.2 2.30264
\(977\) 6166.32 0.201922 0.100961 0.994890i \(-0.467808\pi\)
0.100961 + 0.994890i \(0.467808\pi\)
\(978\) 0 0
\(979\) 8591.94 0.280490
\(980\) 0 0
\(981\) 0 0
\(982\) 18604.4 0.604573
\(983\) −18059.0 −0.585953 −0.292976 0.956120i \(-0.594646\pi\)
−0.292976 + 0.956120i \(0.594646\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2395.83 0.0773821
\(987\) 0 0
\(988\) 3175.22 0.102244
\(989\) −785.839 −0.0252662
\(990\) 0 0
\(991\) −62330.7 −1.99798 −0.998991 0.0449065i \(-0.985701\pi\)
−0.998991 + 0.0449065i \(0.985701\pi\)
\(992\) 66368.7 2.12420
\(993\) 0 0
\(994\) 45026.7 1.43678
\(995\) 0 0
\(996\) 0 0
\(997\) 13560.3 0.430752 0.215376 0.976531i \(-0.430902\pi\)
0.215376 + 0.976531i \(0.430902\pi\)
\(998\) −13610.7 −0.431702
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.v.1.3 3
3.2 odd 2 825.4.a.q.1.1 yes 3
5.4 even 2 2475.4.a.y.1.1 3
15.2 even 4 825.4.c.n.199.2 6
15.8 even 4 825.4.c.n.199.5 6
15.14 odd 2 825.4.a.o.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.o.1.3 3 15.14 odd 2
825.4.a.q.1.1 yes 3 3.2 odd 2
825.4.c.n.199.2 6 15.2 even 4
825.4.c.n.199.5 6 15.8 even 4
2475.4.a.v.1.3 3 1.1 even 1 trivial
2475.4.a.y.1.1 3 5.4 even 2