Properties

Label 2475.4.a.v.1.2
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3368.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 825)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.723686\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.723686 q^{2} -7.47628 q^{4} -1.13288 q^{7} +11.2000 q^{8} +O(q^{10})\) \(q-0.723686 q^{2} -7.47628 q^{4} -1.13288 q^{7} +11.2000 q^{8} -11.0000 q^{11} +21.8566 q^{13} +0.819851 q^{14} +51.7050 q^{16} +6.18033 q^{17} -92.8393 q^{19} +7.96054 q^{22} -36.7317 q^{23} -15.8173 q^{26} +8.46975 q^{28} -71.1375 q^{29} +186.522 q^{31} -127.018 q^{32} -4.47261 q^{34} +356.581 q^{37} +67.1865 q^{38} -271.940 q^{41} -155.780 q^{43} +82.2391 q^{44} +26.5822 q^{46} +234.566 q^{47} -341.717 q^{49} -163.406 q^{52} +195.018 q^{53} -12.6882 q^{56} +51.4812 q^{58} +455.930 q^{59} -441.278 q^{61} -134.983 q^{62} -321.719 q^{64} -133.005 q^{67} -46.2058 q^{68} +1041.68 q^{71} +160.119 q^{73} -258.053 q^{74} +694.093 q^{76} +12.4617 q^{77} -761.367 q^{79} +196.799 q^{82} +51.7170 q^{83} +112.736 q^{86} -123.200 q^{88} +1075.25 q^{89} -24.7609 q^{91} +274.616 q^{92} -169.752 q^{94} +703.238 q^{97} +247.295 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 7 q^{4} + 16 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 7 q^{4} + 16 q^{7} + 3 q^{8} - 33 q^{11} + 45 q^{13} + 116 q^{14} - 85 q^{16} + 58 q^{17} - 169 q^{19} + 11 q^{22} - 155 q^{23} - 167 q^{26} + 100 q^{28} + 277 q^{29} - 173 q^{31} - 97 q^{32} - 146 q^{34} + 60 q^{37} - 169 q^{38} - 44 q^{41} - 109 q^{43} - 77 q^{44} + 425 q^{46} - 270 q^{47} - 427 q^{49} + 45 q^{52} + 148 q^{53} - 168 q^{56} - 783 q^{58} + 684 q^{59} - 1038 q^{61} - 953 q^{62} - 1129 q^{64} + 314 q^{67} + 366 q^{68} + 1459 q^{71} - 1170 q^{73} + 1764 q^{74} + 211 q^{76} - 176 q^{77} - 506 q^{79} - 1040 q^{82} + 347 q^{83} + 527 q^{86} - 33 q^{88} + 607 q^{89} - 398 q^{91} - 687 q^{92} - 1822 q^{94} + 1263 q^{97} + 2273 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.723686 −0.255862 −0.127931 0.991783i \(-0.540834\pi\)
−0.127931 + 0.991783i \(0.540834\pi\)
\(3\) 0 0
\(4\) −7.47628 −0.934535
\(5\) 0 0
\(6\) 0 0
\(7\) −1.13288 −0.0611699 −0.0305850 0.999532i \(-0.509737\pi\)
−0.0305850 + 0.999532i \(0.509737\pi\)
\(8\) 11.2000 0.494973
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 21.8566 0.466302 0.233151 0.972441i \(-0.425096\pi\)
0.233151 + 0.972441i \(0.425096\pi\)
\(14\) 0.819851 0.0156510
\(15\) 0 0
\(16\) 51.7050 0.807890
\(17\) 6.18033 0.0881735 0.0440867 0.999028i \(-0.485962\pi\)
0.0440867 + 0.999028i \(0.485962\pi\)
\(18\) 0 0
\(19\) −92.8393 −1.12099 −0.560495 0.828158i \(-0.689389\pi\)
−0.560495 + 0.828158i \(0.689389\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 7.96054 0.0771452
\(23\) −36.7317 −0.333004 −0.166502 0.986041i \(-0.553247\pi\)
−0.166502 + 0.986041i \(0.553247\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −15.8173 −0.119309
\(27\) 0 0
\(28\) 8.46975 0.0571654
\(29\) −71.1375 −0.455514 −0.227757 0.973718i \(-0.573139\pi\)
−0.227757 + 0.973718i \(0.573139\pi\)
\(30\) 0 0
\(31\) 186.522 1.08065 0.540327 0.841455i \(-0.318301\pi\)
0.540327 + 0.841455i \(0.318301\pi\)
\(32\) −127.018 −0.701681
\(33\) 0 0
\(34\) −4.47261 −0.0225602
\(35\) 0 0
\(36\) 0 0
\(37\) 356.581 1.58437 0.792184 0.610282i \(-0.208944\pi\)
0.792184 + 0.610282i \(0.208944\pi\)
\(38\) 67.1865 0.286818
\(39\) 0 0
\(40\) 0 0
\(41\) −271.940 −1.03585 −0.517925 0.855426i \(-0.673295\pi\)
−0.517925 + 0.855426i \(0.673295\pi\)
\(42\) 0 0
\(43\) −155.780 −0.552470 −0.276235 0.961090i \(-0.589087\pi\)
−0.276235 + 0.961090i \(0.589087\pi\)
\(44\) 82.2391 0.281773
\(45\) 0 0
\(46\) 26.5822 0.0852028
\(47\) 234.566 0.727978 0.363989 0.931403i \(-0.381415\pi\)
0.363989 + 0.931403i \(0.381415\pi\)
\(48\) 0 0
\(49\) −341.717 −0.996258
\(50\) 0 0
\(51\) 0 0
\(52\) −163.406 −0.435775
\(53\) 195.018 0.505429 0.252715 0.967541i \(-0.418677\pi\)
0.252715 + 0.967541i \(0.418677\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −12.6882 −0.0302775
\(57\) 0 0
\(58\) 51.4812 0.116548
\(59\) 455.930 1.00605 0.503025 0.864272i \(-0.332220\pi\)
0.503025 + 0.864272i \(0.332220\pi\)
\(60\) 0 0
\(61\) −441.278 −0.926227 −0.463114 0.886299i \(-0.653268\pi\)
−0.463114 + 0.886299i \(0.653268\pi\)
\(62\) −134.983 −0.276498
\(63\) 0 0
\(64\) −321.719 −0.628357
\(65\) 0 0
\(66\) 0 0
\(67\) −133.005 −0.242524 −0.121262 0.992621i \(-0.538694\pi\)
−0.121262 + 0.992621i \(0.538694\pi\)
\(68\) −46.2058 −0.0824012
\(69\) 0 0
\(70\) 0 0
\(71\) 1041.68 1.74119 0.870596 0.491999i \(-0.163734\pi\)
0.870596 + 0.491999i \(0.163734\pi\)
\(72\) 0 0
\(73\) 160.119 0.256719 0.128360 0.991728i \(-0.459029\pi\)
0.128360 + 0.991728i \(0.459029\pi\)
\(74\) −258.053 −0.405379
\(75\) 0 0
\(76\) 694.093 1.04760
\(77\) 12.4617 0.0184434
\(78\) 0 0
\(79\) −761.367 −1.08431 −0.542155 0.840278i \(-0.682392\pi\)
−0.542155 + 0.840278i \(0.682392\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 196.799 0.265034
\(83\) 51.7170 0.0683938 0.0341969 0.999415i \(-0.489113\pi\)
0.0341969 + 0.999415i \(0.489113\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 112.736 0.141356
\(87\) 0 0
\(88\) −123.200 −0.149240
\(89\) 1075.25 1.28064 0.640318 0.768110i \(-0.278802\pi\)
0.640318 + 0.768110i \(0.278802\pi\)
\(90\) 0 0
\(91\) −24.7609 −0.0285236
\(92\) 274.616 0.311203
\(93\) 0 0
\(94\) −169.752 −0.186262
\(95\) 0 0
\(96\) 0 0
\(97\) 703.238 0.736114 0.368057 0.929803i \(-0.380023\pi\)
0.368057 + 0.929803i \(0.380023\pi\)
\(98\) 247.295 0.254904
\(99\) 0 0
\(100\) 0 0
\(101\) 856.886 0.844192 0.422096 0.906551i \(-0.361295\pi\)
0.422096 + 0.906551i \(0.361295\pi\)
\(102\) 0 0
\(103\) 805.989 0.771034 0.385517 0.922701i \(-0.374023\pi\)
0.385517 + 0.922701i \(0.374023\pi\)
\(104\) 244.793 0.230807
\(105\) 0 0
\(106\) −141.132 −0.129320
\(107\) −1608.55 −1.45331 −0.726654 0.687004i \(-0.758926\pi\)
−0.726654 + 0.687004i \(0.758926\pi\)
\(108\) 0 0
\(109\) −925.724 −0.813471 −0.406735 0.913546i \(-0.633333\pi\)
−0.406735 + 0.913546i \(0.633333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −58.5757 −0.0494186
\(113\) 1214.81 1.01133 0.505663 0.862731i \(-0.331248\pi\)
0.505663 + 0.862731i \(0.331248\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 531.844 0.425693
\(117\) 0 0
\(118\) −329.950 −0.257410
\(119\) −7.00159 −0.00539357
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 319.347 0.236986
\(123\) 0 0
\(124\) −1394.49 −1.00991
\(125\) 0 0
\(126\) 0 0
\(127\) −1128.96 −0.788810 −0.394405 0.918937i \(-0.629049\pi\)
−0.394405 + 0.918937i \(0.629049\pi\)
\(128\) 1248.97 0.862454
\(129\) 0 0
\(130\) 0 0
\(131\) 1562.32 1.04199 0.520993 0.853561i \(-0.325562\pi\)
0.520993 + 0.853561i \(0.325562\pi\)
\(132\) 0 0
\(133\) 105.176 0.0685708
\(134\) 96.2535 0.0620525
\(135\) 0 0
\(136\) 69.2194 0.0436435
\(137\) 44.9323 0.0280206 0.0140103 0.999902i \(-0.495540\pi\)
0.0140103 + 0.999902i \(0.495540\pi\)
\(138\) 0 0
\(139\) −415.574 −0.253587 −0.126793 0.991929i \(-0.540468\pi\)
−0.126793 + 0.991929i \(0.540468\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −753.849 −0.445504
\(143\) −240.422 −0.140595
\(144\) 0 0
\(145\) 0 0
\(146\) −115.876 −0.0656846
\(147\) 0 0
\(148\) −2665.90 −1.48065
\(149\) −678.402 −0.372999 −0.186499 0.982455i \(-0.559714\pi\)
−0.186499 + 0.982455i \(0.559714\pi\)
\(150\) 0 0
\(151\) 616.083 0.332027 0.166014 0.986123i \(-0.446910\pi\)
0.166014 + 0.986123i \(0.446910\pi\)
\(152\) −1039.80 −0.554860
\(153\) 0 0
\(154\) −9.01837 −0.00471896
\(155\) 0 0
\(156\) 0 0
\(157\) 616.599 0.313439 0.156720 0.987643i \(-0.449908\pi\)
0.156720 + 0.987643i \(0.449908\pi\)
\(158\) 550.991 0.277433
\(159\) 0 0
\(160\) 0 0
\(161\) 41.6127 0.0203698
\(162\) 0 0
\(163\) −2031.15 −0.976026 −0.488013 0.872836i \(-0.662278\pi\)
−0.488013 + 0.872836i \(0.662278\pi\)
\(164\) 2033.10 0.968038
\(165\) 0 0
\(166\) −37.4269 −0.0174993
\(167\) −2114.90 −0.979973 −0.489987 0.871730i \(-0.662998\pi\)
−0.489987 + 0.871730i \(0.662998\pi\)
\(168\) 0 0
\(169\) −1719.29 −0.782563
\(170\) 0 0
\(171\) 0 0
\(172\) 1164.65 0.516302
\(173\) −15.5096 −0.00681602 −0.00340801 0.999994i \(-0.501085\pi\)
−0.00340801 + 0.999994i \(0.501085\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −568.755 −0.243588
\(177\) 0 0
\(178\) −778.146 −0.327666
\(179\) −487.991 −0.203766 −0.101883 0.994796i \(-0.532487\pi\)
−0.101883 + 0.994796i \(0.532487\pi\)
\(180\) 0 0
\(181\) 1248.71 0.512795 0.256397 0.966571i \(-0.417464\pi\)
0.256397 + 0.966571i \(0.417464\pi\)
\(182\) 17.9191 0.00729810
\(183\) 0 0
\(184\) −411.393 −0.164828
\(185\) 0 0
\(186\) 0 0
\(187\) −67.9836 −0.0265853
\(188\) −1753.68 −0.680321
\(189\) 0 0
\(190\) 0 0
\(191\) 2571.60 0.974213 0.487107 0.873342i \(-0.338052\pi\)
0.487107 + 0.873342i \(0.338052\pi\)
\(192\) 0 0
\(193\) −1221.80 −0.455686 −0.227843 0.973698i \(-0.573167\pi\)
−0.227843 + 0.973698i \(0.573167\pi\)
\(194\) −508.924 −0.188343
\(195\) 0 0
\(196\) 2554.77 0.931038
\(197\) −1428.32 −0.516568 −0.258284 0.966069i \(-0.583157\pi\)
−0.258284 + 0.966069i \(0.583157\pi\)
\(198\) 0 0
\(199\) −816.166 −0.290736 −0.145368 0.989378i \(-0.546437\pi\)
−0.145368 + 0.989378i \(0.546437\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −620.116 −0.215996
\(203\) 80.5904 0.0278637
\(204\) 0 0
\(205\) 0 0
\(206\) −583.283 −0.197278
\(207\) 0 0
\(208\) 1130.09 0.376721
\(209\) 1021.23 0.337991
\(210\) 0 0
\(211\) −903.360 −0.294739 −0.147369 0.989082i \(-0.547081\pi\)
−0.147369 + 0.989082i \(0.547081\pi\)
\(212\) −1458.01 −0.472341
\(213\) 0 0
\(214\) 1164.08 0.371846
\(215\) 0 0
\(216\) 0 0
\(217\) −211.307 −0.0661035
\(218\) 669.934 0.208136
\(219\) 0 0
\(220\) 0 0
\(221\) 135.081 0.0411154
\(222\) 0 0
\(223\) −533.966 −0.160345 −0.0801727 0.996781i \(-0.525547\pi\)
−0.0801727 + 0.996781i \(0.525547\pi\)
\(224\) 143.896 0.0429218
\(225\) 0 0
\(226\) −879.142 −0.258760
\(227\) 696.531 0.203658 0.101829 0.994802i \(-0.467531\pi\)
0.101829 + 0.994802i \(0.467531\pi\)
\(228\) 0 0
\(229\) −796.794 −0.229929 −0.114964 0.993370i \(-0.536675\pi\)
−0.114964 + 0.993370i \(0.536675\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −796.737 −0.225467
\(233\) −5657.08 −1.59059 −0.795295 0.606223i \(-0.792684\pi\)
−0.795295 + 0.606223i \(0.792684\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3408.66 −0.940190
\(237\) 0 0
\(238\) 5.06695 0.00138001
\(239\) 2023.06 0.547534 0.273767 0.961796i \(-0.411730\pi\)
0.273767 + 0.961796i \(0.411730\pi\)
\(240\) 0 0
\(241\) −3513.86 −0.939203 −0.469601 0.882879i \(-0.655602\pi\)
−0.469601 + 0.882879i \(0.655602\pi\)
\(242\) −87.5660 −0.0232601
\(243\) 0 0
\(244\) 3299.12 0.865592
\(245\) 0 0
\(246\) 0 0
\(247\) −2029.15 −0.522719
\(248\) 2089.03 0.534895
\(249\) 0 0
\(250\) 0 0
\(251\) −1814.32 −0.456250 −0.228125 0.973632i \(-0.573260\pi\)
−0.228125 + 0.973632i \(0.573260\pi\)
\(252\) 0 0
\(253\) 404.048 0.100404
\(254\) 817.011 0.201826
\(255\) 0 0
\(256\) 1669.89 0.407688
\(257\) 1445.46 0.350839 0.175419 0.984494i \(-0.443872\pi\)
0.175419 + 0.984494i \(0.443872\pi\)
\(258\) 0 0
\(259\) −403.965 −0.0969157
\(260\) 0 0
\(261\) 0 0
\(262\) −1130.63 −0.266604
\(263\) −4411.79 −1.03438 −0.517191 0.855870i \(-0.673022\pi\)
−0.517191 + 0.855870i \(0.673022\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −76.1144 −0.0175446
\(267\) 0 0
\(268\) 994.379 0.226647
\(269\) −3955.14 −0.896465 −0.448232 0.893917i \(-0.647946\pi\)
−0.448232 + 0.893917i \(0.647946\pi\)
\(270\) 0 0
\(271\) 6656.96 1.49218 0.746091 0.665844i \(-0.231928\pi\)
0.746091 + 0.665844i \(0.231928\pi\)
\(272\) 319.554 0.0712345
\(273\) 0 0
\(274\) −32.5169 −0.00716941
\(275\) 0 0
\(276\) 0 0
\(277\) −8523.79 −1.84890 −0.924450 0.381304i \(-0.875475\pi\)
−0.924450 + 0.381304i \(0.875475\pi\)
\(278\) 300.745 0.0648831
\(279\) 0 0
\(280\) 0 0
\(281\) 4210.99 0.893973 0.446986 0.894541i \(-0.352497\pi\)
0.446986 + 0.894541i \(0.352497\pi\)
\(282\) 0 0
\(283\) −3529.66 −0.741400 −0.370700 0.928753i \(-0.620882\pi\)
−0.370700 + 0.928753i \(0.620882\pi\)
\(284\) −7787.88 −1.62720
\(285\) 0 0
\(286\) 173.990 0.0359729
\(287\) 308.076 0.0633629
\(288\) 0 0
\(289\) −4874.80 −0.992225
\(290\) 0 0
\(291\) 0 0
\(292\) −1197.09 −0.239913
\(293\) −7110.96 −1.41784 −0.708919 0.705290i \(-0.750817\pi\)
−0.708919 + 0.705290i \(0.750817\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 3993.70 0.784220
\(297\) 0 0
\(298\) 490.950 0.0954361
\(299\) −802.828 −0.155280
\(300\) 0 0
\(301\) 176.480 0.0337945
\(302\) −445.851 −0.0849531
\(303\) 0 0
\(304\) −4800.25 −0.905636
\(305\) 0 0
\(306\) 0 0
\(307\) −9474.72 −1.76140 −0.880702 0.473671i \(-0.842929\pi\)
−0.880702 + 0.473671i \(0.842929\pi\)
\(308\) −93.1672 −0.0172360
\(309\) 0 0
\(310\) 0 0
\(311\) 5210.73 0.950075 0.475038 0.879965i \(-0.342434\pi\)
0.475038 + 0.879965i \(0.342434\pi\)
\(312\) 0 0
\(313\) −1944.27 −0.351108 −0.175554 0.984470i \(-0.556172\pi\)
−0.175554 + 0.984470i \(0.556172\pi\)
\(314\) −446.224 −0.0801970
\(315\) 0 0
\(316\) 5692.20 1.01333
\(317\) −6852.73 −1.21416 −0.607079 0.794642i \(-0.707659\pi\)
−0.607079 + 0.794642i \(0.707659\pi\)
\(318\) 0 0
\(319\) 782.512 0.137343
\(320\) 0 0
\(321\) 0 0
\(322\) −30.1145 −0.00521185
\(323\) −573.777 −0.0988415
\(324\) 0 0
\(325\) 0 0
\(326\) 1469.92 0.249727
\(327\) 0 0
\(328\) −3045.72 −0.512718
\(329\) −265.736 −0.0445304
\(330\) 0 0
\(331\) −2019.85 −0.335411 −0.167706 0.985837i \(-0.553636\pi\)
−0.167706 + 0.985837i \(0.553636\pi\)
\(332\) −386.651 −0.0639163
\(333\) 0 0
\(334\) 1530.52 0.250737
\(335\) 0 0
\(336\) 0 0
\(337\) −11738.7 −1.89748 −0.948739 0.316060i \(-0.897640\pi\)
−0.948739 + 0.316060i \(0.897640\pi\)
\(338\) 1244.23 0.200228
\(339\) 0 0
\(340\) 0 0
\(341\) −2051.74 −0.325829
\(342\) 0 0
\(343\) 775.704 0.122111
\(344\) −1744.73 −0.273458
\(345\) 0 0
\(346\) 11.2241 0.00174396
\(347\) 12692.2 1.96355 0.981777 0.190036i \(-0.0608603\pi\)
0.981777 + 0.190036i \(0.0608603\pi\)
\(348\) 0 0
\(349\) 12026.8 1.84465 0.922324 0.386417i \(-0.126287\pi\)
0.922324 + 0.386417i \(0.126287\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1397.20 0.211565
\(353\) −8948.39 −1.34922 −0.674610 0.738174i \(-0.735688\pi\)
−0.674610 + 0.738174i \(0.735688\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8038.90 −1.19680
\(357\) 0 0
\(358\) 353.152 0.0521360
\(359\) −3906.52 −0.574313 −0.287156 0.957884i \(-0.592710\pi\)
−0.287156 + 0.957884i \(0.592710\pi\)
\(360\) 0 0
\(361\) 1760.14 0.256617
\(362\) −903.673 −0.131204
\(363\) 0 0
\(364\) 185.120 0.0266563
\(365\) 0 0
\(366\) 0 0
\(367\) −4225.04 −0.600941 −0.300471 0.953791i \(-0.597144\pi\)
−0.300471 + 0.953791i \(0.597144\pi\)
\(368\) −1899.21 −0.269030
\(369\) 0 0
\(370\) 0 0
\(371\) −220.932 −0.0309171
\(372\) 0 0
\(373\) −4223.50 −0.586285 −0.293143 0.956069i \(-0.594701\pi\)
−0.293143 + 0.956069i \(0.594701\pi\)
\(374\) 49.1988 0.00680216
\(375\) 0 0
\(376\) 2627.13 0.360330
\(377\) −1554.82 −0.212407
\(378\) 0 0
\(379\) −748.009 −0.101379 −0.0506895 0.998714i \(-0.516142\pi\)
−0.0506895 + 0.998714i \(0.516142\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1861.03 −0.249264
\(383\) 4668.07 0.622786 0.311393 0.950281i \(-0.399204\pi\)
0.311393 + 0.950281i \(0.399204\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 884.203 0.116593
\(387\) 0 0
\(388\) −5257.61 −0.687924
\(389\) −6544.12 −0.852957 −0.426478 0.904498i \(-0.640246\pi\)
−0.426478 + 0.904498i \(0.640246\pi\)
\(390\) 0 0
\(391\) −227.014 −0.0293621
\(392\) −3827.21 −0.493121
\(393\) 0 0
\(394\) 1033.66 0.132170
\(395\) 0 0
\(396\) 0 0
\(397\) −6439.84 −0.814121 −0.407061 0.913401i \(-0.633446\pi\)
−0.407061 + 0.913401i \(0.633446\pi\)
\(398\) 590.648 0.0743882
\(399\) 0 0
\(400\) 0 0
\(401\) −7727.03 −0.962268 −0.481134 0.876647i \(-0.659775\pi\)
−0.481134 + 0.876647i \(0.659775\pi\)
\(402\) 0 0
\(403\) 4076.72 0.503911
\(404\) −6406.32 −0.788927
\(405\) 0 0
\(406\) −58.3222 −0.00712926
\(407\) −3922.40 −0.477705
\(408\) 0 0
\(409\) −2539.97 −0.307074 −0.153537 0.988143i \(-0.549066\pi\)
−0.153537 + 0.988143i \(0.549066\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −6025.80 −0.720558
\(413\) −516.515 −0.0615401
\(414\) 0 0
\(415\) 0 0
\(416\) −2776.17 −0.327195
\(417\) 0 0
\(418\) −739.052 −0.0864789
\(419\) −1170.17 −0.136436 −0.0682181 0.997670i \(-0.521731\pi\)
−0.0682181 + 0.997670i \(0.521731\pi\)
\(420\) 0 0
\(421\) 4009.01 0.464103 0.232052 0.972703i \(-0.425456\pi\)
0.232052 + 0.972703i \(0.425456\pi\)
\(422\) 653.749 0.0754123
\(423\) 0 0
\(424\) 2184.19 0.250174
\(425\) 0 0
\(426\) 0 0
\(427\) 499.916 0.0566573
\(428\) 12025.9 1.35817
\(429\) 0 0
\(430\) 0 0
\(431\) 2676.70 0.299146 0.149573 0.988751i \(-0.452210\pi\)
0.149573 + 0.988751i \(0.452210\pi\)
\(432\) 0 0
\(433\) −5655.83 −0.627718 −0.313859 0.949470i \(-0.601622\pi\)
−0.313859 + 0.949470i \(0.601622\pi\)
\(434\) 152.920 0.0169133
\(435\) 0 0
\(436\) 6920.97 0.760217
\(437\) 3410.14 0.373294
\(438\) 0 0
\(439\) −6305.94 −0.685572 −0.342786 0.939414i \(-0.611371\pi\)
−0.342786 + 0.939414i \(0.611371\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −97.7560 −0.0105199
\(443\) −6772.22 −0.726315 −0.363158 0.931728i \(-0.618301\pi\)
−0.363158 + 0.931728i \(0.618301\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 386.424 0.0410262
\(447\) 0 0
\(448\) 364.470 0.0384365
\(449\) 5049.16 0.530701 0.265351 0.964152i \(-0.414512\pi\)
0.265351 + 0.964152i \(0.414512\pi\)
\(450\) 0 0
\(451\) 2991.34 0.312321
\(452\) −9082.27 −0.945120
\(453\) 0 0
\(454\) −504.070 −0.0521083
\(455\) 0 0
\(456\) 0 0
\(457\) −3866.14 −0.395733 −0.197867 0.980229i \(-0.563401\pi\)
−0.197867 + 0.980229i \(0.563401\pi\)
\(458\) 576.629 0.0588299
\(459\) 0 0
\(460\) 0 0
\(461\) 9108.85 0.920263 0.460132 0.887851i \(-0.347802\pi\)
0.460132 + 0.887851i \(0.347802\pi\)
\(462\) 0 0
\(463\) 17421.8 1.74873 0.874363 0.485273i \(-0.161280\pi\)
0.874363 + 0.485273i \(0.161280\pi\)
\(464\) −3678.16 −0.368005
\(465\) 0 0
\(466\) 4093.95 0.406971
\(467\) 2602.36 0.257864 0.128932 0.991653i \(-0.458845\pi\)
0.128932 + 0.991653i \(0.458845\pi\)
\(468\) 0 0
\(469\) 150.679 0.0148352
\(470\) 0 0
\(471\) 0 0
\(472\) 5106.40 0.497968
\(473\) 1713.58 0.166576
\(474\) 0 0
\(475\) 0 0
\(476\) 52.3458 0.00504047
\(477\) 0 0
\(478\) −1464.06 −0.140093
\(479\) −10751.8 −1.02560 −0.512801 0.858508i \(-0.671392\pi\)
−0.512801 + 0.858508i \(0.671392\pi\)
\(480\) 0 0
\(481\) 7793.65 0.738794
\(482\) 2542.93 0.240306
\(483\) 0 0
\(484\) −904.630 −0.0849577
\(485\) 0 0
\(486\) 0 0
\(487\) 2115.37 0.196831 0.0984154 0.995145i \(-0.468623\pi\)
0.0984154 + 0.995145i \(0.468623\pi\)
\(488\) −4942.30 −0.458458
\(489\) 0 0
\(490\) 0 0
\(491\) −4634.30 −0.425953 −0.212977 0.977057i \(-0.568316\pi\)
−0.212977 + 0.977057i \(0.568316\pi\)
\(492\) 0 0
\(493\) −439.653 −0.0401642
\(494\) 1468.47 0.133744
\(495\) 0 0
\(496\) 9644.09 0.873049
\(497\) −1180.10 −0.106509
\(498\) 0 0
\(499\) 2495.43 0.223870 0.111935 0.993716i \(-0.464295\pi\)
0.111935 + 0.993716i \(0.464295\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1313.00 0.116737
\(503\) 18521.0 1.64177 0.820886 0.571092i \(-0.193480\pi\)
0.820886 + 0.571092i \(0.193480\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −292.404 −0.0256896
\(507\) 0 0
\(508\) 8440.41 0.737170
\(509\) 6102.40 0.531403 0.265702 0.964055i \(-0.414396\pi\)
0.265702 + 0.964055i \(0.414396\pi\)
\(510\) 0 0
\(511\) −181.396 −0.0157035
\(512\) −11200.2 −0.966765
\(513\) 0 0
\(514\) −1046.06 −0.0897661
\(515\) 0 0
\(516\) 0 0
\(517\) −2580.23 −0.219494
\(518\) 292.344 0.0247970
\(519\) 0 0
\(520\) 0 0
\(521\) 2813.12 0.236555 0.118277 0.992981i \(-0.462263\pi\)
0.118277 + 0.992981i \(0.462263\pi\)
\(522\) 0 0
\(523\) −1563.27 −0.130702 −0.0653509 0.997862i \(-0.520817\pi\)
−0.0653509 + 0.997862i \(0.520817\pi\)
\(524\) −11680.3 −0.973772
\(525\) 0 0
\(526\) 3192.75 0.264659
\(527\) 1152.76 0.0952850
\(528\) 0 0
\(529\) −10817.8 −0.889109
\(530\) 0 0
\(531\) 0 0
\(532\) −786.326 −0.0640818
\(533\) −5943.67 −0.483019
\(534\) 0 0
\(535\) 0 0
\(536\) −1489.65 −0.120043
\(537\) 0 0
\(538\) 2862.28 0.229371
\(539\) 3758.88 0.300383
\(540\) 0 0
\(541\) −5959.61 −0.473611 −0.236806 0.971557i \(-0.576100\pi\)
−0.236806 + 0.971557i \(0.576100\pi\)
\(542\) −4817.55 −0.381792
\(543\) 0 0
\(544\) −785.012 −0.0618697
\(545\) 0 0
\(546\) 0 0
\(547\) −18084.2 −1.41357 −0.706787 0.707426i \(-0.749856\pi\)
−0.706787 + 0.707426i \(0.749856\pi\)
\(548\) −335.927 −0.0261863
\(549\) 0 0
\(550\) 0 0
\(551\) 6604.35 0.510626
\(552\) 0 0
\(553\) 862.540 0.0663272
\(554\) 6168.55 0.473062
\(555\) 0 0
\(556\) 3106.95 0.236985
\(557\) 18129.5 1.37912 0.689561 0.724227i \(-0.257803\pi\)
0.689561 + 0.724227i \(0.257803\pi\)
\(558\) 0 0
\(559\) −3404.81 −0.257618
\(560\) 0 0
\(561\) 0 0
\(562\) −3047.43 −0.228733
\(563\) −17910.2 −1.34072 −0.670361 0.742035i \(-0.733861\pi\)
−0.670361 + 0.742035i \(0.733861\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2554.36 0.189696
\(567\) 0 0
\(568\) 11666.8 0.861843
\(569\) −24176.6 −1.78126 −0.890629 0.454731i \(-0.849735\pi\)
−0.890629 + 0.454731i \(0.849735\pi\)
\(570\) 0 0
\(571\) −13167.8 −0.965073 −0.482537 0.875876i \(-0.660285\pi\)
−0.482537 + 0.875876i \(0.660285\pi\)
\(572\) 1797.46 0.131391
\(573\) 0 0
\(574\) −222.950 −0.0162121
\(575\) 0 0
\(576\) 0 0
\(577\) 722.513 0.0521293 0.0260646 0.999660i \(-0.491702\pi\)
0.0260646 + 0.999660i \(0.491702\pi\)
\(578\) 3527.83 0.253872
\(579\) 0 0
\(580\) 0 0
\(581\) −58.5893 −0.00418364
\(582\) 0 0
\(583\) −2145.19 −0.152393
\(584\) 1793.33 0.127069
\(585\) 0 0
\(586\) 5146.10 0.362770
\(587\) −17038.8 −1.19807 −0.599034 0.800723i \(-0.704449\pi\)
−0.599034 + 0.800723i \(0.704449\pi\)
\(588\) 0 0
\(589\) −17316.5 −1.21140
\(590\) 0 0
\(591\) 0 0
\(592\) 18437.0 1.28000
\(593\) 6206.74 0.429815 0.214908 0.976634i \(-0.431055\pi\)
0.214908 + 0.976634i \(0.431055\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5071.92 0.348580
\(597\) 0 0
\(598\) 580.996 0.0397302
\(599\) 23050.7 1.57233 0.786164 0.618018i \(-0.212064\pi\)
0.786164 + 0.618018i \(0.212064\pi\)
\(600\) 0 0
\(601\) −6323.69 −0.429199 −0.214600 0.976702i \(-0.568845\pi\)
−0.214600 + 0.976702i \(0.568845\pi\)
\(602\) −127.716 −0.00864673
\(603\) 0 0
\(604\) −4606.01 −0.310291
\(605\) 0 0
\(606\) 0 0
\(607\) −4625.14 −0.309273 −0.154636 0.987971i \(-0.549421\pi\)
−0.154636 + 0.987971i \(0.549421\pi\)
\(608\) 11792.3 0.786577
\(609\) 0 0
\(610\) 0 0
\(611\) 5126.81 0.339457
\(612\) 0 0
\(613\) 28075.3 1.84984 0.924919 0.380164i \(-0.124132\pi\)
0.924919 + 0.380164i \(0.124132\pi\)
\(614\) 6856.72 0.450676
\(615\) 0 0
\(616\) 139.571 0.00912900
\(617\) −7264.85 −0.474023 −0.237011 0.971507i \(-0.576168\pi\)
−0.237011 + 0.971507i \(0.576168\pi\)
\(618\) 0 0
\(619\) −30583.2 −1.98585 −0.992927 0.118728i \(-0.962119\pi\)
−0.992927 + 0.118728i \(0.962119\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3770.93 −0.243088
\(623\) −1218.14 −0.0783365
\(624\) 0 0
\(625\) 0 0
\(626\) 1407.04 0.0898351
\(627\) 0 0
\(628\) −4609.86 −0.292920
\(629\) 2203.79 0.139699
\(630\) 0 0
\(631\) −16679.8 −1.05232 −0.526159 0.850386i \(-0.676368\pi\)
−0.526159 + 0.850386i \(0.676368\pi\)
\(632\) −8527.29 −0.536705
\(633\) 0 0
\(634\) 4959.23 0.310656
\(635\) 0 0
\(636\) 0 0
\(637\) −7468.75 −0.464557
\(638\) −566.293 −0.0351407
\(639\) 0 0
\(640\) 0 0
\(641\) −4225.31 −0.260358 −0.130179 0.991490i \(-0.541555\pi\)
−0.130179 + 0.991490i \(0.541555\pi\)
\(642\) 0 0
\(643\) −23703.5 −1.45377 −0.726886 0.686758i \(-0.759033\pi\)
−0.726886 + 0.686758i \(0.759033\pi\)
\(644\) −311.108 −0.0190363
\(645\) 0 0
\(646\) 415.234 0.0252898
\(647\) −10045.1 −0.610374 −0.305187 0.952292i \(-0.598719\pi\)
−0.305187 + 0.952292i \(0.598719\pi\)
\(648\) 0 0
\(649\) −5015.23 −0.303336
\(650\) 0 0
\(651\) 0 0
\(652\) 15185.5 0.912130
\(653\) −32314.2 −1.93652 −0.968262 0.249936i \(-0.919590\pi\)
−0.968262 + 0.249936i \(0.919590\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −14060.6 −0.836853
\(657\) 0 0
\(658\) 192.309 0.0113936
\(659\) 12032.4 0.711253 0.355627 0.934628i \(-0.384267\pi\)
0.355627 + 0.934628i \(0.384267\pi\)
\(660\) 0 0
\(661\) 12864.5 0.756988 0.378494 0.925604i \(-0.376442\pi\)
0.378494 + 0.925604i \(0.376442\pi\)
\(662\) 1461.74 0.0858189
\(663\) 0 0
\(664\) 579.229 0.0338531
\(665\) 0 0
\(666\) 0 0
\(667\) 2613.00 0.151688
\(668\) 15811.5 0.915819
\(669\) 0 0
\(670\) 0 0
\(671\) 4854.06 0.279268
\(672\) 0 0
\(673\) −12007.5 −0.687751 −0.343876 0.939015i \(-0.611740\pi\)
−0.343876 + 0.939015i \(0.611740\pi\)
\(674\) 8495.16 0.485492
\(675\) 0 0
\(676\) 12853.9 0.731332
\(677\) −10732.5 −0.609284 −0.304642 0.952467i \(-0.598537\pi\)
−0.304642 + 0.952467i \(0.598537\pi\)
\(678\) 0 0
\(679\) −796.687 −0.0450280
\(680\) 0 0
\(681\) 0 0
\(682\) 1484.81 0.0833672
\(683\) 14126.0 0.791383 0.395692 0.918383i \(-0.370505\pi\)
0.395692 + 0.918383i \(0.370505\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −561.366 −0.0312435
\(687\) 0 0
\(688\) −8054.59 −0.446335
\(689\) 4262.42 0.235682
\(690\) 0 0
\(691\) −18467.8 −1.01671 −0.508357 0.861147i \(-0.669747\pi\)
−0.508357 + 0.861147i \(0.669747\pi\)
\(692\) 115.954 0.00636981
\(693\) 0 0
\(694\) −9185.17 −0.502398
\(695\) 0 0
\(696\) 0 0
\(697\) −1680.68 −0.0913345
\(698\) −8703.66 −0.471975
\(699\) 0 0
\(700\) 0 0
\(701\) 24876.0 1.34030 0.670152 0.742224i \(-0.266229\pi\)
0.670152 + 0.742224i \(0.266229\pi\)
\(702\) 0 0
\(703\) −33104.8 −1.77606
\(704\) 3538.91 0.189457
\(705\) 0 0
\(706\) 6475.83 0.345214
\(707\) −970.752 −0.0516391
\(708\) 0 0
\(709\) 21271.1 1.12673 0.563367 0.826207i \(-0.309506\pi\)
0.563367 + 0.826207i \(0.309506\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12042.8 0.633881
\(713\) −6851.25 −0.359862
\(714\) 0 0
\(715\) 0 0
\(716\) 3648.36 0.190427
\(717\) 0 0
\(718\) 2827.09 0.146945
\(719\) −19213.9 −0.996603 −0.498302 0.867004i \(-0.666043\pi\)
−0.498302 + 0.867004i \(0.666043\pi\)
\(720\) 0 0
\(721\) −913.091 −0.0471641
\(722\) −1273.79 −0.0656585
\(723\) 0 0
\(724\) −9335.70 −0.479224
\(725\) 0 0
\(726\) 0 0
\(727\) 27454.7 1.40060 0.700302 0.713846i \(-0.253049\pi\)
0.700302 + 0.713846i \(0.253049\pi\)
\(728\) −277.322 −0.0141184
\(729\) 0 0
\(730\) 0 0
\(731\) −962.770 −0.0487132
\(732\) 0 0
\(733\) 1182.16 0.0595691 0.0297846 0.999556i \(-0.490518\pi\)
0.0297846 + 0.999556i \(0.490518\pi\)
\(734\) 3057.61 0.153758
\(735\) 0 0
\(736\) 4665.58 0.233662
\(737\) 1463.05 0.0731237
\(738\) 0 0
\(739\) 25688.2 1.27869 0.639347 0.768918i \(-0.279205\pi\)
0.639347 + 0.768918i \(0.279205\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 159.886 0.00791049
\(743\) 32431.2 1.60132 0.800662 0.599116i \(-0.204481\pi\)
0.800662 + 0.599116i \(0.204481\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 3056.49 0.150008
\(747\) 0 0
\(748\) 508.264 0.0248449
\(749\) 1822.29 0.0888988
\(750\) 0 0
\(751\) −32093.5 −1.55940 −0.779700 0.626154i \(-0.784628\pi\)
−0.779700 + 0.626154i \(0.784628\pi\)
\(752\) 12128.2 0.588127
\(753\) 0 0
\(754\) 1125.20 0.0543467
\(755\) 0 0
\(756\) 0 0
\(757\) 1293.36 0.0620977 0.0310488 0.999518i \(-0.490115\pi\)
0.0310488 + 0.999518i \(0.490115\pi\)
\(758\) 541.323 0.0259390
\(759\) 0 0
\(760\) 0 0
\(761\) −29013.1 −1.38203 −0.691014 0.722841i \(-0.742836\pi\)
−0.691014 + 0.722841i \(0.742836\pi\)
\(762\) 0 0
\(763\) 1048.74 0.0497599
\(764\) −19226.0 −0.910436
\(765\) 0 0
\(766\) −3378.22 −0.159347
\(767\) 9965.06 0.469123
\(768\) 0 0
\(769\) −31304.1 −1.46795 −0.733976 0.679176i \(-0.762337\pi\)
−0.733976 + 0.679176i \(0.762337\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9134.55 0.425855
\(773\) 41913.5 1.95023 0.975113 0.221710i \(-0.0711637\pi\)
0.975113 + 0.221710i \(0.0711637\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 7876.24 0.364357
\(777\) 0 0
\(778\) 4735.89 0.218239
\(779\) 25246.7 1.16118
\(780\) 0 0
\(781\) −11458.5 −0.524989
\(782\) 164.287 0.00751263
\(783\) 0 0
\(784\) −17668.4 −0.804867
\(785\) 0 0
\(786\) 0 0
\(787\) 6648.00 0.301113 0.150556 0.988601i \(-0.451894\pi\)
0.150556 + 0.988601i \(0.451894\pi\)
\(788\) 10678.6 0.482751
\(789\) 0 0
\(790\) 0 0
\(791\) −1376.24 −0.0618628
\(792\) 0 0
\(793\) −9644.82 −0.431901
\(794\) 4660.42 0.208302
\(795\) 0 0
\(796\) 6101.88 0.271703
\(797\) 14798.4 0.657701 0.328850 0.944382i \(-0.393339\pi\)
0.328850 + 0.944382i \(0.393339\pi\)
\(798\) 0 0
\(799\) 1449.69 0.0641884
\(800\) 0 0
\(801\) 0 0
\(802\) 5591.94 0.246207
\(803\) −1761.31 −0.0774038
\(804\) 0 0
\(805\) 0 0
\(806\) −2950.27 −0.128931
\(807\) 0 0
\(808\) 9597.09 0.417852
\(809\) −4500.04 −0.195566 −0.0977831 0.995208i \(-0.531175\pi\)
−0.0977831 + 0.995208i \(0.531175\pi\)
\(810\) 0 0
\(811\) −1909.49 −0.0826773 −0.0413386 0.999145i \(-0.513162\pi\)
−0.0413386 + 0.999145i \(0.513162\pi\)
\(812\) −602.517 −0.0260396
\(813\) 0 0
\(814\) 2838.58 0.122226
\(815\) 0 0
\(816\) 0 0
\(817\) 14462.5 0.619313
\(818\) 1838.14 0.0785685
\(819\) 0 0
\(820\) 0 0
\(821\) −10928.6 −0.464569 −0.232285 0.972648i \(-0.574620\pi\)
−0.232285 + 0.972648i \(0.574620\pi\)
\(822\) 0 0
\(823\) −29278.4 −1.24007 −0.620036 0.784573i \(-0.712882\pi\)
−0.620036 + 0.784573i \(0.712882\pi\)
\(824\) 9027.05 0.381641
\(825\) 0 0
\(826\) 373.795 0.0157457
\(827\) −878.905 −0.0369559 −0.0184779 0.999829i \(-0.505882\pi\)
−0.0184779 + 0.999829i \(0.505882\pi\)
\(828\) 0 0
\(829\) 16130.1 0.675779 0.337890 0.941186i \(-0.390287\pi\)
0.337890 + 0.941186i \(0.390287\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −7031.67 −0.293004
\(833\) −2111.92 −0.0878436
\(834\) 0 0
\(835\) 0 0
\(836\) −7635.02 −0.315864
\(837\) 0 0
\(838\) 846.838 0.0349088
\(839\) 39531.8 1.62669 0.813343 0.581784i \(-0.197645\pi\)
0.813343 + 0.581784i \(0.197645\pi\)
\(840\) 0 0
\(841\) −19328.5 −0.792507
\(842\) −2901.27 −0.118746
\(843\) 0 0
\(844\) 6753.77 0.275443
\(845\) 0 0
\(846\) 0 0
\(847\) −137.079 −0.00556090
\(848\) 10083.4 0.408331
\(849\) 0 0
\(850\) 0 0
\(851\) −13097.8 −0.527600
\(852\) 0 0
\(853\) 5373.68 0.215699 0.107849 0.994167i \(-0.465604\pi\)
0.107849 + 0.994167i \(0.465604\pi\)
\(854\) −361.782 −0.0144964
\(855\) 0 0
\(856\) −18015.7 −0.719349
\(857\) −45378.4 −1.80875 −0.904374 0.426740i \(-0.859662\pi\)
−0.904374 + 0.426740i \(0.859662\pi\)
\(858\) 0 0
\(859\) 35336.8 1.40358 0.701791 0.712383i \(-0.252384\pi\)
0.701791 + 0.712383i \(0.252384\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1937.09 −0.0765401
\(863\) −24595.3 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 4093.05 0.160609
\(867\) 0 0
\(868\) 1579.79 0.0617760
\(869\) 8375.04 0.326932
\(870\) 0 0
\(871\) −2907.02 −0.113089
\(872\) −10368.1 −0.402646
\(873\) 0 0
\(874\) −2467.87 −0.0955115
\(875\) 0 0
\(876\) 0 0
\(877\) 8251.06 0.317695 0.158848 0.987303i \(-0.449222\pi\)
0.158848 + 0.987303i \(0.449222\pi\)
\(878\) 4563.52 0.175412
\(879\) 0 0
\(880\) 0 0
\(881\) 3528.36 0.134930 0.0674651 0.997722i \(-0.478509\pi\)
0.0674651 + 0.997722i \(0.478509\pi\)
\(882\) 0 0
\(883\) −35459.1 −1.35141 −0.675703 0.737174i \(-0.736160\pi\)
−0.675703 + 0.737174i \(0.736160\pi\)
\(884\) −1009.90 −0.0384238
\(885\) 0 0
\(886\) 4900.96 0.185836
\(887\) 32544.8 1.23196 0.615979 0.787763i \(-0.288761\pi\)
0.615979 + 0.787763i \(0.288761\pi\)
\(888\) 0 0
\(889\) 1278.98 0.0482514
\(890\) 0 0
\(891\) 0 0
\(892\) 3992.08 0.149848
\(893\) −21777.0 −0.816056
\(894\) 0 0
\(895\) 0 0
\(896\) −1414.93 −0.0527562
\(897\) 0 0
\(898\) −3654.01 −0.135786
\(899\) −13268.7 −0.492253
\(900\) 0 0
\(901\) 1205.27 0.0445654
\(902\) −2164.79 −0.0799108
\(903\) 0 0
\(904\) 13605.9 0.500579
\(905\) 0 0
\(906\) 0 0
\(907\) −20383.4 −0.746219 −0.373110 0.927787i \(-0.621709\pi\)
−0.373110 + 0.927787i \(0.621709\pi\)
\(908\) −5207.46 −0.190326
\(909\) 0 0
\(910\) 0 0
\(911\) −7783.29 −0.283065 −0.141532 0.989934i \(-0.545203\pi\)
−0.141532 + 0.989934i \(0.545203\pi\)
\(912\) 0 0
\(913\) −568.887 −0.0206215
\(914\) 2797.87 0.101253
\(915\) 0 0
\(916\) 5957.05 0.214876
\(917\) −1769.92 −0.0637382
\(918\) 0 0
\(919\) 27294.9 0.979734 0.489867 0.871797i \(-0.337045\pi\)
0.489867 + 0.871797i \(0.337045\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −6591.95 −0.235460
\(923\) 22767.5 0.811920
\(924\) 0 0
\(925\) 0 0
\(926\) −12607.9 −0.447432
\(927\) 0 0
\(928\) 9035.73 0.319625
\(929\) 46468.7 1.64111 0.820554 0.571568i \(-0.193665\pi\)
0.820554 + 0.571568i \(0.193665\pi\)
\(930\) 0 0
\(931\) 31724.7 1.11679
\(932\) 42293.9 1.48646
\(933\) 0 0
\(934\) −1883.29 −0.0659776
\(935\) 0 0
\(936\) 0 0
\(937\) −6922.45 −0.241352 −0.120676 0.992692i \(-0.538506\pi\)
−0.120676 + 0.992692i \(0.538506\pi\)
\(938\) −109.044 −0.00379575
\(939\) 0 0
\(940\) 0 0
\(941\) 23772.1 0.823536 0.411768 0.911289i \(-0.364911\pi\)
0.411768 + 0.911289i \(0.364911\pi\)
\(942\) 0 0
\(943\) 9988.80 0.344942
\(944\) 23573.8 0.812779
\(945\) 0 0
\(946\) −1240.09 −0.0426204
\(947\) 7177.76 0.246300 0.123150 0.992388i \(-0.460700\pi\)
0.123150 + 0.992388i \(0.460700\pi\)
\(948\) 0 0
\(949\) 3499.65 0.119709
\(950\) 0 0
\(951\) 0 0
\(952\) −78.4175 −0.00266967
\(953\) −27530.2 −0.935772 −0.467886 0.883789i \(-0.654984\pi\)
−0.467886 + 0.883789i \(0.654984\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −15124.9 −0.511690
\(957\) 0 0
\(958\) 7780.94 0.262412
\(959\) −50.9031 −0.00171402
\(960\) 0 0
\(961\) 4999.29 0.167812
\(962\) −5640.15 −0.189029
\(963\) 0 0
\(964\) 26270.6 0.877718
\(965\) 0 0
\(966\) 0 0
\(967\) 55407.1 1.84258 0.921288 0.388881i \(-0.127138\pi\)
0.921288 + 0.388881i \(0.127138\pi\)
\(968\) 1355.20 0.0449976
\(969\) 0 0
\(970\) 0 0
\(971\) 55100.7 1.82108 0.910539 0.413423i \(-0.135667\pi\)
0.910539 + 0.413423i \(0.135667\pi\)
\(972\) 0 0
\(973\) 470.797 0.0155119
\(974\) −1530.86 −0.0503615
\(975\) 0 0
\(976\) −22816.3 −0.748290
\(977\) 44473.9 1.45634 0.728170 0.685396i \(-0.240371\pi\)
0.728170 + 0.685396i \(0.240371\pi\)
\(978\) 0 0
\(979\) −11827.8 −0.386127
\(980\) 0 0
\(981\) 0 0
\(982\) 3353.78 0.108985
\(983\) −28003.0 −0.908605 −0.454302 0.890848i \(-0.650111\pi\)
−0.454302 + 0.890848i \(0.650111\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 318.170 0.0102765
\(987\) 0 0
\(988\) 15170.5 0.488499
\(989\) 5722.06 0.183974
\(990\) 0 0
\(991\) −40719.5 −1.30524 −0.652622 0.757684i \(-0.726331\pi\)
−0.652622 + 0.757684i \(0.726331\pi\)
\(992\) −23691.6 −0.758274
\(993\) 0 0
\(994\) 854.022 0.0272514
\(995\) 0 0
\(996\) 0 0
\(997\) −18161.1 −0.576898 −0.288449 0.957495i \(-0.593140\pi\)
−0.288449 + 0.957495i \(0.593140\pi\)
\(998\) −1805.91 −0.0572796
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.v.1.2 3
3.2 odd 2 825.4.a.q.1.2 yes 3
5.4 even 2 2475.4.a.y.1.2 3
15.2 even 4 825.4.c.n.199.4 6
15.8 even 4 825.4.c.n.199.3 6
15.14 odd 2 825.4.a.o.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.o.1.2 3 15.14 odd 2
825.4.a.q.1.2 yes 3 3.2 odd 2
825.4.c.n.199.3 6 15.8 even 4
825.4.c.n.199.4 6 15.2 even 4
2475.4.a.v.1.2 3 1.1 even 1 trivial
2475.4.a.y.1.2 3 5.4 even 2