Properties

Label 2475.4.a.s.1.1
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.23612.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 20x + 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.26150\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.26150 q^{2} +19.6833 q^{4} +10.3207 q^{7} -61.4719 q^{8} +O(q^{10})\) \(q-5.26150 q^{2} +19.6833 q^{4} +10.3207 q^{7} -61.4719 q^{8} -11.0000 q^{11} -63.9817 q^{13} -54.3024 q^{14} +165.967 q^{16} +17.1461 q^{17} +90.2104 q^{19} +57.8765 q^{22} -212.605 q^{23} +336.639 q^{26} +203.146 q^{28} -57.5461 q^{29} -141.704 q^{31} -381.462 q^{32} -90.2140 q^{34} +257.963 q^{37} -474.642 q^{38} +225.914 q^{41} +347.445 q^{43} -216.517 q^{44} +1118.62 q^{46} +404.364 q^{47} -236.483 q^{49} -1259.37 q^{52} +259.568 q^{53} -634.433 q^{56} +302.779 q^{58} +853.067 q^{59} -203.699 q^{61} +745.573 q^{62} +679.320 q^{64} -266.890 q^{67} +337.492 q^{68} -92.4460 q^{71} +242.026 q^{73} -1357.27 q^{74} +1775.64 q^{76} -113.528 q^{77} -1021.60 q^{79} -1188.65 q^{82} +706.415 q^{83} -1828.08 q^{86} +676.191 q^{88} +440.218 q^{89} -660.336 q^{91} -4184.77 q^{92} -2127.56 q^{94} +197.761 q^{97} +1244.25 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{2} + 22 q^{4} + 4 q^{7} - 48 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 4 q^{2} + 22 q^{4} + 4 q^{7} - 48 q^{8} - 33 q^{11} + 56 q^{14} + 50 q^{16} - 218 q^{17} + 146 q^{19} + 44 q^{22} - 200 q^{23} + 508 q^{26} + 340 q^{28} - 68 q^{29} - 68 q^{31} - 688 q^{32} - 176 q^{34} + 390 q^{37} - 316 q^{38} + 196 q^{41} + 524 q^{43} - 242 q^{44} + 1160 q^{46} - 60 q^{47} - 157 q^{49} - 1020 q^{52} - 158 q^{53} - 1368 q^{56} - 1092 q^{58} + 1044 q^{59} + 642 q^{61} + 88 q^{62} + 1166 q^{64} + 236 q^{67} + 144 q^{68} + 544 q^{71} - 900 q^{73} - 1536 q^{74} + 1996 q^{76} - 44 q^{77} - 1586 q^{79} - 380 q^{82} - 1582 q^{83} - 3568 q^{86} + 528 q^{88} + 2122 q^{89} - 8 q^{91} - 4128 q^{92} - 2152 q^{94} - 618 q^{97} + 572 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.26150 −1.86022 −0.930110 0.367281i \(-0.880289\pi\)
−0.930110 + 0.367281i \(0.880289\pi\)
\(3\) 0 0
\(4\) 19.6833 2.46042
\(5\) 0 0
\(6\) 0 0
\(7\) 10.3207 0.557266 0.278633 0.960398i \(-0.410119\pi\)
0.278633 + 0.960398i \(0.410119\pi\)
\(8\) −61.4719 −2.71670
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −63.9817 −1.36502 −0.682512 0.730874i \(-0.739113\pi\)
−0.682512 + 0.730874i \(0.739113\pi\)
\(14\) −54.3024 −1.03664
\(15\) 0 0
\(16\) 165.967 2.59324
\(17\) 17.1461 0.244620 0.122310 0.992492i \(-0.460970\pi\)
0.122310 + 0.992492i \(0.460970\pi\)
\(18\) 0 0
\(19\) 90.2104 1.08925 0.544623 0.838681i \(-0.316673\pi\)
0.544623 + 0.838681i \(0.316673\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 57.8765 0.560877
\(23\) −212.605 −1.92744 −0.963721 0.266913i \(-0.913996\pi\)
−0.963721 + 0.266913i \(0.913996\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 336.639 2.53925
\(27\) 0 0
\(28\) 203.146 1.37111
\(29\) −57.5461 −0.368484 −0.184242 0.982881i \(-0.558983\pi\)
−0.184242 + 0.982881i \(0.558983\pi\)
\(30\) 0 0
\(31\) −141.704 −0.820991 −0.410496 0.911863i \(-0.634644\pi\)
−0.410496 + 0.911863i \(0.634644\pi\)
\(32\) −381.462 −2.10730
\(33\) 0 0
\(34\) −90.2140 −0.455046
\(35\) 0 0
\(36\) 0 0
\(37\) 257.963 1.14619 0.573093 0.819490i \(-0.305743\pi\)
0.573093 + 0.819490i \(0.305743\pi\)
\(38\) −474.642 −2.02624
\(39\) 0 0
\(40\) 0 0
\(41\) 225.914 0.860533 0.430266 0.902702i \(-0.358420\pi\)
0.430266 + 0.902702i \(0.358420\pi\)
\(42\) 0 0
\(43\) 347.445 1.23221 0.616103 0.787666i \(-0.288711\pi\)
0.616103 + 0.787666i \(0.288711\pi\)
\(44\) −216.517 −0.741844
\(45\) 0 0
\(46\) 1118.62 3.58547
\(47\) 404.364 1.25495 0.627473 0.778638i \(-0.284089\pi\)
0.627473 + 0.778638i \(0.284089\pi\)
\(48\) 0 0
\(49\) −236.483 −0.689455
\(50\) 0 0
\(51\) 0 0
\(52\) −1259.37 −3.35853
\(53\) 259.568 0.672726 0.336363 0.941732i \(-0.390803\pi\)
0.336363 + 0.941732i \(0.390803\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −634.433 −1.51392
\(57\) 0 0
\(58\) 302.779 0.685462
\(59\) 853.067 1.88237 0.941185 0.337891i \(-0.109713\pi\)
0.941185 + 0.337891i \(0.109713\pi\)
\(60\) 0 0
\(61\) −203.699 −0.427558 −0.213779 0.976882i \(-0.568577\pi\)
−0.213779 + 0.976882i \(0.568577\pi\)
\(62\) 745.573 1.52722
\(63\) 0 0
\(64\) 679.320 1.32680
\(65\) 0 0
\(66\) 0 0
\(67\) −266.890 −0.486653 −0.243327 0.969944i \(-0.578239\pi\)
−0.243327 + 0.969944i \(0.578239\pi\)
\(68\) 337.492 0.601866
\(69\) 0 0
\(70\) 0 0
\(71\) −92.4460 −0.154526 −0.0772629 0.997011i \(-0.524618\pi\)
−0.0772629 + 0.997011i \(0.524618\pi\)
\(72\) 0 0
\(73\) 242.026 0.388040 0.194020 0.980998i \(-0.437847\pi\)
0.194020 + 0.980998i \(0.437847\pi\)
\(74\) −1357.27 −2.13216
\(75\) 0 0
\(76\) 1775.64 2.68000
\(77\) −113.528 −0.168022
\(78\) 0 0
\(79\) −1021.60 −1.45492 −0.727460 0.686150i \(-0.759299\pi\)
−0.727460 + 0.686150i \(0.759299\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1188.65 −1.60078
\(83\) 706.415 0.934206 0.467103 0.884203i \(-0.345298\pi\)
0.467103 + 0.884203i \(0.345298\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1828.08 −2.29217
\(87\) 0 0
\(88\) 676.191 0.819116
\(89\) 440.218 0.524304 0.262152 0.965027i \(-0.415568\pi\)
0.262152 + 0.965027i \(0.415568\pi\)
\(90\) 0 0
\(91\) −660.336 −0.760682
\(92\) −4184.77 −4.74231
\(93\) 0 0
\(94\) −2127.56 −2.33448
\(95\) 0 0
\(96\) 0 0
\(97\) 197.761 0.207006 0.103503 0.994629i \(-0.466995\pi\)
0.103503 + 0.994629i \(0.466995\pi\)
\(98\) 1244.25 1.28254
\(99\) 0 0
\(100\) 0 0
\(101\) −1400.62 −1.37987 −0.689937 0.723870i \(-0.742362\pi\)
−0.689937 + 0.723870i \(0.742362\pi\)
\(102\) 0 0
\(103\) 1345.70 1.28734 0.643669 0.765304i \(-0.277411\pi\)
0.643669 + 0.765304i \(0.277411\pi\)
\(104\) 3933.07 3.70836
\(105\) 0 0
\(106\) −1365.72 −1.25142
\(107\) −889.178 −0.803366 −0.401683 0.915779i \(-0.631575\pi\)
−0.401683 + 0.915779i \(0.631575\pi\)
\(108\) 0 0
\(109\) 1256.29 1.10395 0.551974 0.833861i \(-0.313875\pi\)
0.551974 + 0.833861i \(0.313875\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1712.90 1.44512
\(113\) −2394.01 −1.99301 −0.996504 0.0835448i \(-0.973376\pi\)
−0.996504 + 0.0835448i \(0.973376\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1132.70 −0.906626
\(117\) 0 0
\(118\) −4488.41 −3.50162
\(119\) 176.960 0.136318
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1071.76 0.795352
\(123\) 0 0
\(124\) −2789.20 −2.01998
\(125\) 0 0
\(126\) 0 0
\(127\) −2065.57 −1.44322 −0.721612 0.692298i \(-0.756598\pi\)
−0.721612 + 0.692298i \(0.756598\pi\)
\(128\) −522.548 −0.360837
\(129\) 0 0
\(130\) 0 0
\(131\) −785.526 −0.523907 −0.261953 0.965081i \(-0.584367\pi\)
−0.261953 + 0.965081i \(0.584367\pi\)
\(132\) 0 0
\(133\) 931.035 0.607000
\(134\) 1404.24 0.905282
\(135\) 0 0
\(136\) −1054.00 −0.664558
\(137\) 1276.24 0.795885 0.397942 0.917410i \(-0.369724\pi\)
0.397942 + 0.917410i \(0.369724\pi\)
\(138\) 0 0
\(139\) −2703.21 −1.64952 −0.824760 0.565482i \(-0.808690\pi\)
−0.824760 + 0.565482i \(0.808690\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 486.405 0.287452
\(143\) 703.798 0.411570
\(144\) 0 0
\(145\) 0 0
\(146\) −1273.42 −0.721840
\(147\) 0 0
\(148\) 5077.58 2.82010
\(149\) 2400.99 1.32011 0.660056 0.751217i \(-0.270533\pi\)
0.660056 + 0.751217i \(0.270533\pi\)
\(150\) 0 0
\(151\) −2517.30 −1.35665 −0.678326 0.734761i \(-0.737294\pi\)
−0.678326 + 0.734761i \(0.737294\pi\)
\(152\) −5545.40 −2.95916
\(153\) 0 0
\(154\) 597.326 0.312558
\(155\) 0 0
\(156\) 0 0
\(157\) −1391.42 −0.707310 −0.353655 0.935376i \(-0.615061\pi\)
−0.353655 + 0.935376i \(0.615061\pi\)
\(158\) 5375.13 2.70647
\(159\) 0 0
\(160\) 0 0
\(161\) −2194.23 −1.07410
\(162\) 0 0
\(163\) 2720.53 1.30729 0.653644 0.756802i \(-0.273239\pi\)
0.653644 + 0.756802i \(0.273239\pi\)
\(164\) 4446.74 2.11727
\(165\) 0 0
\(166\) −3716.80 −1.73783
\(167\) 2950.25 1.36705 0.683525 0.729927i \(-0.260446\pi\)
0.683525 + 0.729927i \(0.260446\pi\)
\(168\) 0 0
\(169\) 1896.65 0.863292
\(170\) 0 0
\(171\) 0 0
\(172\) 6838.88 3.03174
\(173\) 537.049 0.236018 0.118009 0.993013i \(-0.462349\pi\)
0.118009 + 0.993013i \(0.462349\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1825.64 −0.781891
\(177\) 0 0
\(178\) −2316.21 −0.975320
\(179\) −2891.25 −1.20728 −0.603638 0.797259i \(-0.706283\pi\)
−0.603638 + 0.797259i \(0.706283\pi\)
\(180\) 0 0
\(181\) 435.209 0.178723 0.0893615 0.995999i \(-0.471517\pi\)
0.0893615 + 0.995999i \(0.471517\pi\)
\(182\) 3474.36 1.41504
\(183\) 0 0
\(184\) 13069.2 5.23628
\(185\) 0 0
\(186\) 0 0
\(187\) −188.607 −0.0737556
\(188\) 7959.23 3.08769
\(189\) 0 0
\(190\) 0 0
\(191\) 3779.49 1.43180 0.715901 0.698202i \(-0.246016\pi\)
0.715901 + 0.698202i \(0.246016\pi\)
\(192\) 0 0
\(193\) −3751.91 −1.39932 −0.699660 0.714476i \(-0.746665\pi\)
−0.699660 + 0.714476i \(0.746665\pi\)
\(194\) −1040.52 −0.385076
\(195\) 0 0
\(196\) −4654.78 −1.69635
\(197\) −3920.73 −1.41797 −0.708986 0.705223i \(-0.750847\pi\)
−0.708986 + 0.705223i \(0.750847\pi\)
\(198\) 0 0
\(199\) −597.084 −0.212694 −0.106347 0.994329i \(-0.533915\pi\)
−0.106347 + 0.994329i \(0.533915\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 7369.37 2.56687
\(203\) −593.917 −0.205344
\(204\) 0 0
\(205\) 0 0
\(206\) −7080.40 −2.39473
\(207\) 0 0
\(208\) −10618.9 −3.53984
\(209\) −992.314 −0.328420
\(210\) 0 0
\(211\) −4384.55 −1.43054 −0.715272 0.698846i \(-0.753697\pi\)
−0.715272 + 0.698846i \(0.753697\pi\)
\(212\) 5109.17 1.65519
\(213\) 0 0
\(214\) 4678.41 1.49444
\(215\) 0 0
\(216\) 0 0
\(217\) −1462.48 −0.457510
\(218\) −6609.95 −2.05359
\(219\) 0 0
\(220\) 0 0
\(221\) −1097.03 −0.333912
\(222\) 0 0
\(223\) 2333.03 0.700587 0.350294 0.936640i \(-0.386082\pi\)
0.350294 + 0.936640i \(0.386082\pi\)
\(224\) −3936.95 −1.17433
\(225\) 0 0
\(226\) 12596.1 3.70743
\(227\) −2120.00 −0.619864 −0.309932 0.950759i \(-0.600306\pi\)
−0.309932 + 0.950759i \(0.600306\pi\)
\(228\) 0 0
\(229\) 2347.12 0.677301 0.338651 0.940912i \(-0.390030\pi\)
0.338651 + 0.940912i \(0.390030\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3537.47 1.00106
\(233\) −375.499 −0.105578 −0.0527891 0.998606i \(-0.516811\pi\)
−0.0527891 + 0.998606i \(0.516811\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 16791.2 4.63142
\(237\) 0 0
\(238\) −931.072 −0.253582
\(239\) 1428.15 0.386524 0.193262 0.981147i \(-0.438093\pi\)
0.193262 + 0.981147i \(0.438093\pi\)
\(240\) 0 0
\(241\) 190.819 0.0510032 0.0255016 0.999675i \(-0.491882\pi\)
0.0255016 + 0.999675i \(0.491882\pi\)
\(242\) −636.641 −0.169111
\(243\) 0 0
\(244\) −4009.49 −1.05197
\(245\) 0 0
\(246\) 0 0
\(247\) −5771.81 −1.48685
\(248\) 8710.79 2.23039
\(249\) 0 0
\(250\) 0 0
\(251\) 6294.80 1.58297 0.791483 0.611191i \(-0.209309\pi\)
0.791483 + 0.611191i \(0.209309\pi\)
\(252\) 0 0
\(253\) 2338.65 0.581145
\(254\) 10868.0 2.68471
\(255\) 0 0
\(256\) −2685.18 −0.655561
\(257\) 4459.44 1.08238 0.541191 0.840900i \(-0.317974\pi\)
0.541191 + 0.840900i \(0.317974\pi\)
\(258\) 0 0
\(259\) 2662.36 0.638731
\(260\) 0 0
\(261\) 0 0
\(262\) 4133.04 0.974581
\(263\) −4416.65 −1.03552 −0.517761 0.855525i \(-0.673234\pi\)
−0.517761 + 0.855525i \(0.673234\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4898.64 −1.12915
\(267\) 0 0
\(268\) −5253.28 −1.19737
\(269\) −1914.86 −0.434020 −0.217010 0.976169i \(-0.569630\pi\)
−0.217010 + 0.976169i \(0.569630\pi\)
\(270\) 0 0
\(271\) 6088.34 1.36472 0.682362 0.731014i \(-0.260953\pi\)
0.682362 + 0.731014i \(0.260953\pi\)
\(272\) 2845.69 0.634357
\(273\) 0 0
\(274\) −6714.91 −1.48052
\(275\) 0 0
\(276\) 0 0
\(277\) 832.321 0.180539 0.0902696 0.995917i \(-0.471227\pi\)
0.0902696 + 0.995917i \(0.471227\pi\)
\(278\) 14222.9 3.06847
\(279\) 0 0
\(280\) 0 0
\(281\) 2545.32 0.540360 0.270180 0.962810i \(-0.412917\pi\)
0.270180 + 0.962810i \(0.412917\pi\)
\(282\) 0 0
\(283\) 5911.71 1.24175 0.620874 0.783911i \(-0.286778\pi\)
0.620874 + 0.783911i \(0.286778\pi\)
\(284\) −1819.65 −0.380198
\(285\) 0 0
\(286\) −3703.03 −0.765611
\(287\) 2331.59 0.479545
\(288\) 0 0
\(289\) −4619.01 −0.940161
\(290\) 0 0
\(291\) 0 0
\(292\) 4763.87 0.954742
\(293\) −6871.03 −1.37000 −0.685000 0.728543i \(-0.740198\pi\)
−0.685000 + 0.728543i \(0.740198\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −15857.5 −3.11384
\(297\) 0 0
\(298\) −12632.8 −2.45570
\(299\) 13602.8 2.63100
\(300\) 0 0
\(301\) 3585.88 0.686666
\(302\) 13244.7 2.52367
\(303\) 0 0
\(304\) 14972.0 2.82468
\(305\) 0 0
\(306\) 0 0
\(307\) −200.179 −0.0372144 −0.0186072 0.999827i \(-0.505923\pi\)
−0.0186072 + 0.999827i \(0.505923\pi\)
\(308\) −2234.61 −0.413404
\(309\) 0 0
\(310\) 0 0
\(311\) −5734.93 −1.04565 −0.522827 0.852439i \(-0.675122\pi\)
−0.522827 + 0.852439i \(0.675122\pi\)
\(312\) 0 0
\(313\) 3077.36 0.555727 0.277864 0.960621i \(-0.410374\pi\)
0.277864 + 0.960621i \(0.410374\pi\)
\(314\) 7320.97 1.31575
\(315\) 0 0
\(316\) −20108.5 −3.57971
\(317\) 2142.38 0.379584 0.189792 0.981824i \(-0.439219\pi\)
0.189792 + 0.981824i \(0.439219\pi\)
\(318\) 0 0
\(319\) 633.007 0.111102
\(320\) 0 0
\(321\) 0 0
\(322\) 11544.9 1.99806
\(323\) 1546.75 0.266451
\(324\) 0 0
\(325\) 0 0
\(326\) −14314.0 −2.43184
\(327\) 0 0
\(328\) −13887.4 −2.33781
\(329\) 4173.32 0.699339
\(330\) 0 0
\(331\) −1618.23 −0.268719 −0.134359 0.990933i \(-0.542898\pi\)
−0.134359 + 0.990933i \(0.542898\pi\)
\(332\) 13904.6 2.29854
\(333\) 0 0
\(334\) −15522.7 −2.54301
\(335\) 0 0
\(336\) 0 0
\(337\) −2406.47 −0.388988 −0.194494 0.980904i \(-0.562306\pi\)
−0.194494 + 0.980904i \(0.562306\pi\)
\(338\) −9979.23 −1.60591
\(339\) 0 0
\(340\) 0 0
\(341\) 1558.74 0.247538
\(342\) 0 0
\(343\) −5980.67 −0.941475
\(344\) −21358.1 −3.34753
\(345\) 0 0
\(346\) −2825.68 −0.439045
\(347\) −6612.89 −1.02305 −0.511525 0.859268i \(-0.670919\pi\)
−0.511525 + 0.859268i \(0.670919\pi\)
\(348\) 0 0
\(349\) 349.871 0.0536623 0.0268311 0.999640i \(-0.491458\pi\)
0.0268311 + 0.999640i \(0.491458\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4196.08 0.635374
\(353\) 1723.29 0.259835 0.129917 0.991525i \(-0.458529\pi\)
0.129917 + 0.991525i \(0.458529\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8664.97 1.29001
\(357\) 0 0
\(358\) 15212.3 2.24580
\(359\) −5875.74 −0.863816 −0.431908 0.901918i \(-0.642159\pi\)
−0.431908 + 0.901918i \(0.642159\pi\)
\(360\) 0 0
\(361\) 1278.92 0.186458
\(362\) −2289.85 −0.332464
\(363\) 0 0
\(364\) −12997.6 −1.87159
\(365\) 0 0
\(366\) 0 0
\(367\) 5368.28 0.763548 0.381774 0.924256i \(-0.375313\pi\)
0.381774 + 0.924256i \(0.375313\pi\)
\(368\) −35285.5 −4.99832
\(369\) 0 0
\(370\) 0 0
\(371\) 2678.93 0.374887
\(372\) 0 0
\(373\) −10393.9 −1.44282 −0.721412 0.692506i \(-0.756507\pi\)
−0.721412 + 0.692506i \(0.756507\pi\)
\(374\) 992.354 0.137202
\(375\) 0 0
\(376\) −24857.0 −3.40931
\(377\) 3681.90 0.502990
\(378\) 0 0
\(379\) 10918.9 1.47986 0.739928 0.672686i \(-0.234860\pi\)
0.739928 + 0.672686i \(0.234860\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −19885.8 −2.66347
\(383\) −11663.6 −1.55609 −0.778044 0.628210i \(-0.783788\pi\)
−0.778044 + 0.628210i \(0.783788\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19740.7 2.60304
\(387\) 0 0
\(388\) 3892.59 0.509321
\(389\) 5827.00 0.759487 0.379744 0.925092i \(-0.376012\pi\)
0.379744 + 0.925092i \(0.376012\pi\)
\(390\) 0 0
\(391\) −3645.34 −0.471490
\(392\) 14537.1 1.87304
\(393\) 0 0
\(394\) 20628.9 2.63774
\(395\) 0 0
\(396\) 0 0
\(397\) −7366.99 −0.931332 −0.465666 0.884961i \(-0.654185\pi\)
−0.465666 + 0.884961i \(0.654185\pi\)
\(398\) 3141.55 0.395658
\(399\) 0 0
\(400\) 0 0
\(401\) −14604.2 −1.81870 −0.909349 0.416035i \(-0.863419\pi\)
−0.909349 + 0.416035i \(0.863419\pi\)
\(402\) 0 0
\(403\) 9066.43 1.12067
\(404\) −27569.0 −3.39507
\(405\) 0 0
\(406\) 3124.89 0.381985
\(407\) −2837.60 −0.345588
\(408\) 0 0
\(409\) 12581.2 1.52103 0.760515 0.649320i \(-0.224946\pi\)
0.760515 + 0.649320i \(0.224946\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 26487.9 3.16739
\(413\) 8804.26 1.04898
\(414\) 0 0
\(415\) 0 0
\(416\) 24406.6 2.87651
\(417\) 0 0
\(418\) 5221.06 0.610934
\(419\) 3776.01 0.440263 0.220131 0.975470i \(-0.429351\pi\)
0.220131 + 0.975470i \(0.429351\pi\)
\(420\) 0 0
\(421\) 12683.4 1.46830 0.734148 0.678989i \(-0.237582\pi\)
0.734148 + 0.678989i \(0.237582\pi\)
\(422\) 23069.3 2.66113
\(423\) 0 0
\(424\) −15956.2 −1.82759
\(425\) 0 0
\(426\) 0 0
\(427\) −2102.32 −0.238263
\(428\) −17502.0 −1.97662
\(429\) 0 0
\(430\) 0 0
\(431\) −14152.6 −1.58168 −0.790841 0.612022i \(-0.790356\pi\)
−0.790841 + 0.612022i \(0.790356\pi\)
\(432\) 0 0
\(433\) 10950.2 1.21532 0.607661 0.794197i \(-0.292108\pi\)
0.607661 + 0.794197i \(0.292108\pi\)
\(434\) 7694.84 0.851070
\(435\) 0 0
\(436\) 24727.9 2.71618
\(437\) −19179.2 −2.09946
\(438\) 0 0
\(439\) −11221.0 −1.21993 −0.609964 0.792429i \(-0.708816\pi\)
−0.609964 + 0.792429i \(0.708816\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5772.04 0.621149
\(443\) 9647.11 1.03465 0.517323 0.855790i \(-0.326929\pi\)
0.517323 + 0.855790i \(0.326929\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −12275.2 −1.30325
\(447\) 0 0
\(448\) 7011.07 0.739379
\(449\) −6482.03 −0.681305 −0.340652 0.940189i \(-0.610648\pi\)
−0.340652 + 0.940189i \(0.610648\pi\)
\(450\) 0 0
\(451\) −2485.05 −0.259460
\(452\) −47122.2 −4.90363
\(453\) 0 0
\(454\) 11154.4 1.15308
\(455\) 0 0
\(456\) 0 0
\(457\) −11319.8 −1.15868 −0.579342 0.815085i \(-0.696690\pi\)
−0.579342 + 0.815085i \(0.696690\pi\)
\(458\) −12349.4 −1.25993
\(459\) 0 0
\(460\) 0 0
\(461\) 8406.73 0.849329 0.424664 0.905351i \(-0.360392\pi\)
0.424664 + 0.905351i \(0.360392\pi\)
\(462\) 0 0
\(463\) −9758.56 −0.979523 −0.489761 0.871857i \(-0.662916\pi\)
−0.489761 + 0.871857i \(0.662916\pi\)
\(464\) −9550.78 −0.955568
\(465\) 0 0
\(466\) 1975.68 0.196399
\(467\) −16388.7 −1.62394 −0.811969 0.583701i \(-0.801604\pi\)
−0.811969 + 0.583701i \(0.801604\pi\)
\(468\) 0 0
\(469\) −2754.49 −0.271195
\(470\) 0 0
\(471\) 0 0
\(472\) −52439.6 −5.11384
\(473\) −3821.89 −0.371524
\(474\) 0 0
\(475\) 0 0
\(476\) 3483.16 0.335400
\(477\) 0 0
\(478\) −7514.20 −0.719020
\(479\) −13829.0 −1.31913 −0.659567 0.751646i \(-0.729260\pi\)
−0.659567 + 0.751646i \(0.729260\pi\)
\(480\) 0 0
\(481\) −16504.9 −1.56457
\(482\) −1004.00 −0.0948771
\(483\) 0 0
\(484\) 2381.68 0.223674
\(485\) 0 0
\(486\) 0 0
\(487\) −13264.4 −1.23423 −0.617113 0.786875i \(-0.711698\pi\)
−0.617113 + 0.786875i \(0.711698\pi\)
\(488\) 12521.8 1.16155
\(489\) 0 0
\(490\) 0 0
\(491\) 7468.22 0.686428 0.343214 0.939257i \(-0.388484\pi\)
0.343214 + 0.939257i \(0.388484\pi\)
\(492\) 0 0
\(493\) −986.690 −0.0901385
\(494\) 30368.4 2.76586
\(495\) 0 0
\(496\) −23518.2 −2.12903
\(497\) −954.109 −0.0861119
\(498\) 0 0
\(499\) −5276.64 −0.473377 −0.236688 0.971586i \(-0.576062\pi\)
−0.236688 + 0.971586i \(0.576062\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −33120.1 −2.94466
\(503\) −10956.8 −0.971253 −0.485626 0.874166i \(-0.661408\pi\)
−0.485626 + 0.874166i \(0.661408\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12304.8 −1.08106
\(507\) 0 0
\(508\) −40657.3 −3.55093
\(509\) −12734.4 −1.10892 −0.554462 0.832209i \(-0.687076\pi\)
−0.554462 + 0.832209i \(0.687076\pi\)
\(510\) 0 0
\(511\) 2497.87 0.216242
\(512\) 18308.4 1.58032
\(513\) 0 0
\(514\) −23463.3 −2.01347
\(515\) 0 0
\(516\) 0 0
\(517\) −4448.00 −0.378381
\(518\) −14008.0 −1.18818
\(519\) 0 0
\(520\) 0 0
\(521\) 5650.70 0.475166 0.237583 0.971367i \(-0.423645\pi\)
0.237583 + 0.971367i \(0.423645\pi\)
\(522\) 0 0
\(523\) −14103.2 −1.17914 −0.589572 0.807716i \(-0.700703\pi\)
−0.589572 + 0.807716i \(0.700703\pi\)
\(524\) −15461.8 −1.28903
\(525\) 0 0
\(526\) 23238.2 1.92630
\(527\) −2429.66 −0.200830
\(528\) 0 0
\(529\) 33033.8 2.71503
\(530\) 0 0
\(531\) 0 0
\(532\) 18325.9 1.49347
\(533\) −14454.4 −1.17465
\(534\) 0 0
\(535\) 0 0
\(536\) 16406.2 1.32209
\(537\) 0 0
\(538\) 10075.0 0.807372
\(539\) 2601.31 0.207878
\(540\) 0 0
\(541\) −6391.90 −0.507965 −0.253983 0.967209i \(-0.581741\pi\)
−0.253983 + 0.967209i \(0.581741\pi\)
\(542\) −32033.8 −2.53869
\(543\) 0 0
\(544\) −6540.57 −0.515486
\(545\) 0 0
\(546\) 0 0
\(547\) −20786.7 −1.62482 −0.812409 0.583088i \(-0.801844\pi\)
−0.812409 + 0.583088i \(0.801844\pi\)
\(548\) 25120.6 1.95821
\(549\) 0 0
\(550\) 0 0
\(551\) −5191.26 −0.401370
\(552\) 0 0
\(553\) −10543.6 −0.810777
\(554\) −4379.26 −0.335843
\(555\) 0 0
\(556\) −53208.2 −4.05851
\(557\) −15125.9 −1.15064 −0.575320 0.817928i \(-0.695123\pi\)
−0.575320 + 0.817928i \(0.695123\pi\)
\(558\) 0 0
\(559\) −22230.1 −1.68199
\(560\) 0 0
\(561\) 0 0
\(562\) −13392.2 −1.00519
\(563\) 8706.42 0.651744 0.325872 0.945414i \(-0.394342\pi\)
0.325872 + 0.945414i \(0.394342\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −31104.4 −2.30992
\(567\) 0 0
\(568\) 5682.83 0.419800
\(569\) −7067.76 −0.520731 −0.260366 0.965510i \(-0.583843\pi\)
−0.260366 + 0.965510i \(0.583843\pi\)
\(570\) 0 0
\(571\) −3326.42 −0.243794 −0.121897 0.992543i \(-0.538898\pi\)
−0.121897 + 0.992543i \(0.538898\pi\)
\(572\) 13853.1 1.01264
\(573\) 0 0
\(574\) −12267.7 −0.892060
\(575\) 0 0
\(576\) 0 0
\(577\) 3308.06 0.238676 0.119338 0.992854i \(-0.461923\pi\)
0.119338 + 0.992854i \(0.461923\pi\)
\(578\) 24302.9 1.74891
\(579\) 0 0
\(580\) 0 0
\(581\) 7290.70 0.520601
\(582\) 0 0
\(583\) −2855.25 −0.202834
\(584\) −14877.8 −1.05419
\(585\) 0 0
\(586\) 36151.9 2.54850
\(587\) −5694.88 −0.400431 −0.200215 0.979752i \(-0.564164\pi\)
−0.200215 + 0.979752i \(0.564164\pi\)
\(588\) 0 0
\(589\) −12783.1 −0.894262
\(590\) 0 0
\(591\) 0 0
\(592\) 42813.5 2.97234
\(593\) −3907.69 −0.270606 −0.135303 0.990804i \(-0.543201\pi\)
−0.135303 + 0.990804i \(0.543201\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 47259.5 3.24803
\(597\) 0 0
\(598\) −71571.1 −4.89425
\(599\) −10727.2 −0.731720 −0.365860 0.930670i \(-0.619225\pi\)
−0.365860 + 0.930670i \(0.619225\pi\)
\(600\) 0 0
\(601\) 3348.98 0.227301 0.113650 0.993521i \(-0.463746\pi\)
0.113650 + 0.993521i \(0.463746\pi\)
\(602\) −18867.1 −1.27735
\(603\) 0 0
\(604\) −49548.8 −3.33793
\(605\) 0 0
\(606\) 0 0
\(607\) 21539.9 1.44032 0.720162 0.693806i \(-0.244068\pi\)
0.720162 + 0.693806i \(0.244068\pi\)
\(608\) −34411.8 −2.29537
\(609\) 0 0
\(610\) 0 0
\(611\) −25871.9 −1.71303
\(612\) 0 0
\(613\) 9284.33 0.611730 0.305865 0.952075i \(-0.401054\pi\)
0.305865 + 0.952075i \(0.401054\pi\)
\(614\) 1053.24 0.0692270
\(615\) 0 0
\(616\) 6978.77 0.456465
\(617\) −20711.3 −1.35139 −0.675695 0.737181i \(-0.736156\pi\)
−0.675695 + 0.737181i \(0.736156\pi\)
\(618\) 0 0
\(619\) −13282.9 −0.862496 −0.431248 0.902233i \(-0.641927\pi\)
−0.431248 + 0.902233i \(0.641927\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 30174.3 1.94515
\(623\) 4543.36 0.292177
\(624\) 0 0
\(625\) 0 0
\(626\) −16191.5 −1.03378
\(627\) 0 0
\(628\) −27387.9 −1.74028
\(629\) 4423.06 0.280380
\(630\) 0 0
\(631\) −14789.9 −0.933086 −0.466543 0.884498i \(-0.654501\pi\)
−0.466543 + 0.884498i \(0.654501\pi\)
\(632\) 62799.5 3.95258
\(633\) 0 0
\(634\) −11272.1 −0.706109
\(635\) 0 0
\(636\) 0 0
\(637\) 15130.6 0.941123
\(638\) −3330.57 −0.206675
\(639\) 0 0
\(640\) 0 0
\(641\) 5808.52 0.357914 0.178957 0.983857i \(-0.442728\pi\)
0.178957 + 0.983857i \(0.442728\pi\)
\(642\) 0 0
\(643\) 18891.2 1.15862 0.579311 0.815106i \(-0.303322\pi\)
0.579311 + 0.815106i \(0.303322\pi\)
\(644\) −43189.8 −2.64273
\(645\) 0 0
\(646\) −8138.24 −0.495657
\(647\) −243.046 −0.0147684 −0.00738418 0.999973i \(-0.502350\pi\)
−0.00738418 + 0.999973i \(0.502350\pi\)
\(648\) 0 0
\(649\) −9383.74 −0.567556
\(650\) 0 0
\(651\) 0 0
\(652\) 53549.0 3.21648
\(653\) −15920.4 −0.954081 −0.477041 0.878881i \(-0.658291\pi\)
−0.477041 + 0.878881i \(0.658291\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 37494.4 2.23157
\(657\) 0 0
\(658\) −21957.9 −1.30092
\(659\) 7476.38 0.441940 0.220970 0.975281i \(-0.429078\pi\)
0.220970 + 0.975281i \(0.429078\pi\)
\(660\) 0 0
\(661\) −14920.1 −0.877948 −0.438974 0.898500i \(-0.644658\pi\)
−0.438974 + 0.898500i \(0.644658\pi\)
\(662\) 8514.30 0.499876
\(663\) 0 0
\(664\) −43424.7 −2.53796
\(665\) 0 0
\(666\) 0 0
\(667\) 12234.6 0.710232
\(668\) 58070.8 3.36351
\(669\) 0 0
\(670\) 0 0
\(671\) 2240.69 0.128914
\(672\) 0 0
\(673\) −563.692 −0.0322864 −0.0161432 0.999870i \(-0.505139\pi\)
−0.0161432 + 0.999870i \(0.505139\pi\)
\(674\) 12661.6 0.723602
\(675\) 0 0
\(676\) 37332.5 2.12406
\(677\) 13280.2 0.753914 0.376957 0.926231i \(-0.376970\pi\)
0.376957 + 0.926231i \(0.376970\pi\)
\(678\) 0 0
\(679\) 2041.03 0.115357
\(680\) 0 0
\(681\) 0 0
\(682\) −8201.30 −0.460475
\(683\) 6856.80 0.384141 0.192070 0.981381i \(-0.438480\pi\)
0.192070 + 0.981381i \(0.438480\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 31467.3 1.75135
\(687\) 0 0
\(688\) 57664.5 3.19541
\(689\) −16607.6 −0.918287
\(690\) 0 0
\(691\) −28374.6 −1.56211 −0.781057 0.624460i \(-0.785319\pi\)
−0.781057 + 0.624460i \(0.785319\pi\)
\(692\) 10570.9 0.580702
\(693\) 0 0
\(694\) 34793.7 1.90310
\(695\) 0 0
\(696\) 0 0
\(697\) 3873.54 0.210503
\(698\) −1840.84 −0.0998237
\(699\) 0 0
\(700\) 0 0
\(701\) −667.753 −0.0359781 −0.0179891 0.999838i \(-0.505726\pi\)
−0.0179891 + 0.999838i \(0.505726\pi\)
\(702\) 0 0
\(703\) 23271.0 1.24848
\(704\) −7472.52 −0.400044
\(705\) 0 0
\(706\) −9067.10 −0.483349
\(707\) −14455.4 −0.768956
\(708\) 0 0
\(709\) 23667.8 1.25368 0.626842 0.779147i \(-0.284347\pi\)
0.626842 + 0.779147i \(0.284347\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −27061.0 −1.42438
\(713\) 30126.9 1.58241
\(714\) 0 0
\(715\) 0 0
\(716\) −56909.5 −2.97040
\(717\) 0 0
\(718\) 30915.2 1.60689
\(719\) −11835.5 −0.613896 −0.306948 0.951726i \(-0.599308\pi\)
−0.306948 + 0.951726i \(0.599308\pi\)
\(720\) 0 0
\(721\) 13888.6 0.717390
\(722\) −6729.01 −0.346853
\(723\) 0 0
\(724\) 8566.38 0.439733
\(725\) 0 0
\(726\) 0 0
\(727\) −15633.2 −0.797530 −0.398765 0.917053i \(-0.630561\pi\)
−0.398765 + 0.917053i \(0.630561\pi\)
\(728\) 40592.1 2.06654
\(729\) 0 0
\(730\) 0 0
\(731\) 5957.31 0.301422
\(732\) 0 0
\(733\) 14870.7 0.749335 0.374668 0.927159i \(-0.377757\pi\)
0.374668 + 0.927159i \(0.377757\pi\)
\(734\) −28245.2 −1.42037
\(735\) 0 0
\(736\) 81100.6 4.06169
\(737\) 2935.79 0.146731
\(738\) 0 0
\(739\) 20850.3 1.03788 0.518939 0.854812i \(-0.326327\pi\)
0.518939 + 0.854812i \(0.326327\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −14095.2 −0.697372
\(743\) −29254.7 −1.44448 −0.722242 0.691641i \(-0.756888\pi\)
−0.722242 + 0.691641i \(0.756888\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 54687.2 2.68397
\(747\) 0 0
\(748\) −3712.41 −0.181470
\(749\) −9176.95 −0.447688
\(750\) 0 0
\(751\) 10936.8 0.531411 0.265705 0.964054i \(-0.414395\pi\)
0.265705 + 0.964054i \(0.414395\pi\)
\(752\) 67111.2 3.25438
\(753\) 0 0
\(754\) −19372.3 −0.935672
\(755\) 0 0
\(756\) 0 0
\(757\) 8476.34 0.406972 0.203486 0.979078i \(-0.434773\pi\)
0.203486 + 0.979078i \(0.434773\pi\)
\(758\) −57449.6 −2.75286
\(759\) 0 0
\(760\) 0 0
\(761\) −913.964 −0.0435364 −0.0217682 0.999763i \(-0.506930\pi\)
−0.0217682 + 0.999763i \(0.506930\pi\)
\(762\) 0 0
\(763\) 12965.8 0.615193
\(764\) 74393.0 3.52283
\(765\) 0 0
\(766\) 61367.9 2.89466
\(767\) −54580.6 −2.56948
\(768\) 0 0
\(769\) 32215.2 1.51067 0.755337 0.655337i \(-0.227473\pi\)
0.755337 + 0.655337i \(0.227473\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −73850.2 −3.44291
\(773\) 72.6900 0.00338225 0.00169112 0.999999i \(-0.499462\pi\)
0.00169112 + 0.999999i \(0.499462\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −12156.7 −0.562373
\(777\) 0 0
\(778\) −30658.7 −1.41281
\(779\) 20379.8 0.937332
\(780\) 0 0
\(781\) 1016.91 0.0465913
\(782\) 19179.9 0.877075
\(783\) 0 0
\(784\) −39248.5 −1.78792
\(785\) 0 0
\(786\) 0 0
\(787\) −487.318 −0.0220724 −0.0110362 0.999939i \(-0.503513\pi\)
−0.0110362 + 0.999939i \(0.503513\pi\)
\(788\) −77173.1 −3.48880
\(789\) 0 0
\(790\) 0 0
\(791\) −24707.9 −1.11064
\(792\) 0 0
\(793\) 13033.0 0.583627
\(794\) 38761.4 1.73248
\(795\) 0 0
\(796\) −11752.6 −0.523317
\(797\) 31379.9 1.39465 0.697324 0.716756i \(-0.254374\pi\)
0.697324 + 0.716756i \(0.254374\pi\)
\(798\) 0 0
\(799\) 6933.25 0.306985
\(800\) 0 0
\(801\) 0 0
\(802\) 76839.8 3.38318
\(803\) −2662.28 −0.116999
\(804\) 0 0
\(805\) 0 0
\(806\) −47703.0 −2.08470
\(807\) 0 0
\(808\) 86099.0 3.74870
\(809\) −1824.26 −0.0792802 −0.0396401 0.999214i \(-0.512621\pi\)
−0.0396401 + 0.999214i \(0.512621\pi\)
\(810\) 0 0
\(811\) −4364.52 −0.188976 −0.0944878 0.995526i \(-0.530121\pi\)
−0.0944878 + 0.995526i \(0.530121\pi\)
\(812\) −11690.3 −0.505232
\(813\) 0 0
\(814\) 14930.0 0.642870
\(815\) 0 0
\(816\) 0 0
\(817\) 31343.1 1.34218
\(818\) −66196.1 −2.82945
\(819\) 0 0
\(820\) 0 0
\(821\) −3306.16 −0.140543 −0.0702714 0.997528i \(-0.522387\pi\)
−0.0702714 + 0.997528i \(0.522387\pi\)
\(822\) 0 0
\(823\) 19183.7 0.812519 0.406259 0.913758i \(-0.366833\pi\)
0.406259 + 0.913758i \(0.366833\pi\)
\(824\) −82722.8 −3.49731
\(825\) 0 0
\(826\) −46323.6 −1.95134
\(827\) 20646.4 0.868131 0.434066 0.900881i \(-0.357079\pi\)
0.434066 + 0.900881i \(0.357079\pi\)
\(828\) 0 0
\(829\) 5345.44 0.223950 0.111975 0.993711i \(-0.464282\pi\)
0.111975 + 0.993711i \(0.464282\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −43464.0 −1.81111
\(833\) −4054.75 −0.168654
\(834\) 0 0
\(835\) 0 0
\(836\) −19532.1 −0.808051
\(837\) 0 0
\(838\) −19867.5 −0.818985
\(839\) −29284.9 −1.20504 −0.602519 0.798105i \(-0.705836\pi\)
−0.602519 + 0.798105i \(0.705836\pi\)
\(840\) 0 0
\(841\) −21077.4 −0.864219
\(842\) −66733.8 −2.73135
\(843\) 0 0
\(844\) −86302.6 −3.51974
\(845\) 0 0
\(846\) 0 0
\(847\) 1248.81 0.0506605
\(848\) 43079.9 1.74454
\(849\) 0 0
\(850\) 0 0
\(851\) −54844.2 −2.20921
\(852\) 0 0
\(853\) 8070.62 0.323954 0.161977 0.986795i \(-0.448213\pi\)
0.161977 + 0.986795i \(0.448213\pi\)
\(854\) 11061.4 0.443222
\(855\) 0 0
\(856\) 54659.5 2.18250
\(857\) −11344.2 −0.452169 −0.226085 0.974108i \(-0.572593\pi\)
−0.226085 + 0.974108i \(0.572593\pi\)
\(858\) 0 0
\(859\) 25470.6 1.01170 0.505848 0.862623i \(-0.331180\pi\)
0.505848 + 0.862623i \(0.331180\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 74463.6 2.94228
\(863\) −14558.4 −0.574243 −0.287122 0.957894i \(-0.592698\pi\)
−0.287122 + 0.957894i \(0.592698\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −57614.6 −2.26077
\(867\) 0 0
\(868\) −28786.5 −1.12567
\(869\) 11237.6 0.438675
\(870\) 0 0
\(871\) 17076.0 0.664294
\(872\) −77226.3 −2.99910
\(873\) 0 0
\(874\) 100911. 3.90546
\(875\) 0 0
\(876\) 0 0
\(877\) −185.528 −0.00714350 −0.00357175 0.999994i \(-0.501137\pi\)
−0.00357175 + 0.999994i \(0.501137\pi\)
\(878\) 59039.1 2.26933
\(879\) 0 0
\(880\) 0 0
\(881\) −18950.1 −0.724681 −0.362340 0.932046i \(-0.618022\pi\)
−0.362340 + 0.932046i \(0.618022\pi\)
\(882\) 0 0
\(883\) −21258.3 −0.810189 −0.405095 0.914275i \(-0.632761\pi\)
−0.405095 + 0.914275i \(0.632761\pi\)
\(884\) −21593.3 −0.821563
\(885\) 0 0
\(886\) −50758.2 −1.92467
\(887\) 35707.4 1.35168 0.675839 0.737049i \(-0.263781\pi\)
0.675839 + 0.737049i \(0.263781\pi\)
\(888\) 0 0
\(889\) −21318.1 −0.804259
\(890\) 0 0
\(891\) 0 0
\(892\) 45921.8 1.72374
\(893\) 36477.8 1.36695
\(894\) 0 0
\(895\) 0 0
\(896\) −5393.06 −0.201082
\(897\) 0 0
\(898\) 34105.2 1.26738
\(899\) 8154.49 0.302522
\(900\) 0 0
\(901\) 4450.58 0.164562
\(902\) 13075.1 0.482653
\(903\) 0 0
\(904\) 147165. 5.41440
\(905\) 0 0
\(906\) 0 0
\(907\) 6542.52 0.239516 0.119758 0.992803i \(-0.461788\pi\)
0.119758 + 0.992803i \(0.461788\pi\)
\(908\) −41728.6 −1.52512
\(909\) 0 0
\(910\) 0 0
\(911\) −31171.2 −1.13364 −0.566821 0.823841i \(-0.691827\pi\)
−0.566821 + 0.823841i \(0.691827\pi\)
\(912\) 0 0
\(913\) −7770.56 −0.281674
\(914\) 59559.2 2.15541
\(915\) 0 0
\(916\) 46199.2 1.66644
\(917\) −8107.19 −0.291955
\(918\) 0 0
\(919\) 12031.9 0.431877 0.215938 0.976407i \(-0.430719\pi\)
0.215938 + 0.976407i \(0.430719\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −44232.0 −1.57994
\(923\) 5914.85 0.210931
\(924\) 0 0
\(925\) 0 0
\(926\) 51344.7 1.82213
\(927\) 0 0
\(928\) 21951.6 0.776506
\(929\) 12546.2 0.443085 0.221542 0.975151i \(-0.428891\pi\)
0.221542 + 0.975151i \(0.428891\pi\)
\(930\) 0 0
\(931\) −21333.2 −0.750986
\(932\) −7391.07 −0.259767
\(933\) 0 0
\(934\) 86229.1 3.02088
\(935\) 0 0
\(936\) 0 0
\(937\) −17909.8 −0.624427 −0.312214 0.950012i \(-0.601070\pi\)
−0.312214 + 0.950012i \(0.601070\pi\)
\(938\) 14492.7 0.504483
\(939\) 0 0
\(940\) 0 0
\(941\) −829.893 −0.0287500 −0.0143750 0.999897i \(-0.504576\pi\)
−0.0143750 + 0.999897i \(0.504576\pi\)
\(942\) 0 0
\(943\) −48030.4 −1.65863
\(944\) 141581. 4.88144
\(945\) 0 0
\(946\) 20108.9 0.691116
\(947\) −17654.9 −0.605814 −0.302907 0.953020i \(-0.597957\pi\)
−0.302907 + 0.953020i \(0.597957\pi\)
\(948\) 0 0
\(949\) −15485.2 −0.529685
\(950\) 0 0
\(951\) 0 0
\(952\) −10878.0 −0.370335
\(953\) 30736.6 1.04476 0.522380 0.852713i \(-0.325044\pi\)
0.522380 + 0.852713i \(0.325044\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 28110.8 0.951012
\(957\) 0 0
\(958\) 72761.5 2.45388
\(959\) 13171.7 0.443519
\(960\) 0 0
\(961\) −9711.08 −0.325974
\(962\) 86840.6 2.91045
\(963\) 0 0
\(964\) 3755.97 0.125489
\(965\) 0 0
\(966\) 0 0
\(967\) −23645.2 −0.786327 −0.393163 0.919469i \(-0.628619\pi\)
−0.393163 + 0.919469i \(0.628619\pi\)
\(968\) −7438.10 −0.246973
\(969\) 0 0
\(970\) 0 0
\(971\) −27402.0 −0.905635 −0.452818 0.891603i \(-0.649581\pi\)
−0.452818 + 0.891603i \(0.649581\pi\)
\(972\) 0 0
\(973\) −27899.1 −0.919222
\(974\) 69790.6 2.29593
\(975\) 0 0
\(976\) −33807.5 −1.10876
\(977\) −49118.7 −1.60844 −0.804220 0.594332i \(-0.797416\pi\)
−0.804220 + 0.594332i \(0.797416\pi\)
\(978\) 0 0
\(979\) −4842.40 −0.158084
\(980\) 0 0
\(981\) 0 0
\(982\) −39294.0 −1.27691
\(983\) 52630.5 1.70768 0.853842 0.520533i \(-0.174267\pi\)
0.853842 + 0.520533i \(0.174267\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5191.47 0.167677
\(987\) 0 0
\(988\) −113609. −3.65827
\(989\) −73868.4 −2.37500
\(990\) 0 0
\(991\) 45472.7 1.45761 0.728803 0.684724i \(-0.240077\pi\)
0.728803 + 0.684724i \(0.240077\pi\)
\(992\) 54054.5 1.73007
\(993\) 0 0
\(994\) 5020.04 0.160187
\(995\) 0 0
\(996\) 0 0
\(997\) −55068.1 −1.74927 −0.874637 0.484779i \(-0.838900\pi\)
−0.874637 + 0.484779i \(0.838900\pi\)
\(998\) 27763.0 0.880585
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.s.1.1 3
3.2 odd 2 825.4.a.s.1.3 3
5.4 even 2 495.4.a.l.1.3 3
15.2 even 4 825.4.c.l.199.6 6
15.8 even 4 825.4.c.l.199.1 6
15.14 odd 2 165.4.a.d.1.1 3
165.164 even 2 1815.4.a.s.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.4.a.d.1.1 3 15.14 odd 2
495.4.a.l.1.3 3 5.4 even 2
825.4.a.s.1.3 3 3.2 odd 2
825.4.c.l.199.1 6 15.8 even 4
825.4.c.l.199.6 6 15.2 even 4
1815.4.a.s.1.3 3 165.164 even 2
2475.4.a.s.1.1 3 1.1 even 1 trivial