Properties

Label 2475.4.a.q.1.2
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.73205 q^{2} -0.535898 q^{4} -3.07180 q^{7} -23.3205 q^{8} +O(q^{10})\) \(q+2.73205 q^{2} -0.535898 q^{4} -3.07180 q^{7} -23.3205 q^{8} +11.0000 q^{11} -5.35898 q^{13} -8.39230 q^{14} -59.4256 q^{16} -41.2154 q^{17} +139.923 q^{19} +30.0526 q^{22} -111.354 q^{23} -14.6410 q^{26} +1.64617 q^{28} +24.9948 q^{29} +31.4974 q^{31} +24.2102 q^{32} -112.603 q^{34} -13.1436 q^{37} +382.277 q^{38} -261.072 q^{41} +57.7128 q^{43} -5.89488 q^{44} -304.224 q^{46} -343.846 q^{47} -333.564 q^{49} +2.87187 q^{52} -342.995 q^{53} +71.6359 q^{56} +68.2872 q^{58} -88.3693 q^{59} +738.697 q^{61} +86.0526 q^{62} +541.549 q^{64} -342.359 q^{67} +22.0873 q^{68} +207.364 q^{71} +1010.60 q^{73} -35.9090 q^{74} -74.9845 q^{76} -33.7898 q^{77} +1294.23 q^{79} -713.261 q^{82} +441.846 q^{83} +157.674 q^{86} -256.526 q^{88} +1489.11 q^{89} +16.4617 q^{91} +59.6743 q^{92} -939.405 q^{94} -1346.42 q^{97} -911.314 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 8 q^{4} - 20 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 8 q^{4} - 20 q^{7} - 12 q^{8} + 22 q^{11} - 80 q^{13} + 4 q^{14} - 8 q^{16} - 124 q^{17} + 72 q^{19} + 22 q^{22} - 98 q^{23} + 40 q^{26} + 128 q^{28} - 144 q^{29} - 34 q^{31} - 104 q^{32} - 52 q^{34} - 54 q^{37} + 432 q^{38} - 536 q^{41} + 60 q^{43} - 88 q^{44} - 314 q^{46} - 272 q^{47} - 390 q^{49} + 560 q^{52} - 492 q^{53} - 120 q^{56} + 192 q^{58} - 634 q^{59} + 840 q^{61} + 134 q^{62} + 224 q^{64} - 754 q^{67} + 640 q^{68} + 678 q^{71} + 400 q^{73} - 6 q^{74} + 432 q^{76} - 220 q^{77} + 316 q^{79} - 512 q^{82} + 468 q^{83} + 156 q^{86} - 132 q^{88} + 1842 q^{89} + 1280 q^{91} - 40 q^{92} - 992 q^{94} - 2194 q^{97} - 870 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.73205 0.965926 0.482963 0.875641i \(-0.339561\pi\)
0.482963 + 0.875641i \(0.339561\pi\)
\(3\) 0 0
\(4\) −0.535898 −0.0669873
\(5\) 0 0
\(6\) 0 0
\(7\) −3.07180 −0.165861 −0.0829307 0.996555i \(-0.526428\pi\)
−0.0829307 + 0.996555i \(0.526428\pi\)
\(8\) −23.3205 −1.03063
\(9\) 0 0
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −5.35898 −0.114332 −0.0571659 0.998365i \(-0.518206\pi\)
−0.0571659 + 0.998365i \(0.518206\pi\)
\(14\) −8.39230 −0.160210
\(15\) 0 0
\(16\) −59.4256 −0.928525
\(17\) −41.2154 −0.588012 −0.294006 0.955804i \(-0.594989\pi\)
−0.294006 + 0.955804i \(0.594989\pi\)
\(18\) 0 0
\(19\) 139.923 1.68950 0.844751 0.535159i \(-0.179748\pi\)
0.844751 + 0.535159i \(0.179748\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 30.0526 0.291238
\(23\) −111.354 −1.00952 −0.504758 0.863261i \(-0.668418\pi\)
−0.504758 + 0.863261i \(0.668418\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −14.6410 −0.110436
\(27\) 0 0
\(28\) 1.64617 0.0111106
\(29\) 24.9948 0.160049 0.0800246 0.996793i \(-0.474500\pi\)
0.0800246 + 0.996793i \(0.474500\pi\)
\(30\) 0 0
\(31\) 31.4974 0.182487 0.0912436 0.995829i \(-0.470916\pi\)
0.0912436 + 0.995829i \(0.470916\pi\)
\(32\) 24.2102 0.133744
\(33\) 0 0
\(34\) −112.603 −0.567976
\(35\) 0 0
\(36\) 0 0
\(37\) −13.1436 −0.0583998 −0.0291999 0.999574i \(-0.509296\pi\)
−0.0291999 + 0.999574i \(0.509296\pi\)
\(38\) 382.277 1.63193
\(39\) 0 0
\(40\) 0 0
\(41\) −261.072 −0.994453 −0.497226 0.867621i \(-0.665648\pi\)
−0.497226 + 0.867621i \(0.665648\pi\)
\(42\) 0 0
\(43\) 57.7128 0.204677 0.102339 0.994750i \(-0.467367\pi\)
0.102339 + 0.994750i \(0.467367\pi\)
\(44\) −5.89488 −0.0201974
\(45\) 0 0
\(46\) −304.224 −0.975118
\(47\) −343.846 −1.06713 −0.533565 0.845759i \(-0.679148\pi\)
−0.533565 + 0.845759i \(0.679148\pi\)
\(48\) 0 0
\(49\) −333.564 −0.972490
\(50\) 0 0
\(51\) 0 0
\(52\) 2.87187 0.00765879
\(53\) −342.995 −0.888943 −0.444471 0.895793i \(-0.646608\pi\)
−0.444471 + 0.895793i \(0.646608\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 71.6359 0.170942
\(57\) 0 0
\(58\) 68.2872 0.154596
\(59\) −88.3693 −0.194995 −0.0974975 0.995236i \(-0.531084\pi\)
−0.0974975 + 0.995236i \(0.531084\pi\)
\(60\) 0 0
\(61\) 738.697 1.55050 0.775250 0.631654i \(-0.217624\pi\)
0.775250 + 0.631654i \(0.217624\pi\)
\(62\) 86.0526 0.176269
\(63\) 0 0
\(64\) 541.549 1.05771
\(65\) 0 0
\(66\) 0 0
\(67\) −342.359 −0.624266 −0.312133 0.950038i \(-0.601043\pi\)
−0.312133 + 0.950038i \(0.601043\pi\)
\(68\) 22.0873 0.0393893
\(69\) 0 0
\(70\) 0 0
\(71\) 207.364 0.346614 0.173307 0.984868i \(-0.444555\pi\)
0.173307 + 0.984868i \(0.444555\pi\)
\(72\) 0 0
\(73\) 1010.60 1.62030 0.810149 0.586224i \(-0.199386\pi\)
0.810149 + 0.586224i \(0.199386\pi\)
\(74\) −35.9090 −0.0564099
\(75\) 0 0
\(76\) −74.9845 −0.113175
\(77\) −33.7898 −0.0500091
\(78\) 0 0
\(79\) 1294.23 1.84319 0.921593 0.388157i \(-0.126888\pi\)
0.921593 + 0.388157i \(0.126888\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −713.261 −0.960568
\(83\) 441.846 0.584324 0.292162 0.956369i \(-0.405625\pi\)
0.292162 + 0.956369i \(0.405625\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 157.674 0.197703
\(87\) 0 0
\(88\) −256.526 −0.310747
\(89\) 1489.11 1.77355 0.886773 0.462205i \(-0.152942\pi\)
0.886773 + 0.462205i \(0.152942\pi\)
\(90\) 0 0
\(91\) 16.4617 0.0189633
\(92\) 59.6743 0.0676248
\(93\) 0 0
\(94\) −939.405 −1.03077
\(95\) 0 0
\(96\) 0 0
\(97\) −1346.42 −1.40936 −0.704679 0.709526i \(-0.748909\pi\)
−0.704679 + 0.709526i \(0.748909\pi\)
\(98\) −911.314 −0.939353
\(99\) 0 0
\(100\) 0 0
\(101\) 161.461 0.159069 0.0795347 0.996832i \(-0.474657\pi\)
0.0795347 + 0.996832i \(0.474657\pi\)
\(102\) 0 0
\(103\) 34.7592 0.0332517 0.0166259 0.999862i \(-0.494708\pi\)
0.0166259 + 0.999862i \(0.494708\pi\)
\(104\) 124.974 0.117834
\(105\) 0 0
\(106\) −937.079 −0.858653
\(107\) 832.179 0.751867 0.375934 0.926647i \(-0.377322\pi\)
0.375934 + 0.926647i \(0.377322\pi\)
\(108\) 0 0
\(109\) 1044.26 0.917629 0.458815 0.888532i \(-0.348274\pi\)
0.458815 + 0.888532i \(0.348274\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 182.543 0.154007
\(113\) 295.082 0.245654 0.122827 0.992428i \(-0.460804\pi\)
0.122827 + 0.992428i \(0.460804\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −13.3947 −0.0107213
\(117\) 0 0
\(118\) −241.429 −0.188351
\(119\) 126.605 0.0975285
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 2018.16 1.49767
\(123\) 0 0
\(124\) −16.8794 −0.0122243
\(125\) 0 0
\(126\) 0 0
\(127\) 1317.60 0.920618 0.460309 0.887759i \(-0.347739\pi\)
0.460309 + 0.887759i \(0.347739\pi\)
\(128\) 1285.86 0.887928
\(129\) 0 0
\(130\) 0 0
\(131\) 1600.71 1.06759 0.533797 0.845612i \(-0.320765\pi\)
0.533797 + 0.845612i \(0.320765\pi\)
\(132\) 0 0
\(133\) −429.815 −0.280223
\(134\) −935.342 −0.602994
\(135\) 0 0
\(136\) 961.164 0.606023
\(137\) 1611.68 1.00507 0.502536 0.864556i \(-0.332400\pi\)
0.502536 + 0.864556i \(0.332400\pi\)
\(138\) 0 0
\(139\) −31.8619 −0.0194424 −0.00972120 0.999953i \(-0.503094\pi\)
−0.00972120 + 0.999953i \(0.503094\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 566.529 0.334803
\(143\) −58.9488 −0.0344724
\(144\) 0 0
\(145\) 0 0
\(146\) 2761.01 1.56509
\(147\) 0 0
\(148\) 7.04363 0.00391205
\(149\) 2428.34 1.33515 0.667576 0.744542i \(-0.267332\pi\)
0.667576 + 0.744542i \(0.267332\pi\)
\(150\) 0 0
\(151\) −2576.68 −1.38866 −0.694328 0.719659i \(-0.744298\pi\)
−0.694328 + 0.719659i \(0.744298\pi\)
\(152\) −3263.08 −1.74125
\(153\) 0 0
\(154\) −92.3154 −0.0483051
\(155\) 0 0
\(156\) 0 0
\(157\) −2475.94 −1.25861 −0.629305 0.777158i \(-0.716660\pi\)
−0.629305 + 0.777158i \(0.716660\pi\)
\(158\) 3535.89 1.78038
\(159\) 0 0
\(160\) 0 0
\(161\) 342.056 0.167440
\(162\) 0 0
\(163\) 2725.11 1.30949 0.654745 0.755850i \(-0.272776\pi\)
0.654745 + 0.755850i \(0.272776\pi\)
\(164\) 139.908 0.0666157
\(165\) 0 0
\(166\) 1207.15 0.564414
\(167\) 2737.30 1.26837 0.634187 0.773180i \(-0.281335\pi\)
0.634187 + 0.773180i \(0.281335\pi\)
\(168\) 0 0
\(169\) −2168.28 −0.986928
\(170\) 0 0
\(171\) 0 0
\(172\) −30.9282 −0.0137108
\(173\) 2307.42 1.01404 0.507022 0.861933i \(-0.330746\pi\)
0.507022 + 0.861933i \(0.330746\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −653.682 −0.279961
\(177\) 0 0
\(178\) 4068.33 1.71311
\(179\) 1312.15 0.547905 0.273953 0.961743i \(-0.411669\pi\)
0.273953 + 0.961743i \(0.411669\pi\)
\(180\) 0 0
\(181\) −803.174 −0.329831 −0.164916 0.986308i \(-0.552735\pi\)
−0.164916 + 0.986308i \(0.552735\pi\)
\(182\) 44.9742 0.0183171
\(183\) 0 0
\(184\) 2596.83 1.04044
\(185\) 0 0
\(186\) 0 0
\(187\) −453.369 −0.177292
\(188\) 184.267 0.0714842
\(189\) 0 0
\(190\) 0 0
\(191\) −1718.25 −0.650932 −0.325466 0.945554i \(-0.605521\pi\)
−0.325466 + 0.945554i \(0.605521\pi\)
\(192\) 0 0
\(193\) −1340.18 −0.499837 −0.249919 0.968267i \(-0.580404\pi\)
−0.249919 + 0.968267i \(0.580404\pi\)
\(194\) −3678.48 −1.36134
\(195\) 0 0
\(196\) 178.756 0.0651445
\(197\) −3518.33 −1.27244 −0.636220 0.771508i \(-0.719503\pi\)
−0.636220 + 0.771508i \(0.719503\pi\)
\(198\) 0 0
\(199\) 823.692 0.293417 0.146709 0.989180i \(-0.453132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 441.121 0.153649
\(203\) −76.7791 −0.0265460
\(204\) 0 0
\(205\) 0 0
\(206\) 94.9639 0.0321187
\(207\) 0 0
\(208\) 318.461 0.106160
\(209\) 1539.15 0.509404
\(210\) 0 0
\(211\) −107.343 −0.0350228 −0.0175114 0.999847i \(-0.505574\pi\)
−0.0175114 + 0.999847i \(0.505574\pi\)
\(212\) 183.810 0.0595479
\(213\) 0 0
\(214\) 2273.56 0.726248
\(215\) 0 0
\(216\) 0 0
\(217\) −96.7537 −0.0302676
\(218\) 2852.96 0.886362
\(219\) 0 0
\(220\) 0 0
\(221\) 220.873 0.0672285
\(222\) 0 0
\(223\) 3933.68 1.18125 0.590625 0.806946i \(-0.298881\pi\)
0.590625 + 0.806946i \(0.298881\pi\)
\(224\) −74.3689 −0.0221830
\(225\) 0 0
\(226\) 806.178 0.237284
\(227\) −1771.90 −0.518085 −0.259042 0.965866i \(-0.583407\pi\)
−0.259042 + 0.965866i \(0.583407\pi\)
\(228\) 0 0
\(229\) 1915.37 0.552713 0.276356 0.961055i \(-0.410873\pi\)
0.276356 + 0.961055i \(0.410873\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −582.892 −0.164952
\(233\) 4396.32 1.23610 0.618052 0.786137i \(-0.287922\pi\)
0.618052 + 0.786137i \(0.287922\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 47.3570 0.0130622
\(237\) 0 0
\(238\) 345.892 0.0942053
\(239\) 4084.49 1.10546 0.552728 0.833362i \(-0.313587\pi\)
0.552728 + 0.833362i \(0.313587\pi\)
\(240\) 0 0
\(241\) 3908.58 1.04471 0.522353 0.852730i \(-0.325054\pi\)
0.522353 + 0.852730i \(0.325054\pi\)
\(242\) 330.578 0.0878114
\(243\) 0 0
\(244\) −395.867 −0.103864
\(245\) 0 0
\(246\) 0 0
\(247\) −749.845 −0.193164
\(248\) −734.536 −0.188077
\(249\) 0 0
\(250\) 0 0
\(251\) −1094.89 −0.275335 −0.137667 0.990479i \(-0.543960\pi\)
−0.137667 + 0.990479i \(0.543960\pi\)
\(252\) 0 0
\(253\) −1224.89 −0.304381
\(254\) 3599.76 0.889249
\(255\) 0 0
\(256\) −819.364 −0.200040
\(257\) 783.179 0.190091 0.0950454 0.995473i \(-0.469700\pi\)
0.0950454 + 0.995473i \(0.469700\pi\)
\(258\) 0 0
\(259\) 40.3744 0.00968628
\(260\) 0 0
\(261\) 0 0
\(262\) 4373.23 1.03122
\(263\) 6180.06 1.44897 0.724484 0.689292i \(-0.242078\pi\)
0.724484 + 0.689292i \(0.242078\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1174.28 −0.270675
\(267\) 0 0
\(268\) 183.470 0.0418179
\(269\) −986.965 −0.223704 −0.111852 0.993725i \(-0.535678\pi\)
−0.111852 + 0.993725i \(0.535678\pi\)
\(270\) 0 0
\(271\) 4576.99 1.02595 0.512975 0.858404i \(-0.328543\pi\)
0.512975 + 0.858404i \(0.328543\pi\)
\(272\) 2449.25 0.545984
\(273\) 0 0
\(274\) 4403.18 0.970825
\(275\) 0 0
\(276\) 0 0
\(277\) −567.836 −0.123169 −0.0615847 0.998102i \(-0.519615\pi\)
−0.0615847 + 0.998102i \(0.519615\pi\)
\(278\) −87.0484 −0.0187799
\(279\) 0 0
\(280\) 0 0
\(281\) −5311.01 −1.12750 −0.563752 0.825944i \(-0.690643\pi\)
−0.563752 + 0.825944i \(0.690643\pi\)
\(282\) 0 0
\(283\) 4728.44 0.993204 0.496602 0.867978i \(-0.334581\pi\)
0.496602 + 0.867978i \(0.334581\pi\)
\(284\) −111.126 −0.0232187
\(285\) 0 0
\(286\) −161.051 −0.0332977
\(287\) 801.960 0.164941
\(288\) 0 0
\(289\) −3214.29 −0.654242
\(290\) 0 0
\(291\) 0 0
\(292\) −541.579 −0.108539
\(293\) 2328.92 0.464358 0.232179 0.972673i \(-0.425415\pi\)
0.232179 + 0.972673i \(0.425415\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 306.515 0.0601886
\(297\) 0 0
\(298\) 6634.36 1.28966
\(299\) 596.743 0.115420
\(300\) 0 0
\(301\) −177.282 −0.0339481
\(302\) −7039.61 −1.34134
\(303\) 0 0
\(304\) −8315.01 −1.56875
\(305\) 0 0
\(306\) 0 0
\(307\) 1678.07 0.311962 0.155981 0.987760i \(-0.450146\pi\)
0.155981 + 0.987760i \(0.450146\pi\)
\(308\) 18.1079 0.00334997
\(309\) 0 0
\(310\) 0 0
\(311\) −3572.71 −0.651413 −0.325707 0.945471i \(-0.605602\pi\)
−0.325707 + 0.945471i \(0.605602\pi\)
\(312\) 0 0
\(313\) −7184.36 −1.29739 −0.648697 0.761047i \(-0.724686\pi\)
−0.648697 + 0.761047i \(0.724686\pi\)
\(314\) −6764.40 −1.21572
\(315\) 0 0
\(316\) −693.573 −0.123470
\(317\) −15.7077 −0.00278306 −0.00139153 0.999999i \(-0.500443\pi\)
−0.00139153 + 0.999999i \(0.500443\pi\)
\(318\) 0 0
\(319\) 274.943 0.0482566
\(320\) 0 0
\(321\) 0 0
\(322\) 934.515 0.161734
\(323\) −5766.98 −0.993447
\(324\) 0 0
\(325\) 0 0
\(326\) 7445.13 1.26487
\(327\) 0 0
\(328\) 6088.33 1.02491
\(329\) 1056.23 0.176996
\(330\) 0 0
\(331\) −1318.95 −0.219022 −0.109511 0.993986i \(-0.534928\pi\)
−0.109511 + 0.993986i \(0.534928\pi\)
\(332\) −236.785 −0.0391423
\(333\) 0 0
\(334\) 7478.43 1.22515
\(335\) 0 0
\(336\) 0 0
\(337\) 239.183 0.0386621 0.0193310 0.999813i \(-0.493846\pi\)
0.0193310 + 0.999813i \(0.493846\pi\)
\(338\) −5923.85 −0.953299
\(339\) 0 0
\(340\) 0 0
\(341\) 346.472 0.0550220
\(342\) 0 0
\(343\) 2078.27 0.327160
\(344\) −1345.89 −0.210947
\(345\) 0 0
\(346\) 6303.98 0.979491
\(347\) −5862.79 −0.907006 −0.453503 0.891255i \(-0.649826\pi\)
−0.453503 + 0.891255i \(0.649826\pi\)
\(348\) 0 0
\(349\) 3491.73 0.535553 0.267776 0.963481i \(-0.413711\pi\)
0.267776 + 0.963481i \(0.413711\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 266.313 0.0403253
\(353\) −10916.7 −1.64600 −0.822999 0.568043i \(-0.807701\pi\)
−0.822999 + 0.568043i \(0.807701\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −798.013 −0.118805
\(357\) 0 0
\(358\) 3584.87 0.529236
\(359\) 11500.7 1.69077 0.845384 0.534160i \(-0.179372\pi\)
0.845384 + 0.534160i \(0.179372\pi\)
\(360\) 0 0
\(361\) 12719.5 1.85442
\(362\) −2194.31 −0.318592
\(363\) 0 0
\(364\) −8.82180 −0.00127030
\(365\) 0 0
\(366\) 0 0
\(367\) −6767.01 −0.962493 −0.481246 0.876585i \(-0.659816\pi\)
−0.481246 + 0.876585i \(0.659816\pi\)
\(368\) 6617.27 0.937362
\(369\) 0 0
\(370\) 0 0
\(371\) 1053.61 0.147441
\(372\) 0 0
\(373\) 5310.22 0.737139 0.368569 0.929600i \(-0.379848\pi\)
0.368569 + 0.929600i \(0.379848\pi\)
\(374\) −1238.63 −0.171251
\(375\) 0 0
\(376\) 8018.67 1.09982
\(377\) −133.947 −0.0182987
\(378\) 0 0
\(379\) −838.267 −0.113612 −0.0568059 0.998385i \(-0.518092\pi\)
−0.0568059 + 0.998385i \(0.518092\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4694.34 −0.628752
\(383\) −2832.16 −0.377851 −0.188925 0.981991i \(-0.560500\pi\)
−0.188925 + 0.981991i \(0.560500\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3661.45 −0.482806
\(387\) 0 0
\(388\) 721.542 0.0944091
\(389\) −3111.25 −0.405519 −0.202759 0.979229i \(-0.564991\pi\)
−0.202759 + 0.979229i \(0.564991\pi\)
\(390\) 0 0
\(391\) 4589.49 0.593608
\(392\) 7778.88 1.00228
\(393\) 0 0
\(394\) −9612.25 −1.22908
\(395\) 0 0
\(396\) 0 0
\(397\) −14208.7 −1.79626 −0.898131 0.439728i \(-0.855075\pi\)
−0.898131 + 0.439728i \(0.855075\pi\)
\(398\) 2250.37 0.283419
\(399\) 0 0
\(400\) 0 0
\(401\) 6261.68 0.779784 0.389892 0.920861i \(-0.372512\pi\)
0.389892 + 0.920861i \(0.372512\pi\)
\(402\) 0 0
\(403\) −168.794 −0.0208641
\(404\) −86.5269 −0.0106556
\(405\) 0 0
\(406\) −209.764 −0.0256415
\(407\) −144.580 −0.0176082
\(408\) 0 0
\(409\) −4192.50 −0.506860 −0.253430 0.967354i \(-0.581559\pi\)
−0.253430 + 0.967354i \(0.581559\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −18.6274 −0.00222744
\(413\) 271.453 0.0323421
\(414\) 0 0
\(415\) 0 0
\(416\) −129.742 −0.0152912
\(417\) 0 0
\(418\) 4205.05 0.492047
\(419\) 9287.15 1.08283 0.541416 0.840755i \(-0.317888\pi\)
0.541416 + 0.840755i \(0.317888\pi\)
\(420\) 0 0
\(421\) 13146.0 1.52185 0.760923 0.648842i \(-0.224746\pi\)
0.760923 + 0.648842i \(0.224746\pi\)
\(422\) −293.267 −0.0338294
\(423\) 0 0
\(424\) 7998.81 0.916172
\(425\) 0 0
\(426\) 0 0
\(427\) −2269.13 −0.257168
\(428\) −445.964 −0.0503656
\(429\) 0 0
\(430\) 0 0
\(431\) −4909.67 −0.548701 −0.274351 0.961630i \(-0.588463\pi\)
−0.274351 + 0.961630i \(0.588463\pi\)
\(432\) 0 0
\(433\) 11743.3 1.30334 0.651671 0.758502i \(-0.274068\pi\)
0.651671 + 0.758502i \(0.274068\pi\)
\(434\) −264.336 −0.0292363
\(435\) 0 0
\(436\) −559.615 −0.0614695
\(437\) −15581.0 −1.70558
\(438\) 0 0
\(439\) −11824.2 −1.28551 −0.642754 0.766073i \(-0.722208\pi\)
−0.642754 + 0.766073i \(0.722208\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 603.435 0.0649377
\(443\) 10102.1 1.08344 0.541722 0.840558i \(-0.317772\pi\)
0.541722 + 0.840558i \(0.317772\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10747.0 1.14100
\(447\) 0 0
\(448\) −1663.53 −0.175434
\(449\) 345.254 0.0362885 0.0181443 0.999835i \(-0.494224\pi\)
0.0181443 + 0.999835i \(0.494224\pi\)
\(450\) 0 0
\(451\) −2871.79 −0.299839
\(452\) −158.134 −0.0164557
\(453\) 0 0
\(454\) −4840.93 −0.500431
\(455\) 0 0
\(456\) 0 0
\(457\) 10567.1 1.08164 0.540821 0.841138i \(-0.318114\pi\)
0.540821 + 0.841138i \(0.318114\pi\)
\(458\) 5232.89 0.533879
\(459\) 0 0
\(460\) 0 0
\(461\) −4733.96 −0.478270 −0.239135 0.970986i \(-0.576864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(462\) 0 0
\(463\) −3431.20 −0.344409 −0.172204 0.985061i \(-0.555089\pi\)
−0.172204 + 0.985061i \(0.555089\pi\)
\(464\) −1485.33 −0.148610
\(465\) 0 0
\(466\) 12011.0 1.19399
\(467\) 5116.96 0.507034 0.253517 0.967331i \(-0.418413\pi\)
0.253517 + 0.967331i \(0.418413\pi\)
\(468\) 0 0
\(469\) 1051.66 0.103542
\(470\) 0 0
\(471\) 0 0
\(472\) 2060.82 0.200968
\(473\) 634.841 0.0617125
\(474\) 0 0
\(475\) 0 0
\(476\) −67.8476 −0.00653317
\(477\) 0 0
\(478\) 11159.0 1.06779
\(479\) −11566.9 −1.10335 −0.551675 0.834059i \(-0.686011\pi\)
−0.551675 + 0.834059i \(0.686011\pi\)
\(480\) 0 0
\(481\) 70.4363 0.00667696
\(482\) 10678.4 1.00911
\(483\) 0 0
\(484\) −64.8437 −0.00608975
\(485\) 0 0
\(486\) 0 0
\(487\) 18326.5 1.70525 0.852623 0.522527i \(-0.175010\pi\)
0.852623 + 0.522527i \(0.175010\pi\)
\(488\) −17226.8 −1.59799
\(489\) 0 0
\(490\) 0 0
\(491\) 7617.58 0.700156 0.350078 0.936721i \(-0.386155\pi\)
0.350078 + 0.936721i \(0.386155\pi\)
\(492\) 0 0
\(493\) −1030.17 −0.0941108
\(494\) −2048.62 −0.186582
\(495\) 0 0
\(496\) −1871.75 −0.169444
\(497\) −636.980 −0.0574899
\(498\) 0 0
\(499\) 12909.1 1.15810 0.579050 0.815292i \(-0.303424\pi\)
0.579050 + 0.815292i \(0.303424\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2991.30 −0.265953
\(503\) 10165.7 0.901121 0.450561 0.892746i \(-0.351224\pi\)
0.450561 + 0.892746i \(0.351224\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3346.47 −0.294009
\(507\) 0 0
\(508\) −706.102 −0.0616697
\(509\) −6449.93 −0.561666 −0.280833 0.959757i \(-0.590611\pi\)
−0.280833 + 0.959757i \(0.590611\pi\)
\(510\) 0 0
\(511\) −3104.36 −0.268745
\(512\) −12525.4 −1.08115
\(513\) 0 0
\(514\) 2139.68 0.183614
\(515\) 0 0
\(516\) 0 0
\(517\) −3782.31 −0.321752
\(518\) 110.305 0.00935623
\(519\) 0 0
\(520\) 0 0
\(521\) 19327.4 1.62524 0.812620 0.582794i \(-0.198041\pi\)
0.812620 + 0.582794i \(0.198041\pi\)
\(522\) 0 0
\(523\) −6259.09 −0.523310 −0.261655 0.965161i \(-0.584268\pi\)
−0.261655 + 0.965161i \(0.584268\pi\)
\(524\) −857.819 −0.0715153
\(525\) 0 0
\(526\) 16884.2 1.39960
\(527\) −1298.18 −0.107305
\(528\) 0 0
\(529\) 232.675 0.0191235
\(530\) 0 0
\(531\) 0 0
\(532\) 230.337 0.0187714
\(533\) 1399.08 0.113698
\(534\) 0 0
\(535\) 0 0
\(536\) 7983.99 0.643387
\(537\) 0 0
\(538\) −2696.44 −0.216081
\(539\) −3669.20 −0.293217
\(540\) 0 0
\(541\) −14008.2 −1.11323 −0.556616 0.830770i \(-0.687900\pi\)
−0.556616 + 0.830770i \(0.687900\pi\)
\(542\) 12504.6 0.990991
\(543\) 0 0
\(544\) −997.834 −0.0786430
\(545\) 0 0
\(546\) 0 0
\(547\) 4949.45 0.386879 0.193440 0.981112i \(-0.438036\pi\)
0.193440 + 0.981112i \(0.438036\pi\)
\(548\) −863.695 −0.0673270
\(549\) 0 0
\(550\) 0 0
\(551\) 3497.35 0.270404
\(552\) 0 0
\(553\) −3975.60 −0.305714
\(554\) −1551.36 −0.118973
\(555\) 0 0
\(556\) 17.0748 0.00130239
\(557\) −3801.58 −0.289188 −0.144594 0.989491i \(-0.546188\pi\)
−0.144594 + 0.989491i \(0.546188\pi\)
\(558\) 0 0
\(559\) −309.282 −0.0234011
\(560\) 0 0
\(561\) 0 0
\(562\) −14510.0 −1.08908
\(563\) −9900.11 −0.741101 −0.370551 0.928812i \(-0.620831\pi\)
−0.370551 + 0.928812i \(0.620831\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 12918.3 0.959361
\(567\) 0 0
\(568\) −4835.84 −0.357231
\(569\) −5329.16 −0.392636 −0.196318 0.980540i \(-0.562898\pi\)
−0.196318 + 0.980540i \(0.562898\pi\)
\(570\) 0 0
\(571\) −16962.6 −1.24319 −0.621597 0.783337i \(-0.713516\pi\)
−0.621597 + 0.783337i \(0.713516\pi\)
\(572\) 31.5906 0.00230921
\(573\) 0 0
\(574\) 2190.99 0.159321
\(575\) 0 0
\(576\) 0 0
\(577\) 15487.0 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(578\) −8781.61 −0.631949
\(579\) 0 0
\(580\) 0 0
\(581\) −1357.26 −0.0969169
\(582\) 0 0
\(583\) −3772.94 −0.268026
\(584\) −23567.7 −1.66993
\(585\) 0 0
\(586\) 6362.72 0.448535
\(587\) 11084.2 0.779373 0.389686 0.920948i \(-0.372583\pi\)
0.389686 + 0.920948i \(0.372583\pi\)
\(588\) 0 0
\(589\) 4407.22 0.308313
\(590\) 0 0
\(591\) 0 0
\(592\) 781.066 0.0542257
\(593\) 4349.68 0.301214 0.150607 0.988594i \(-0.451877\pi\)
0.150607 + 0.988594i \(0.451877\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1301.34 −0.0894382
\(597\) 0 0
\(598\) 1630.33 0.111487
\(599\) −13183.9 −0.899299 −0.449650 0.893205i \(-0.648451\pi\)
−0.449650 + 0.893205i \(0.648451\pi\)
\(600\) 0 0
\(601\) −18765.0 −1.27361 −0.636806 0.771024i \(-0.719745\pi\)
−0.636806 + 0.771024i \(0.719745\pi\)
\(602\) −484.344 −0.0327913
\(603\) 0 0
\(604\) 1380.84 0.0930223
\(605\) 0 0
\(606\) 0 0
\(607\) −21871.4 −1.46249 −0.731244 0.682116i \(-0.761060\pi\)
−0.731244 + 0.682116i \(0.761060\pi\)
\(608\) 3387.57 0.225961
\(609\) 0 0
\(610\) 0 0
\(611\) 1842.67 0.122007
\(612\) 0 0
\(613\) 3527.85 0.232445 0.116222 0.993223i \(-0.462921\pi\)
0.116222 + 0.993223i \(0.462921\pi\)
\(614\) 4584.56 0.301332
\(615\) 0 0
\(616\) 787.994 0.0515409
\(617\) −22728.1 −1.48298 −0.741490 0.670963i \(-0.765881\pi\)
−0.741490 + 0.670963i \(0.765881\pi\)
\(618\) 0 0
\(619\) −21443.3 −1.39237 −0.696187 0.717861i \(-0.745121\pi\)
−0.696187 + 0.717861i \(0.745121\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9760.81 −0.629217
\(623\) −4574.25 −0.294163
\(624\) 0 0
\(625\) 0 0
\(626\) −19628.0 −1.25319
\(627\) 0 0
\(628\) 1326.85 0.0843109
\(629\) 541.718 0.0343398
\(630\) 0 0
\(631\) 21532.0 1.35844 0.679219 0.733936i \(-0.262319\pi\)
0.679219 + 0.733936i \(0.262319\pi\)
\(632\) −30182.0 −1.89964
\(633\) 0 0
\(634\) −42.9141 −0.00268823
\(635\) 0 0
\(636\) 0 0
\(637\) 1787.56 0.111187
\(638\) 751.159 0.0466123
\(639\) 0 0
\(640\) 0 0
\(641\) −20148.3 −1.24151 −0.620756 0.784004i \(-0.713174\pi\)
−0.620756 + 0.784004i \(0.713174\pi\)
\(642\) 0 0
\(643\) −28869.7 −1.77062 −0.885310 0.465000i \(-0.846054\pi\)
−0.885310 + 0.465000i \(0.846054\pi\)
\(644\) −183.307 −0.0112163
\(645\) 0 0
\(646\) −15755.7 −0.959597
\(647\) −1590.02 −0.0966155 −0.0483077 0.998833i \(-0.515383\pi\)
−0.0483077 + 0.998833i \(0.515383\pi\)
\(648\) 0 0
\(649\) −972.062 −0.0587932
\(650\) 0 0
\(651\) 0 0
\(652\) −1460.38 −0.0877192
\(653\) 20028.1 1.20024 0.600122 0.799909i \(-0.295119\pi\)
0.600122 + 0.799909i \(0.295119\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 15514.4 0.923375
\(657\) 0 0
\(658\) 2885.66 0.170965
\(659\) 10520.7 0.621897 0.310948 0.950427i \(-0.399353\pi\)
0.310948 + 0.950427i \(0.399353\pi\)
\(660\) 0 0
\(661\) 3295.83 0.193938 0.0969690 0.995287i \(-0.469085\pi\)
0.0969690 + 0.995287i \(0.469085\pi\)
\(662\) −3603.45 −0.211559
\(663\) 0 0
\(664\) −10304.1 −0.602222
\(665\) 0 0
\(666\) 0 0
\(667\) −2783.27 −0.161572
\(668\) −1466.91 −0.0849649
\(669\) 0 0
\(670\) 0 0
\(671\) 8125.67 0.467493
\(672\) 0 0
\(673\) 1187.64 0.0680239 0.0340119 0.999421i \(-0.489172\pi\)
0.0340119 + 0.999421i \(0.489172\pi\)
\(674\) 653.460 0.0373447
\(675\) 0 0
\(676\) 1161.98 0.0661117
\(677\) 13221.4 0.750574 0.375287 0.926909i \(-0.377544\pi\)
0.375287 + 0.926909i \(0.377544\pi\)
\(678\) 0 0
\(679\) 4135.91 0.233758
\(680\) 0 0
\(681\) 0 0
\(682\) 946.578 0.0531471
\(683\) −13831.4 −0.774882 −0.387441 0.921894i \(-0.626641\pi\)
−0.387441 + 0.921894i \(0.626641\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5677.93 0.316012
\(687\) 0 0
\(688\) −3429.62 −0.190048
\(689\) 1838.10 0.101635
\(690\) 0 0
\(691\) −9817.07 −0.540462 −0.270231 0.962796i \(-0.587100\pi\)
−0.270231 + 0.962796i \(0.587100\pi\)
\(692\) −1236.54 −0.0679280
\(693\) 0 0
\(694\) −16017.4 −0.876101
\(695\) 0 0
\(696\) 0 0
\(697\) 10760.2 0.584750
\(698\) 9539.58 0.517304
\(699\) 0 0
\(700\) 0 0
\(701\) −29949.8 −1.61368 −0.806838 0.590773i \(-0.798823\pi\)
−0.806838 + 0.590773i \(0.798823\pi\)
\(702\) 0 0
\(703\) −1839.09 −0.0986667
\(704\) 5957.03 0.318912
\(705\) 0 0
\(706\) −29825.0 −1.58991
\(707\) −495.976 −0.0263835
\(708\) 0 0
\(709\) 11307.5 0.598959 0.299479 0.954103i \(-0.403187\pi\)
0.299479 + 0.954103i \(0.403187\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −34726.9 −1.82787
\(713\) −3507.36 −0.184224
\(714\) 0 0
\(715\) 0 0
\(716\) −703.181 −0.0367027
\(717\) 0 0
\(718\) 31420.6 1.63316
\(719\) 32623.4 1.69214 0.846070 0.533071i \(-0.178962\pi\)
0.846070 + 0.533071i \(0.178962\pi\)
\(720\) 0 0
\(721\) −106.773 −0.00551518
\(722\) 34750.2 1.79123
\(723\) 0 0
\(724\) 430.420 0.0220945
\(725\) 0 0
\(726\) 0 0
\(727\) 502.545 0.0256373 0.0128187 0.999918i \(-0.495920\pi\)
0.0128187 + 0.999918i \(0.495920\pi\)
\(728\) −383.895 −0.0195441
\(729\) 0 0
\(730\) 0 0
\(731\) −2378.66 −0.120353
\(732\) 0 0
\(733\) −8631.37 −0.434935 −0.217467 0.976068i \(-0.569780\pi\)
−0.217467 + 0.976068i \(0.569780\pi\)
\(734\) −18487.8 −0.929697
\(735\) 0 0
\(736\) −2695.90 −0.135017
\(737\) −3765.95 −0.188223
\(738\) 0 0
\(739\) −18357.5 −0.913792 −0.456896 0.889520i \(-0.651039\pi\)
−0.456896 + 0.889520i \(0.651039\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2878.52 0.142417
\(743\) 11182.6 0.552155 0.276078 0.961135i \(-0.410965\pi\)
0.276078 + 0.961135i \(0.410965\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 14507.8 0.712021
\(747\) 0 0
\(748\) 242.960 0.0118763
\(749\) −2556.29 −0.124706
\(750\) 0 0
\(751\) 16733.4 0.813063 0.406531 0.913637i \(-0.366738\pi\)
0.406531 + 0.913637i \(0.366738\pi\)
\(752\) 20433.3 0.990857
\(753\) 0 0
\(754\) −365.950 −0.0176752
\(755\) 0 0
\(756\) 0 0
\(757\) 24402.4 1.17163 0.585813 0.810446i \(-0.300775\pi\)
0.585813 + 0.810446i \(0.300775\pi\)
\(758\) −2290.19 −0.109741
\(759\) 0 0
\(760\) 0 0
\(761\) −8469.33 −0.403434 −0.201717 0.979444i \(-0.564652\pi\)
−0.201717 + 0.979444i \(0.564652\pi\)
\(762\) 0 0
\(763\) −3207.74 −0.152199
\(764\) 920.805 0.0436042
\(765\) 0 0
\(766\) −7737.62 −0.364976
\(767\) 473.570 0.0222941
\(768\) 0 0
\(769\) 32834.7 1.53973 0.769864 0.638208i \(-0.220324\pi\)
0.769864 + 0.638208i \(0.220324\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 718.202 0.0334827
\(773\) −35571.4 −1.65513 −0.827564 0.561371i \(-0.810274\pi\)
−0.827564 + 0.561371i \(0.810274\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 31399.1 1.45253
\(777\) 0 0
\(778\) −8500.11 −0.391701
\(779\) −36530.0 −1.68013
\(780\) 0 0
\(781\) 2281.01 0.104508
\(782\) 12538.7 0.573381
\(783\) 0 0
\(784\) 19822.3 0.902982
\(785\) 0 0
\(786\) 0 0
\(787\) −15729.6 −0.712452 −0.356226 0.934400i \(-0.615937\pi\)
−0.356226 + 0.934400i \(0.615937\pi\)
\(788\) 1885.47 0.0852373
\(789\) 0 0
\(790\) 0 0
\(791\) −906.431 −0.0407446
\(792\) 0 0
\(793\) −3958.67 −0.177272
\(794\) −38819.0 −1.73506
\(795\) 0 0
\(796\) −441.415 −0.0196552
\(797\) 7888.07 0.350577 0.175288 0.984517i \(-0.443914\pi\)
0.175288 + 0.984517i \(0.443914\pi\)
\(798\) 0 0
\(799\) 14171.8 0.627485
\(800\) 0 0
\(801\) 0 0
\(802\) 17107.2 0.753214
\(803\) 11116.6 0.488538
\(804\) 0 0
\(805\) 0 0
\(806\) −461.154 −0.0201532
\(807\) 0 0
\(808\) −3765.36 −0.163942
\(809\) −5896.97 −0.256275 −0.128138 0.991756i \(-0.540900\pi\)
−0.128138 + 0.991756i \(0.540900\pi\)
\(810\) 0 0
\(811\) 14197.9 0.614744 0.307372 0.951589i \(-0.400550\pi\)
0.307372 + 0.951589i \(0.400550\pi\)
\(812\) 41.1458 0.00177824
\(813\) 0 0
\(814\) −394.999 −0.0170082
\(815\) 0 0
\(816\) 0 0
\(817\) 8075.35 0.345803
\(818\) −11454.1 −0.489589
\(819\) 0 0
\(820\) 0 0
\(821\) 19841.7 0.843459 0.421729 0.906722i \(-0.361423\pi\)
0.421729 + 0.906722i \(0.361423\pi\)
\(822\) 0 0
\(823\) 28202.2 1.19449 0.597246 0.802058i \(-0.296262\pi\)
0.597246 + 0.802058i \(0.296262\pi\)
\(824\) −810.602 −0.0342702
\(825\) 0 0
\(826\) 741.622 0.0312401
\(827\) 34031.0 1.43092 0.715462 0.698651i \(-0.246216\pi\)
0.715462 + 0.698651i \(0.246216\pi\)
\(828\) 0 0
\(829\) 4931.55 0.206610 0.103305 0.994650i \(-0.467058\pi\)
0.103305 + 0.994650i \(0.467058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2902.15 −0.120930
\(833\) 13748.0 0.571836
\(834\) 0 0
\(835\) 0 0
\(836\) −824.830 −0.0341236
\(837\) 0 0
\(838\) 25373.0 1.04594
\(839\) 38189.8 1.57146 0.785731 0.618568i \(-0.212287\pi\)
0.785731 + 0.618568i \(0.212287\pi\)
\(840\) 0 0
\(841\) −23764.3 −0.974384
\(842\) 35915.6 1.46999
\(843\) 0 0
\(844\) 57.5250 0.00234608
\(845\) 0 0
\(846\) 0 0
\(847\) −371.687 −0.0150783
\(848\) 20382.7 0.825406
\(849\) 0 0
\(850\) 0 0
\(851\) 1463.59 0.0589556
\(852\) 0 0
\(853\) −42966.8 −1.72469 −0.862343 0.506325i \(-0.831003\pi\)
−0.862343 + 0.506325i \(0.831003\pi\)
\(854\) −6199.37 −0.248405
\(855\) 0 0
\(856\) −19406.8 −0.774898
\(857\) −17281.5 −0.688828 −0.344414 0.938818i \(-0.611922\pi\)
−0.344414 + 0.938818i \(0.611922\pi\)
\(858\) 0 0
\(859\) 9316.75 0.370062 0.185031 0.982733i \(-0.440761\pi\)
0.185031 + 0.982733i \(0.440761\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −13413.5 −0.530005
\(863\) −9647.65 −0.380544 −0.190272 0.981731i \(-0.560937\pi\)
−0.190272 + 0.981731i \(0.560937\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 32083.3 1.25893
\(867\) 0 0
\(868\) 51.8501 0.00202754
\(869\) 14236.5 0.555742
\(870\) 0 0
\(871\) 1834.70 0.0713735
\(872\) −24352.6 −0.945737
\(873\) 0 0
\(874\) −42568.0 −1.64746
\(875\) 0 0
\(876\) 0 0
\(877\) −19728.7 −0.759624 −0.379812 0.925064i \(-0.624011\pi\)
−0.379812 + 0.925064i \(0.624011\pi\)
\(878\) −32304.3 −1.24171
\(879\) 0 0
\(880\) 0 0
\(881\) −19473.9 −0.744712 −0.372356 0.928090i \(-0.621450\pi\)
−0.372356 + 0.928090i \(0.621450\pi\)
\(882\) 0 0
\(883\) −49092.4 −1.87100 −0.935499 0.353329i \(-0.885050\pi\)
−0.935499 + 0.353329i \(0.885050\pi\)
\(884\) −118.365 −0.00450346
\(885\) 0 0
\(886\) 27599.5 1.04653
\(887\) 9292.86 0.351774 0.175887 0.984410i \(-0.443721\pi\)
0.175887 + 0.984410i \(0.443721\pi\)
\(888\) 0 0
\(889\) −4047.41 −0.152695
\(890\) 0 0
\(891\) 0 0
\(892\) −2108.05 −0.0791288
\(893\) −48112.0 −1.80292
\(894\) 0 0
\(895\) 0 0
\(896\) −3949.89 −0.147273
\(897\) 0 0
\(898\) 943.252 0.0350520
\(899\) 787.273 0.0292069
\(900\) 0 0
\(901\) 14136.7 0.522709
\(902\) −7845.88 −0.289622
\(903\) 0 0
\(904\) −6881.46 −0.253179
\(905\) 0 0
\(906\) 0 0
\(907\) −37688.7 −1.37975 −0.689875 0.723928i \(-0.742335\pi\)
−0.689875 + 0.723928i \(0.742335\pi\)
\(908\) 949.559 0.0347051
\(909\) 0 0
\(910\) 0 0
\(911\) −33049.6 −1.20196 −0.600979 0.799265i \(-0.705222\pi\)
−0.600979 + 0.799265i \(0.705222\pi\)
\(912\) 0 0
\(913\) 4860.31 0.176180
\(914\) 28870.0 1.04479
\(915\) 0 0
\(916\) −1026.44 −0.0370247
\(917\) −4917.06 −0.177073
\(918\) 0 0
\(919\) −23148.0 −0.830883 −0.415442 0.909620i \(-0.636373\pi\)
−0.415442 + 0.909620i \(0.636373\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −12933.4 −0.461973
\(923\) −1111.26 −0.0396290
\(924\) 0 0
\(925\) 0 0
\(926\) −9374.21 −0.332673
\(927\) 0 0
\(928\) 605.131 0.0214056
\(929\) 23177.9 0.818561 0.409280 0.912409i \(-0.365780\pi\)
0.409280 + 0.912409i \(0.365780\pi\)
\(930\) 0 0
\(931\) −46673.3 −1.64302
\(932\) −2355.98 −0.0828033
\(933\) 0 0
\(934\) 13979.8 0.489757
\(935\) 0 0
\(936\) 0 0
\(937\) 34574.7 1.20545 0.602724 0.797950i \(-0.294082\pi\)
0.602724 + 0.797950i \(0.294082\pi\)
\(938\) 2873.18 0.100014
\(939\) 0 0
\(940\) 0 0
\(941\) −41831.2 −1.44916 −0.724578 0.689192i \(-0.757966\pi\)
−0.724578 + 0.689192i \(0.757966\pi\)
\(942\) 0 0
\(943\) 29071.3 1.00392
\(944\) 5251.40 0.181058
\(945\) 0 0
\(946\) 1734.42 0.0596097
\(947\) 27231.2 0.934419 0.467209 0.884147i \(-0.345259\pi\)
0.467209 + 0.884147i \(0.345259\pi\)
\(948\) 0 0
\(949\) −5415.79 −0.185252
\(950\) 0 0
\(951\) 0 0
\(952\) −2952.50 −0.100516
\(953\) 40939.4 1.39156 0.695781 0.718254i \(-0.255058\pi\)
0.695781 + 0.718254i \(0.255058\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −2188.87 −0.0740515
\(957\) 0 0
\(958\) −31601.3 −1.06575
\(959\) −4950.74 −0.166703
\(960\) 0 0
\(961\) −28798.9 −0.966698
\(962\) 192.436 0.00644945
\(963\) 0 0
\(964\) −2094.60 −0.0699820
\(965\) 0 0
\(966\) 0 0
\(967\) 46173.1 1.53550 0.767750 0.640750i \(-0.221376\pi\)
0.767750 + 0.640750i \(0.221376\pi\)
\(968\) −2821.78 −0.0936937
\(969\) 0 0
\(970\) 0 0
\(971\) 5153.91 0.170337 0.0851683 0.996367i \(-0.472857\pi\)
0.0851683 + 0.996367i \(0.472857\pi\)
\(972\) 0 0
\(973\) 97.8734 0.00322474
\(974\) 50069.0 1.64714
\(975\) 0 0
\(976\) −43897.6 −1.43968
\(977\) 9692.13 0.317378 0.158689 0.987329i \(-0.449273\pi\)
0.158689 + 0.987329i \(0.449273\pi\)
\(978\) 0 0
\(979\) 16380.2 0.534744
\(980\) 0 0
\(981\) 0 0
\(982\) 20811.6 0.676299
\(983\) 32915.7 1.06800 0.534002 0.845483i \(-0.320687\pi\)
0.534002 + 0.845483i \(0.320687\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2814.48 −0.0909041
\(987\) 0 0
\(988\) 401.841 0.0129395
\(989\) −6426.54 −0.206625
\(990\) 0 0
\(991\) 29477.9 0.944901 0.472451 0.881357i \(-0.343370\pi\)
0.472451 + 0.881357i \(0.343370\pi\)
\(992\) 762.560 0.0244066
\(993\) 0 0
\(994\) −1740.26 −0.0555310
\(995\) 0 0
\(996\) 0 0
\(997\) 31944.4 1.01473 0.507366 0.861731i \(-0.330619\pi\)
0.507366 + 0.861731i \(0.330619\pi\)
\(998\) 35268.4 1.11864
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.q.1.2 2
3.2 odd 2 275.4.a.b.1.1 2
5.4 even 2 99.4.a.c.1.1 2
15.2 even 4 275.4.b.c.199.1 4
15.8 even 4 275.4.b.c.199.4 4
15.14 odd 2 11.4.a.a.1.2 2
20.19 odd 2 1584.4.a.bc.1.1 2
55.54 odd 2 1089.4.a.v.1.2 2
60.59 even 2 176.4.a.i.1.2 2
105.104 even 2 539.4.a.e.1.2 2
120.29 odd 2 704.4.a.p.1.2 2
120.59 even 2 704.4.a.n.1.1 2
165.14 odd 10 121.4.c.c.9.2 8
165.29 even 10 121.4.c.f.27.1 8
165.59 odd 10 121.4.c.c.27.2 8
165.74 even 10 121.4.c.f.9.1 8
165.104 odd 10 121.4.c.c.3.1 8
165.119 odd 10 121.4.c.c.81.1 8
165.134 even 10 121.4.c.f.81.2 8
165.149 even 10 121.4.c.f.3.2 8
165.164 even 2 121.4.a.c.1.1 2
195.194 odd 2 1859.4.a.a.1.1 2
660.659 odd 2 1936.4.a.w.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.2 2 15.14 odd 2
99.4.a.c.1.1 2 5.4 even 2
121.4.a.c.1.1 2 165.164 even 2
121.4.c.c.3.1 8 165.104 odd 10
121.4.c.c.9.2 8 165.14 odd 10
121.4.c.c.27.2 8 165.59 odd 10
121.4.c.c.81.1 8 165.119 odd 10
121.4.c.f.3.2 8 165.149 even 10
121.4.c.f.9.1 8 165.74 even 10
121.4.c.f.27.1 8 165.29 even 10
121.4.c.f.81.2 8 165.134 even 10
176.4.a.i.1.2 2 60.59 even 2
275.4.a.b.1.1 2 3.2 odd 2
275.4.b.c.199.1 4 15.2 even 4
275.4.b.c.199.4 4 15.8 even 4
539.4.a.e.1.2 2 105.104 even 2
704.4.a.n.1.1 2 120.59 even 2
704.4.a.p.1.2 2 120.29 odd 2
1089.4.a.v.1.2 2 55.54 odd 2
1584.4.a.bc.1.1 2 20.19 odd 2
1859.4.a.a.1.1 2 195.194 odd 2
1936.4.a.w.1.2 2 660.659 odd 2
2475.4.a.q.1.2 2 1.1 even 1 trivial