Properties

Label 2475.4.a.q.1.1
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.732051 q^{2} -7.46410 q^{4} -16.9282 q^{7} +11.3205 q^{8} +O(q^{10})\) \(q-0.732051 q^{2} -7.46410 q^{4} -16.9282 q^{7} +11.3205 q^{8} +11.0000 q^{11} -74.6410 q^{13} +12.3923 q^{14} +51.4256 q^{16} -82.7846 q^{17} -67.9230 q^{19} -8.05256 q^{22} +13.3538 q^{23} +54.6410 q^{26} +126.354 q^{28} -168.995 q^{29} -65.4974 q^{31} -128.210 q^{32} +60.6025 q^{34} -40.8564 q^{37} +49.7231 q^{38} -274.928 q^{41} +2.28719 q^{43} -82.1051 q^{44} -9.77568 q^{46} +71.8461 q^{47} -56.4359 q^{49} +557.128 q^{52} -149.005 q^{53} -191.636 q^{56} +123.713 q^{58} -545.631 q^{59} +101.303 q^{61} +47.9474 q^{62} -317.549 q^{64} -411.641 q^{67} +617.913 q^{68} +470.636 q^{71} -610.600 q^{73} +29.9090 q^{74} +506.985 q^{76} -186.210 q^{77} -978.225 q^{79} +201.261 q^{82} +26.1539 q^{83} -1.67434 q^{86} +124.526 q^{88} +352.887 q^{89} +1263.54 q^{91} -99.6743 q^{92} -52.5950 q^{94} -847.585 q^{97} +41.3140 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 8 q^{4} - 20 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 8 q^{4} - 20 q^{7} - 12 q^{8} + 22 q^{11} - 80 q^{13} + 4 q^{14} - 8 q^{16} - 124 q^{17} + 72 q^{19} + 22 q^{22} - 98 q^{23} + 40 q^{26} + 128 q^{28} - 144 q^{29} - 34 q^{31} - 104 q^{32} - 52 q^{34} - 54 q^{37} + 432 q^{38} - 536 q^{41} + 60 q^{43} - 88 q^{44} - 314 q^{46} - 272 q^{47} - 390 q^{49} + 560 q^{52} - 492 q^{53} - 120 q^{56} + 192 q^{58} - 634 q^{59} + 840 q^{61} + 134 q^{62} + 224 q^{64} - 754 q^{67} + 640 q^{68} + 678 q^{71} + 400 q^{73} - 6 q^{74} + 432 q^{76} - 220 q^{77} + 316 q^{79} - 512 q^{82} + 468 q^{83} + 156 q^{86} - 132 q^{88} + 1842 q^{89} + 1280 q^{91} - 40 q^{92} - 992 q^{94} - 2194 q^{97} - 870 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.732051 −0.258819 −0.129410 0.991591i \(-0.541308\pi\)
−0.129410 + 0.991591i \(0.541308\pi\)
\(3\) 0 0
\(4\) −7.46410 −0.933013
\(5\) 0 0
\(6\) 0 0
\(7\) −16.9282 −0.914037 −0.457019 0.889457i \(-0.651083\pi\)
−0.457019 + 0.889457i \(0.651083\pi\)
\(8\) 11.3205 0.500301
\(9\) 0 0
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −74.6410 −1.59244 −0.796219 0.605009i \(-0.793170\pi\)
−0.796219 + 0.605009i \(0.793170\pi\)
\(14\) 12.3923 0.236570
\(15\) 0 0
\(16\) 51.4256 0.803525
\(17\) −82.7846 −1.18107 −0.590536 0.807011i \(-0.701084\pi\)
−0.590536 + 0.807011i \(0.701084\pi\)
\(18\) 0 0
\(19\) −67.9230 −0.820138 −0.410069 0.912055i \(-0.634495\pi\)
−0.410069 + 0.912055i \(0.634495\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −8.05256 −0.0780369
\(23\) 13.3538 0.121064 0.0605319 0.998166i \(-0.480720\pi\)
0.0605319 + 0.998166i \(0.480720\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 54.6410 0.412153
\(27\) 0 0
\(28\) 126.354 0.852808
\(29\) −168.995 −1.08212 −0.541061 0.840983i \(-0.681977\pi\)
−0.541061 + 0.840983i \(0.681977\pi\)
\(30\) 0 0
\(31\) −65.4974 −0.379474 −0.189737 0.981835i \(-0.560763\pi\)
−0.189737 + 0.981835i \(0.560763\pi\)
\(32\) −128.210 −0.708268
\(33\) 0 0
\(34\) 60.6025 0.305684
\(35\) 0 0
\(36\) 0 0
\(37\) −40.8564 −0.181534 −0.0907669 0.995872i \(-0.528932\pi\)
−0.0907669 + 0.995872i \(0.528932\pi\)
\(38\) 49.7231 0.212267
\(39\) 0 0
\(40\) 0 0
\(41\) −274.928 −1.04723 −0.523617 0.851954i \(-0.675418\pi\)
−0.523617 + 0.851954i \(0.675418\pi\)
\(42\) 0 0
\(43\) 2.28719 0.00811146 0.00405573 0.999992i \(-0.498709\pi\)
0.00405573 + 0.999992i \(0.498709\pi\)
\(44\) −82.1051 −0.281314
\(45\) 0 0
\(46\) −9.77568 −0.0313336
\(47\) 71.8461 0.222975 0.111488 0.993766i \(-0.464438\pi\)
0.111488 + 0.993766i \(0.464438\pi\)
\(48\) 0 0
\(49\) −56.4359 −0.164536
\(50\) 0 0
\(51\) 0 0
\(52\) 557.128 1.48576
\(53\) −149.005 −0.386178 −0.193089 0.981181i \(-0.561851\pi\)
−0.193089 + 0.981181i \(0.561851\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −191.636 −0.457293
\(57\) 0 0
\(58\) 123.713 0.280074
\(59\) −545.631 −1.20398 −0.601992 0.798502i \(-0.705626\pi\)
−0.601992 + 0.798502i \(0.705626\pi\)
\(60\) 0 0
\(61\) 101.303 0.212631 0.106315 0.994332i \(-0.466095\pi\)
0.106315 + 0.994332i \(0.466095\pi\)
\(62\) 47.9474 0.0982150
\(63\) 0 0
\(64\) −317.549 −0.620212
\(65\) 0 0
\(66\) 0 0
\(67\) −411.641 −0.750596 −0.375298 0.926904i \(-0.622460\pi\)
−0.375298 + 0.926904i \(0.622460\pi\)
\(68\) 617.913 1.10195
\(69\) 0 0
\(70\) 0 0
\(71\) 470.636 0.786679 0.393339 0.919393i \(-0.371320\pi\)
0.393339 + 0.919393i \(0.371320\pi\)
\(72\) 0 0
\(73\) −610.600 −0.978977 −0.489488 0.872010i \(-0.662816\pi\)
−0.489488 + 0.872010i \(0.662816\pi\)
\(74\) 29.9090 0.0469844
\(75\) 0 0
\(76\) 506.985 0.765199
\(77\) −186.210 −0.275593
\(78\) 0 0
\(79\) −978.225 −1.39315 −0.696576 0.717483i \(-0.745294\pi\)
−0.696576 + 0.717483i \(0.745294\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 201.261 0.271044
\(83\) 26.1539 0.0345875 0.0172938 0.999850i \(-0.494495\pi\)
0.0172938 + 0.999850i \(0.494495\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.67434 −0.00209940
\(87\) 0 0
\(88\) 124.526 0.150846
\(89\) 352.887 0.420292 0.210146 0.977670i \(-0.432606\pi\)
0.210146 + 0.977670i \(0.432606\pi\)
\(90\) 0 0
\(91\) 1263.54 1.45555
\(92\) −99.6743 −0.112954
\(93\) 0 0
\(94\) −52.5950 −0.0577102
\(95\) 0 0
\(96\) 0 0
\(97\) −847.585 −0.887208 −0.443604 0.896223i \(-0.646300\pi\)
−0.443604 + 0.896223i \(0.646300\pi\)
\(98\) 41.3140 0.0425851
\(99\) 0 0
\(100\) 0 0
\(101\) −1293.46 −1.27430 −0.637150 0.770740i \(-0.719887\pi\)
−0.637150 + 0.770740i \(0.719887\pi\)
\(102\) 0 0
\(103\) 1725.24 1.65042 0.825209 0.564828i \(-0.191057\pi\)
0.825209 + 0.564828i \(0.191057\pi\)
\(104\) −844.974 −0.796697
\(105\) 0 0
\(106\) 109.079 0.0999502
\(107\) −484.179 −0.437452 −0.218726 0.975786i \(-0.570190\pi\)
−0.218726 + 0.975786i \(0.570190\pi\)
\(108\) 0 0
\(109\) −64.2563 −0.0564645 −0.0282323 0.999601i \(-0.508988\pi\)
−0.0282323 + 0.999601i \(0.508988\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −870.543 −0.734452
\(113\) −2005.08 −1.66922 −0.834612 0.550839i \(-0.814308\pi\)
−0.834612 + 0.550839i \(0.814308\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1261.39 1.00963
\(117\) 0 0
\(118\) 399.429 0.311614
\(119\) 1401.39 1.07954
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −74.1587 −0.0550329
\(123\) 0 0
\(124\) 488.879 0.354054
\(125\) 0 0
\(126\) 0 0
\(127\) −109.605 −0.0765816 −0.0382908 0.999267i \(-0.512191\pi\)
−0.0382908 + 0.999267i \(0.512191\pi\)
\(128\) 1258.14 0.868791
\(129\) 0 0
\(130\) 0 0
\(131\) −1156.71 −0.771469 −0.385734 0.922610i \(-0.626052\pi\)
−0.385734 + 0.922610i \(0.626052\pi\)
\(132\) 0 0
\(133\) 1149.82 0.749636
\(134\) 301.342 0.194269
\(135\) 0 0
\(136\) −937.164 −0.590891
\(137\) 198.323 0.123678 0.0618391 0.998086i \(-0.480303\pi\)
0.0618391 + 0.998086i \(0.480303\pi\)
\(138\) 0 0
\(139\) −2900.14 −1.76969 −0.884844 0.465888i \(-0.845735\pi\)
−0.884844 + 0.465888i \(0.845735\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −344.529 −0.203607
\(143\) −821.051 −0.480138
\(144\) 0 0
\(145\) 0 0
\(146\) 446.990 0.253378
\(147\) 0 0
\(148\) 304.956 0.169373
\(149\) −3488.34 −1.91796 −0.958980 0.283472i \(-0.908514\pi\)
−0.958980 + 0.283472i \(0.908514\pi\)
\(150\) 0 0
\(151\) −1163.32 −0.626953 −0.313477 0.949596i \(-0.601494\pi\)
−0.313477 + 0.949596i \(0.601494\pi\)
\(152\) −768.923 −0.410315
\(153\) 0 0
\(154\) 136.315 0.0713286
\(155\) 0 0
\(156\) 0 0
\(157\) −342.057 −0.173880 −0.0869398 0.996214i \(-0.527709\pi\)
−0.0869398 + 0.996214i \(0.527709\pi\)
\(158\) 716.111 0.360574
\(159\) 0 0
\(160\) 0 0
\(161\) −226.056 −0.110657
\(162\) 0 0
\(163\) 1394.89 0.670285 0.335142 0.942167i \(-0.391216\pi\)
0.335142 + 0.942167i \(0.391216\pi\)
\(164\) 2052.09 0.977082
\(165\) 0 0
\(166\) −19.1460 −0.00895191
\(167\) 478.703 0.221815 0.110908 0.993831i \(-0.464624\pi\)
0.110908 + 0.993831i \(0.464624\pi\)
\(168\) 0 0
\(169\) 3374.28 1.53586
\(170\) 0 0
\(171\) 0 0
\(172\) −17.0718 −0.00756809
\(173\) 1808.58 0.794822 0.397411 0.917641i \(-0.369909\pi\)
0.397411 + 0.917641i \(0.369909\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 565.682 0.242272
\(177\) 0 0
\(178\) −258.331 −0.108780
\(179\) 4429.85 1.84973 0.924867 0.380292i \(-0.124176\pi\)
0.924867 + 0.380292i \(0.124176\pi\)
\(180\) 0 0
\(181\) 3409.17 1.40001 0.700005 0.714138i \(-0.253181\pi\)
0.700005 + 0.714138i \(0.253181\pi\)
\(182\) −924.974 −0.376723
\(183\) 0 0
\(184\) 151.172 0.0605682
\(185\) 0 0
\(186\) 0 0
\(187\) −910.631 −0.356106
\(188\) −536.267 −0.208039
\(189\) 0 0
\(190\) 0 0
\(191\) −2923.75 −1.10762 −0.553810 0.832643i \(-0.686827\pi\)
−0.553810 + 0.832643i \(0.686827\pi\)
\(192\) 0 0
\(193\) 2484.18 0.926505 0.463253 0.886226i \(-0.346682\pi\)
0.463253 + 0.886226i \(0.346682\pi\)
\(194\) 620.475 0.229626
\(195\) 0 0
\(196\) 421.244 0.153514
\(197\) −5125.67 −1.85375 −0.926876 0.375369i \(-0.877516\pi\)
−0.926876 + 0.375369i \(0.877516\pi\)
\(198\) 0 0
\(199\) −7.69219 −0.00274013 −0.00137006 0.999999i \(-0.500436\pi\)
−0.00137006 + 0.999999i \(0.500436\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 946.879 0.329813
\(203\) 2860.78 0.989100
\(204\) 0 0
\(205\) 0 0
\(206\) −1262.96 −0.427160
\(207\) 0 0
\(208\) −3838.46 −1.27956
\(209\) −747.154 −0.247281
\(210\) 0 0
\(211\) 3107.34 1.01383 0.506915 0.861996i \(-0.330786\pi\)
0.506915 + 0.861996i \(0.330786\pi\)
\(212\) 1112.19 0.360309
\(213\) 0 0
\(214\) 354.444 0.113221
\(215\) 0 0
\(216\) 0 0
\(217\) 1108.75 0.346853
\(218\) 47.0388 0.0146141
\(219\) 0 0
\(220\) 0 0
\(221\) 6179.13 1.88078
\(222\) 0 0
\(223\) 12.3185 0.00369913 0.00184957 0.999998i \(-0.499411\pi\)
0.00184957 + 0.999998i \(0.499411\pi\)
\(224\) 2170.37 0.647383
\(225\) 0 0
\(226\) 1467.82 0.432027
\(227\) 4615.90 1.34964 0.674820 0.737983i \(-0.264221\pi\)
0.674820 + 0.737983i \(0.264221\pi\)
\(228\) 0 0
\(229\) 5074.63 1.46437 0.732186 0.681105i \(-0.238500\pi\)
0.732186 + 0.681105i \(0.238500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1913.11 −0.541386
\(233\) 211.683 0.0595184 0.0297592 0.999557i \(-0.490526\pi\)
0.0297592 + 0.999557i \(0.490526\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4072.64 1.12333
\(237\) 0 0
\(238\) −1025.89 −0.279406
\(239\) −4312.49 −1.16716 −0.583581 0.812055i \(-0.698349\pi\)
−0.583581 + 0.812055i \(0.698349\pi\)
\(240\) 0 0
\(241\) −996.584 −0.266372 −0.133186 0.991091i \(-0.542521\pi\)
−0.133186 + 0.991091i \(0.542521\pi\)
\(242\) −88.5781 −0.0235290
\(243\) 0 0
\(244\) −756.133 −0.198387
\(245\) 0 0
\(246\) 0 0
\(247\) 5069.85 1.30602
\(248\) −741.464 −0.189851
\(249\) 0 0
\(250\) 0 0
\(251\) 276.892 0.0696306 0.0348153 0.999394i \(-0.488916\pi\)
0.0348153 + 0.999394i \(0.488916\pi\)
\(252\) 0 0
\(253\) 146.892 0.0365021
\(254\) 80.2364 0.0198208
\(255\) 0 0
\(256\) 1619.36 0.395352
\(257\) −3235.18 −0.785233 −0.392617 0.919702i \(-0.628430\pi\)
−0.392617 + 0.919702i \(0.628430\pi\)
\(258\) 0 0
\(259\) 691.626 0.165929
\(260\) 0 0
\(261\) 0 0
\(262\) 846.772 0.199671
\(263\) 207.944 0.0487544 0.0243772 0.999703i \(-0.492240\pi\)
0.0243772 + 0.999703i \(0.492240\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −841.723 −0.194020
\(267\) 0 0
\(268\) 3072.53 0.700316
\(269\) −5033.04 −1.14078 −0.570390 0.821374i \(-0.693208\pi\)
−0.570390 + 0.821374i \(0.693208\pi\)
\(270\) 0 0
\(271\) 1487.01 0.333319 0.166660 0.986015i \(-0.446702\pi\)
0.166660 + 0.986015i \(0.446702\pi\)
\(272\) −4257.25 −0.949021
\(273\) 0 0
\(274\) −145.183 −0.0320102
\(275\) 0 0
\(276\) 0 0
\(277\) 235.836 0.0511552 0.0255776 0.999673i \(-0.491858\pi\)
0.0255776 + 0.999673i \(0.491858\pi\)
\(278\) 2123.05 0.458029
\(279\) 0 0
\(280\) 0 0
\(281\) 4915.01 1.04343 0.521717 0.853118i \(-0.325292\pi\)
0.521717 + 0.853118i \(0.325292\pi\)
\(282\) 0 0
\(283\) 5199.56 1.09216 0.546081 0.837733i \(-0.316119\pi\)
0.546081 + 0.837733i \(0.316119\pi\)
\(284\) −3512.87 −0.733981
\(285\) 0 0
\(286\) 601.051 0.124269
\(287\) 4654.04 0.957210
\(288\) 0 0
\(289\) 1940.29 0.394930
\(290\) 0 0
\(291\) 0 0
\(292\) 4557.58 0.913398
\(293\) −8880.92 −1.77075 −0.885373 0.464881i \(-0.846097\pi\)
−0.885373 + 0.464881i \(0.846097\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −462.515 −0.0908215
\(297\) 0 0
\(298\) 2553.64 0.496405
\(299\) −996.743 −0.192786
\(300\) 0 0
\(301\) −38.7180 −0.00741417
\(302\) 851.612 0.162267
\(303\) 0 0
\(304\) −3492.99 −0.659001
\(305\) 0 0
\(306\) 0 0
\(307\) 1497.93 0.278474 0.139237 0.990259i \(-0.455535\pi\)
0.139237 + 0.990259i \(0.455535\pi\)
\(308\) 1389.89 0.257131
\(309\) 0 0
\(310\) 0 0
\(311\) 7484.71 1.36469 0.682345 0.731030i \(-0.260960\pi\)
0.682345 + 0.731030i \(0.260960\pi\)
\(312\) 0 0
\(313\) 658.363 0.118891 0.0594455 0.998232i \(-0.481067\pi\)
0.0594455 + 0.998232i \(0.481067\pi\)
\(314\) 250.403 0.0450034
\(315\) 0 0
\(316\) 7301.57 1.29983
\(317\) 233.708 0.0414080 0.0207040 0.999786i \(-0.493409\pi\)
0.0207040 + 0.999786i \(0.493409\pi\)
\(318\) 0 0
\(319\) −1858.94 −0.326272
\(320\) 0 0
\(321\) 0 0
\(322\) 165.485 0.0286401
\(323\) 5622.98 0.968641
\(324\) 0 0
\(325\) 0 0
\(326\) −1021.13 −0.173482
\(327\) 0 0
\(328\) −3112.33 −0.523931
\(329\) −1216.23 −0.203808
\(330\) 0 0
\(331\) 8532.95 1.41696 0.708480 0.705731i \(-0.249381\pi\)
0.708480 + 0.705731i \(0.249381\pi\)
\(332\) −195.215 −0.0322706
\(333\) 0 0
\(334\) −350.435 −0.0574100
\(335\) 0 0
\(336\) 0 0
\(337\) −11691.2 −1.88979 −0.944895 0.327373i \(-0.893837\pi\)
−0.944895 + 0.327373i \(0.893837\pi\)
\(338\) −2470.15 −0.397509
\(339\) 0 0
\(340\) 0 0
\(341\) −720.472 −0.114416
\(342\) 0 0
\(343\) 6761.73 1.06443
\(344\) 25.8921 0.00405817
\(345\) 0 0
\(346\) −1323.98 −0.205715
\(347\) 4598.79 0.711459 0.355729 0.934589i \(-0.384232\pi\)
0.355729 + 0.934589i \(0.384232\pi\)
\(348\) 0 0
\(349\) 6720.27 1.03074 0.515369 0.856968i \(-0.327655\pi\)
0.515369 + 0.856968i \(0.327655\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1410.31 −0.213551
\(353\) 5738.70 0.865270 0.432635 0.901569i \(-0.357584\pi\)
0.432635 + 0.901569i \(0.357584\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2633.99 −0.392138
\(357\) 0 0
\(358\) −3242.87 −0.478746
\(359\) 4115.27 0.605001 0.302501 0.953149i \(-0.402179\pi\)
0.302501 + 0.953149i \(0.402179\pi\)
\(360\) 0 0
\(361\) −2245.46 −0.327374
\(362\) −2495.69 −0.362349
\(363\) 0 0
\(364\) −9431.18 −1.35804
\(365\) 0 0
\(366\) 0 0
\(367\) −9662.99 −1.37440 −0.687199 0.726469i \(-0.741160\pi\)
−0.687199 + 0.726469i \(0.741160\pi\)
\(368\) 686.729 0.0972778
\(369\) 0 0
\(370\) 0 0
\(371\) 2522.39 0.352981
\(372\) 0 0
\(373\) 141.780 0.0196812 0.00984062 0.999952i \(-0.496868\pi\)
0.00984062 + 0.999952i \(0.496868\pi\)
\(374\) 666.628 0.0921671
\(375\) 0 0
\(376\) 813.334 0.111555
\(377\) 12613.9 1.72321
\(378\) 0 0
\(379\) −2819.73 −0.382163 −0.191082 0.981574i \(-0.561200\pi\)
−0.191082 + 0.981574i \(0.561200\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2140.34 0.286673
\(383\) −6337.84 −0.845557 −0.422778 0.906233i \(-0.638945\pi\)
−0.422778 + 0.906233i \(0.638945\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1818.55 −0.239797
\(387\) 0 0
\(388\) 6326.46 0.827776
\(389\) 8805.25 1.14767 0.573836 0.818970i \(-0.305455\pi\)
0.573836 + 0.818970i \(0.305455\pi\)
\(390\) 0 0
\(391\) −1105.49 −0.142985
\(392\) −638.883 −0.0823176
\(393\) 0 0
\(394\) 3752.25 0.479786
\(395\) 0 0
\(396\) 0 0
\(397\) −4315.26 −0.545534 −0.272767 0.962080i \(-0.587939\pi\)
−0.272767 + 0.962080i \(0.587939\pi\)
\(398\) 5.63108 0.000709197 0
\(399\) 0 0
\(400\) 0 0
\(401\) −361.681 −0.0450411 −0.0225206 0.999746i \(-0.507169\pi\)
−0.0225206 + 0.999746i \(0.507169\pi\)
\(402\) 0 0
\(403\) 4888.79 0.604288
\(404\) 9654.53 1.18894
\(405\) 0 0
\(406\) −2094.24 −0.255998
\(407\) −449.420 −0.0547345
\(408\) 0 0
\(409\) 9220.50 1.11473 0.557365 0.830268i \(-0.311812\pi\)
0.557365 + 0.830268i \(0.311812\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −12877.4 −1.53986
\(413\) 9236.55 1.10049
\(414\) 0 0
\(415\) 0 0
\(416\) 9569.74 1.12787
\(417\) 0 0
\(418\) 546.954 0.0640010
\(419\) 14912.9 1.73876 0.869380 0.494144i \(-0.164519\pi\)
0.869380 + 0.494144i \(0.164519\pi\)
\(420\) 0 0
\(421\) −13486.0 −1.56121 −0.780603 0.625027i \(-0.785088\pi\)
−0.780603 + 0.625027i \(0.785088\pi\)
\(422\) −2274.73 −0.262399
\(423\) 0 0
\(424\) −1686.81 −0.193205
\(425\) 0 0
\(426\) 0 0
\(427\) −1714.87 −0.194352
\(428\) 3613.96 0.408148
\(429\) 0 0
\(430\) 0 0
\(431\) −406.334 −0.0454116 −0.0227058 0.999742i \(-0.507228\pi\)
−0.0227058 + 0.999742i \(0.507228\pi\)
\(432\) 0 0
\(433\) 1766.69 0.196078 0.0980391 0.995183i \(-0.468743\pi\)
0.0980391 + 0.995183i \(0.468743\pi\)
\(434\) −811.664 −0.0897722
\(435\) 0 0
\(436\) 479.615 0.0526821
\(437\) −907.033 −0.0992889
\(438\) 0 0
\(439\) 7824.19 0.850634 0.425317 0.905044i \(-0.360163\pi\)
0.425317 + 0.905044i \(0.360163\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4523.44 −0.486783
\(443\) 11667.9 1.25137 0.625686 0.780075i \(-0.284819\pi\)
0.625686 + 0.780075i \(0.284819\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.01776 −0.000957406 0
\(447\) 0 0
\(448\) 5375.53 0.566897
\(449\) −16975.3 −1.78421 −0.892107 0.451825i \(-0.850773\pi\)
−0.892107 + 0.451825i \(0.850773\pi\)
\(450\) 0 0
\(451\) −3024.21 −0.315753
\(452\) 14966.1 1.55741
\(453\) 0 0
\(454\) −3379.07 −0.349312
\(455\) 0 0
\(456\) 0 0
\(457\) 16192.9 1.65748 0.828741 0.559632i \(-0.189057\pi\)
0.828741 + 0.559632i \(0.189057\pi\)
\(458\) −3714.89 −0.379007
\(459\) 0 0
\(460\) 0 0
\(461\) −8586.04 −0.867444 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(462\) 0 0
\(463\) 7917.20 0.794694 0.397347 0.917668i \(-0.369931\pi\)
0.397347 + 0.917668i \(0.369931\pi\)
\(464\) −8690.67 −0.869513
\(465\) 0 0
\(466\) −154.962 −0.0154045
\(467\) −15155.0 −1.50169 −0.750844 0.660480i \(-0.770353\pi\)
−0.750844 + 0.660480i \(0.770353\pi\)
\(468\) 0 0
\(469\) 6968.34 0.686073
\(470\) 0 0
\(471\) 0 0
\(472\) −6176.82 −0.602354
\(473\) 25.1591 0.00244570
\(474\) 0 0
\(475\) 0 0
\(476\) −10460.2 −1.00723
\(477\) 0 0
\(478\) 3156.96 0.302084
\(479\) −10001.1 −0.953993 −0.476996 0.878905i \(-0.658275\pi\)
−0.476996 + 0.878905i \(0.658275\pi\)
\(480\) 0 0
\(481\) 3049.56 0.289081
\(482\) 729.550 0.0689421
\(483\) 0 0
\(484\) −903.156 −0.0848193
\(485\) 0 0
\(486\) 0 0
\(487\) −7044.54 −0.655480 −0.327740 0.944768i \(-0.606287\pi\)
−0.327740 + 0.944768i \(0.606287\pi\)
\(488\) 1146.80 0.106379
\(489\) 0 0
\(490\) 0 0
\(491\) 13326.4 1.22487 0.612437 0.790520i \(-0.290189\pi\)
0.612437 + 0.790520i \(0.290189\pi\)
\(492\) 0 0
\(493\) 13990.2 1.27806
\(494\) −3711.38 −0.338022
\(495\) 0 0
\(496\) −3368.25 −0.304917
\(497\) −7967.02 −0.719054
\(498\) 0 0
\(499\) −20069.1 −1.80044 −0.900218 0.435440i \(-0.856593\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −202.699 −0.0180217
\(503\) 7782.35 0.689856 0.344928 0.938629i \(-0.387903\pi\)
0.344928 + 0.938629i \(0.387903\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −107.532 −0.00944744
\(507\) 0 0
\(508\) 818.102 0.0714516
\(509\) 1475.93 0.128526 0.0642628 0.997933i \(-0.479530\pi\)
0.0642628 + 0.997933i \(0.479530\pi\)
\(510\) 0 0
\(511\) 10336.4 0.894821
\(512\) −11250.6 −0.971116
\(513\) 0 0
\(514\) 2368.32 0.203233
\(515\) 0 0
\(516\) 0 0
\(517\) 790.307 0.0672295
\(518\) −506.305 −0.0429455
\(519\) 0 0
\(520\) 0 0
\(521\) −7609.43 −0.639875 −0.319938 0.947439i \(-0.603662\pi\)
−0.319938 + 0.947439i \(0.603662\pi\)
\(522\) 0 0
\(523\) −12452.9 −1.04116 −0.520581 0.853812i \(-0.674285\pi\)
−0.520581 + 0.853812i \(0.674285\pi\)
\(524\) 8633.82 0.719790
\(525\) 0 0
\(526\) −152.226 −0.0126186
\(527\) 5422.18 0.448186
\(528\) 0 0
\(529\) −11988.7 −0.985344
\(530\) 0 0
\(531\) 0 0
\(532\) −8582.34 −0.699420
\(533\) 20520.9 1.66765
\(534\) 0 0
\(535\) 0 0
\(536\) −4659.99 −0.375524
\(537\) 0 0
\(538\) 3684.44 0.295255
\(539\) −620.795 −0.0496095
\(540\) 0 0
\(541\) 9312.17 0.740039 0.370020 0.929024i \(-0.379351\pi\)
0.370020 + 0.929024i \(0.379351\pi\)
\(542\) −1088.57 −0.0862693
\(543\) 0 0
\(544\) 10613.8 0.836515
\(545\) 0 0
\(546\) 0 0
\(547\) 11018.6 0.861278 0.430639 0.902524i \(-0.358288\pi\)
0.430639 + 0.902524i \(0.358288\pi\)
\(548\) −1480.31 −0.115393
\(549\) 0 0
\(550\) 0 0
\(551\) 11478.6 0.887490
\(552\) 0 0
\(553\) 16559.6 1.27339
\(554\) −172.644 −0.0132399
\(555\) 0 0
\(556\) 21646.9 1.65114
\(557\) −12018.4 −0.914250 −0.457125 0.889403i \(-0.651121\pi\)
−0.457125 + 0.889403i \(0.651121\pi\)
\(558\) 0 0
\(559\) −170.718 −0.0129170
\(560\) 0 0
\(561\) 0 0
\(562\) −3598.04 −0.270061
\(563\) −8763.89 −0.656046 −0.328023 0.944670i \(-0.606382\pi\)
−0.328023 + 0.944670i \(0.606382\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −3806.34 −0.282672
\(567\) 0 0
\(568\) 5327.84 0.393576
\(569\) 10273.2 0.756895 0.378447 0.925623i \(-0.376458\pi\)
0.378447 + 0.925623i \(0.376458\pi\)
\(570\) 0 0
\(571\) 2602.62 0.190747 0.0953734 0.995442i \(-0.469596\pi\)
0.0953734 + 0.995442i \(0.469596\pi\)
\(572\) 6128.41 0.447975
\(573\) 0 0
\(574\) −3406.99 −0.247744
\(575\) 0 0
\(576\) 0 0
\(577\) 19727.0 1.42331 0.711653 0.702532i \(-0.247947\pi\)
0.711653 + 0.702532i \(0.247947\pi\)
\(578\) −1420.39 −0.102215
\(579\) 0 0
\(580\) 0 0
\(581\) −442.739 −0.0316143
\(582\) 0 0
\(583\) −1639.06 −0.116437
\(584\) −6912.30 −0.489783
\(585\) 0 0
\(586\) 6501.28 0.458303
\(587\) −10116.2 −0.711309 −0.355654 0.934618i \(-0.615742\pi\)
−0.355654 + 0.934618i \(0.615742\pi\)
\(588\) 0 0
\(589\) 4448.78 0.311221
\(590\) 0 0
\(591\) 0 0
\(592\) −2101.07 −0.145867
\(593\) 3130.32 0.216774 0.108387 0.994109i \(-0.465431\pi\)
0.108387 + 0.994109i \(0.465431\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 26037.3 1.78948
\(597\) 0 0
\(598\) 729.667 0.0498968
\(599\) −10080.1 −0.687581 −0.343790 0.939046i \(-0.611711\pi\)
−0.343790 + 0.939046i \(0.611711\pi\)
\(600\) 0 0
\(601\) 4777.02 0.324224 0.162112 0.986772i \(-0.448169\pi\)
0.162112 + 0.986772i \(0.448169\pi\)
\(602\) 28.3435 0.00191893
\(603\) 0 0
\(604\) 8683.16 0.584955
\(605\) 0 0
\(606\) 0 0
\(607\) 2571.35 0.171941 0.0859703 0.996298i \(-0.472601\pi\)
0.0859703 + 0.996298i \(0.472601\pi\)
\(608\) 8708.43 0.580877
\(609\) 0 0
\(610\) 0 0
\(611\) −5362.67 −0.355074
\(612\) 0 0
\(613\) −12711.9 −0.837564 −0.418782 0.908087i \(-0.637543\pi\)
−0.418782 + 0.908087i \(0.637543\pi\)
\(614\) −1096.56 −0.0720744
\(615\) 0 0
\(616\) −2107.99 −0.137879
\(617\) 16236.1 1.05939 0.529693 0.848189i \(-0.322307\pi\)
0.529693 + 0.848189i \(0.322307\pi\)
\(618\) 0 0
\(619\) 12657.3 0.821874 0.410937 0.911664i \(-0.365202\pi\)
0.410937 + 0.911664i \(0.365202\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −5479.19 −0.353208
\(623\) −5973.75 −0.384162
\(624\) 0 0
\(625\) 0 0
\(626\) −481.955 −0.0307713
\(627\) 0 0
\(628\) 2553.15 0.162232
\(629\) 3382.28 0.214404
\(630\) 0 0
\(631\) −3949.97 −0.249201 −0.124600 0.992207i \(-0.539765\pi\)
−0.124600 + 0.992207i \(0.539765\pi\)
\(632\) −11074.0 −0.696994
\(633\) 0 0
\(634\) −171.086 −0.0107172
\(635\) 0 0
\(636\) 0 0
\(637\) 4212.44 0.262014
\(638\) 1360.84 0.0844455
\(639\) 0 0
\(640\) 0 0
\(641\) 7398.27 0.455872 0.227936 0.973676i \(-0.426802\pi\)
0.227936 + 0.973676i \(0.426802\pi\)
\(642\) 0 0
\(643\) 12491.7 0.766134 0.383067 0.923721i \(-0.374868\pi\)
0.383067 + 0.923721i \(0.374868\pi\)
\(644\) 1687.31 0.103244
\(645\) 0 0
\(646\) −4116.31 −0.250703
\(647\) −10472.0 −0.636315 −0.318158 0.948038i \(-0.603064\pi\)
−0.318158 + 0.948038i \(0.603064\pi\)
\(648\) 0 0
\(649\) −6001.94 −0.363015
\(650\) 0 0
\(651\) 0 0
\(652\) −10411.6 −0.625384
\(653\) 6337.94 0.379820 0.189910 0.981801i \(-0.439180\pi\)
0.189910 + 0.981801i \(0.439180\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −14138.4 −0.841479
\(657\) 0 0
\(658\) 890.339 0.0527493
\(659\) −15196.7 −0.898302 −0.449151 0.893456i \(-0.648274\pi\)
−0.449151 + 0.893456i \(0.648274\pi\)
\(660\) 0 0
\(661\) 2298.17 0.135232 0.0676161 0.997711i \(-0.478461\pi\)
0.0676161 + 0.997711i \(0.478461\pi\)
\(662\) −6246.55 −0.366736
\(663\) 0 0
\(664\) 296.075 0.0173042
\(665\) 0 0
\(666\) 0 0
\(667\) −2256.73 −0.131006
\(668\) −3573.09 −0.206956
\(669\) 0 0
\(670\) 0 0
\(671\) 1114.33 0.0641106
\(672\) 0 0
\(673\) −23199.6 −1.32880 −0.664398 0.747379i \(-0.731312\pi\)
−0.664398 + 0.747379i \(0.731312\pi\)
\(674\) 8558.54 0.489114
\(675\) 0 0
\(676\) −25186.0 −1.43298
\(677\) −2145.38 −0.121793 −0.0608963 0.998144i \(-0.519396\pi\)
−0.0608963 + 0.998144i \(0.519396\pi\)
\(678\) 0 0
\(679\) 14348.1 0.810941
\(680\) 0 0
\(681\) 0 0
\(682\) 527.422 0.0296129
\(683\) −29544.6 −1.65519 −0.827593 0.561329i \(-0.810290\pi\)
−0.827593 + 0.561329i \(0.810290\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −4949.93 −0.275495
\(687\) 0 0
\(688\) 117.620 0.00651776
\(689\) 11121.9 0.614964
\(690\) 0 0
\(691\) 27803.1 1.53065 0.765325 0.643644i \(-0.222578\pi\)
0.765325 + 0.643644i \(0.222578\pi\)
\(692\) −13499.5 −0.741579
\(693\) 0 0
\(694\) −3366.55 −0.184139
\(695\) 0 0
\(696\) 0 0
\(697\) 22759.8 1.23686
\(698\) −4919.58 −0.266775
\(699\) 0 0
\(700\) 0 0
\(701\) 19697.8 1.06130 0.530652 0.847590i \(-0.321947\pi\)
0.530652 + 0.847590i \(0.321947\pi\)
\(702\) 0 0
\(703\) 2775.09 0.148883
\(704\) −3493.03 −0.187001
\(705\) 0 0
\(706\) −4201.02 −0.223948
\(707\) 21896.0 1.16476
\(708\) 0 0
\(709\) 19122.5 1.01292 0.506460 0.862263i \(-0.330954\pi\)
0.506460 + 0.862263i \(0.330954\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 3994.86 0.210272
\(713\) −874.641 −0.0459405
\(714\) 0 0
\(715\) 0 0
\(716\) −33064.8 −1.72582
\(717\) 0 0
\(718\) −3012.59 −0.156586
\(719\) −1837.44 −0.0953060 −0.0476530 0.998864i \(-0.515174\pi\)
−0.0476530 + 0.998864i \(0.515174\pi\)
\(720\) 0 0
\(721\) −29205.2 −1.50854
\(722\) 1643.79 0.0847307
\(723\) 0 0
\(724\) −25446.4 −1.30623
\(725\) 0 0
\(726\) 0 0
\(727\) 7555.46 0.385442 0.192721 0.981254i \(-0.438269\pi\)
0.192721 + 0.981254i \(0.438269\pi\)
\(728\) 14303.9 0.728211
\(729\) 0 0
\(730\) 0 0
\(731\) −189.344 −0.00958021
\(732\) 0 0
\(733\) −11984.6 −0.603905 −0.301952 0.953323i \(-0.597638\pi\)
−0.301952 + 0.953323i \(0.597638\pi\)
\(734\) 7073.80 0.355720
\(735\) 0 0
\(736\) −1712.10 −0.0857456
\(737\) −4528.05 −0.226313
\(738\) 0 0
\(739\) −27142.5 −1.35109 −0.675543 0.737321i \(-0.736091\pi\)
−0.675543 + 0.737321i \(0.736091\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1846.52 −0.0913582
\(743\) −29222.6 −1.44290 −0.721450 0.692467i \(-0.756524\pi\)
−0.721450 + 0.692467i \(0.756524\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −103.790 −0.00509388
\(747\) 0 0
\(748\) 6797.04 0.332252
\(749\) 8196.29 0.399847
\(750\) 0 0
\(751\) −8859.39 −0.430471 −0.215236 0.976562i \(-0.569052\pi\)
−0.215236 + 0.976562i \(0.569052\pi\)
\(752\) 3694.73 0.179166
\(753\) 0 0
\(754\) −9234.05 −0.446000
\(755\) 0 0
\(756\) 0 0
\(757\) −35734.4 −1.71571 −0.857853 0.513896i \(-0.828202\pi\)
−0.857853 + 0.513896i \(0.828202\pi\)
\(758\) 2064.19 0.0989112
\(759\) 0 0
\(760\) 0 0
\(761\) −34394.7 −1.63838 −0.819189 0.573524i \(-0.805576\pi\)
−0.819189 + 0.573524i \(0.805576\pi\)
\(762\) 0 0
\(763\) 1087.74 0.0516107
\(764\) 21823.2 1.03342
\(765\) 0 0
\(766\) 4639.62 0.218846
\(767\) 40726.4 1.91727
\(768\) 0 0
\(769\) −11602.7 −0.544091 −0.272045 0.962284i \(-0.587700\pi\)
−0.272045 + 0.962284i \(0.587700\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −18542.2 −0.864441
\(773\) −12680.6 −0.590026 −0.295013 0.955493i \(-0.595324\pi\)
−0.295013 + 0.955493i \(0.595324\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −9595.09 −0.443871
\(777\) 0 0
\(778\) −6445.89 −0.297039
\(779\) 18674.0 0.858876
\(780\) 0 0
\(781\) 5176.99 0.237193
\(782\) 809.276 0.0370072
\(783\) 0 0
\(784\) −2902.25 −0.132209
\(785\) 0 0
\(786\) 0 0
\(787\) 4417.61 0.200090 0.100045 0.994983i \(-0.468101\pi\)
0.100045 + 0.994983i \(0.468101\pi\)
\(788\) 38258.5 1.72957
\(789\) 0 0
\(790\) 0 0
\(791\) 33942.4 1.52573
\(792\) 0 0
\(793\) −7561.33 −0.338601
\(794\) 3158.99 0.141194
\(795\) 0 0
\(796\) 57.4153 0.00255657
\(797\) −27030.1 −1.20132 −0.600661 0.799504i \(-0.705096\pi\)
−0.600661 + 0.799504i \(0.705096\pi\)
\(798\) 0 0
\(799\) −5947.75 −0.263350
\(800\) 0 0
\(801\) 0 0
\(802\) 264.769 0.0116575
\(803\) −6716.60 −0.295173
\(804\) 0 0
\(805\) 0 0
\(806\) −3578.85 −0.156401
\(807\) 0 0
\(808\) −14642.6 −0.637533
\(809\) −23647.0 −1.02767 −0.513835 0.857889i \(-0.671776\pi\)
−0.513835 + 0.857889i \(0.671776\pi\)
\(810\) 0 0
\(811\) 33486.1 1.44988 0.724941 0.688811i \(-0.241867\pi\)
0.724941 + 0.688811i \(0.241867\pi\)
\(812\) −21353.1 −0.922843
\(813\) 0 0
\(814\) 328.999 0.0141663
\(815\) 0 0
\(816\) 0 0
\(817\) −155.353 −0.00665251
\(818\) −6749.88 −0.288513
\(819\) 0 0
\(820\) 0 0
\(821\) −2605.69 −0.110766 −0.0553832 0.998465i \(-0.517638\pi\)
−0.0553832 + 0.998465i \(0.517638\pi\)
\(822\) 0 0
\(823\) −31976.2 −1.35434 −0.677169 0.735828i \(-0.736793\pi\)
−0.677169 + 0.735828i \(0.736793\pi\)
\(824\) 19530.6 0.825705
\(825\) 0 0
\(826\) −6761.62 −0.284827
\(827\) −37759.0 −1.58768 −0.793839 0.608128i \(-0.791921\pi\)
−0.793839 + 0.608128i \(0.791921\pi\)
\(828\) 0 0
\(829\) −1137.55 −0.0476584 −0.0238292 0.999716i \(-0.507586\pi\)
−0.0238292 + 0.999716i \(0.507586\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 23702.2 0.987649
\(833\) 4672.03 0.194329
\(834\) 0 0
\(835\) 0 0
\(836\) 5576.83 0.230716
\(837\) 0 0
\(838\) −10917.0 −0.450024
\(839\) 37372.2 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(840\) 0 0
\(841\) 4170.26 0.170989
\(842\) 9872.44 0.404070
\(843\) 0 0
\(844\) −23193.5 −0.945917
\(845\) 0 0
\(846\) 0 0
\(847\) −2048.31 −0.0830943
\(848\) −7662.68 −0.310304
\(849\) 0 0
\(850\) 0 0
\(851\) −545.589 −0.0219772
\(852\) 0 0
\(853\) 22490.8 0.902780 0.451390 0.892327i \(-0.350928\pi\)
0.451390 + 0.892327i \(0.350928\pi\)
\(854\) 1255.37 0.0503021
\(855\) 0 0
\(856\) −5481.16 −0.218858
\(857\) 43409.5 1.73027 0.865135 0.501539i \(-0.167233\pi\)
0.865135 + 0.501539i \(0.167233\pi\)
\(858\) 0 0
\(859\) 29533.2 1.17306 0.586532 0.809926i \(-0.300493\pi\)
0.586532 + 0.809926i \(0.300493\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 297.457 0.0117534
\(863\) 14351.6 0.566090 0.283045 0.959107i \(-0.408655\pi\)
0.283045 + 0.959107i \(0.408655\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1293.31 −0.0507488
\(867\) 0 0
\(868\) −8275.85 −0.323618
\(869\) −10760.5 −0.420051
\(870\) 0 0
\(871\) 30725.3 1.19528
\(872\) −727.413 −0.0282492
\(873\) 0 0
\(874\) 663.994 0.0256979
\(875\) 0 0
\(876\) 0 0
\(877\) 43248.7 1.66523 0.832614 0.553854i \(-0.186844\pi\)
0.832614 + 0.553854i \(0.186844\pi\)
\(878\) −5727.71 −0.220160
\(879\) 0 0
\(880\) 0 0
\(881\) −3816.13 −0.145935 −0.0729675 0.997334i \(-0.523247\pi\)
−0.0729675 + 0.997334i \(0.523247\pi\)
\(882\) 0 0
\(883\) −48787.6 −1.85938 −0.929690 0.368343i \(-0.879925\pi\)
−0.929690 + 0.368343i \(0.879925\pi\)
\(884\) −46121.6 −1.75479
\(885\) 0 0
\(886\) −8541.49 −0.323879
\(887\) 41495.1 1.57077 0.785384 0.619009i \(-0.212466\pi\)
0.785384 + 0.619009i \(0.212466\pi\)
\(888\) 0 0
\(889\) 1855.41 0.0699984
\(890\) 0 0
\(891\) 0 0
\(892\) −91.9464 −0.00345134
\(893\) −4880.01 −0.182870
\(894\) 0 0
\(895\) 0 0
\(896\) −21298.1 −0.794107
\(897\) 0 0
\(898\) 12426.7 0.461788
\(899\) 11068.7 0.410637
\(900\) 0 0
\(901\) 12335.3 0.456104
\(902\) 2213.88 0.0817228
\(903\) 0 0
\(904\) −22698.5 −0.835113
\(905\) 0 0
\(906\) 0 0
\(907\) −21615.3 −0.791316 −0.395658 0.918398i \(-0.629483\pi\)
−0.395658 + 0.918398i \(0.629483\pi\)
\(908\) −34453.6 −1.25923
\(909\) 0 0
\(910\) 0 0
\(911\) −3646.35 −0.132611 −0.0663057 0.997799i \(-0.521121\pi\)
−0.0663057 + 0.997799i \(0.521121\pi\)
\(912\) 0 0
\(913\) 287.693 0.0104285
\(914\) −11854.0 −0.428988
\(915\) 0 0
\(916\) −37877.6 −1.36628
\(917\) 19581.1 0.705151
\(918\) 0 0
\(919\) 31280.0 1.12278 0.561388 0.827553i \(-0.310267\pi\)
0.561388 + 0.827553i \(0.310267\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 6285.42 0.224511
\(923\) −35128.7 −1.25274
\(924\) 0 0
\(925\) 0 0
\(926\) −5795.79 −0.205682
\(927\) 0 0
\(928\) 21666.9 0.766433
\(929\) −6557.92 −0.231602 −0.115801 0.993272i \(-0.536944\pi\)
−0.115801 + 0.993272i \(0.536944\pi\)
\(930\) 0 0
\(931\) 3833.30 0.134942
\(932\) −1580.02 −0.0555314
\(933\) 0 0
\(934\) 11094.2 0.388665
\(935\) 0 0
\(936\) 0 0
\(937\) 24473.3 0.853265 0.426632 0.904425i \(-0.359700\pi\)
0.426632 + 0.904425i \(0.359700\pi\)
\(938\) −5101.18 −0.177569
\(939\) 0 0
\(940\) 0 0
\(941\) −15420.8 −0.534224 −0.267112 0.963665i \(-0.586069\pi\)
−0.267112 + 0.963665i \(0.586069\pi\)
\(942\) 0 0
\(943\) −3671.34 −0.126782
\(944\) −28059.4 −0.967432
\(945\) 0 0
\(946\) −18.4177 −0.000632993 0
\(947\) −33141.2 −1.13722 −0.568608 0.822609i \(-0.692518\pi\)
−0.568608 + 0.822609i \(0.692518\pi\)
\(948\) 0 0
\(949\) 45575.8 1.55896
\(950\) 0 0
\(951\) 0 0
\(952\) 15864.5 0.540096
\(953\) −20735.4 −0.704813 −0.352406 0.935847i \(-0.614637\pi\)
−0.352406 + 0.935847i \(0.614637\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 32188.9 1.08898
\(957\) 0 0
\(958\) 7321.32 0.246911
\(959\) −3357.26 −0.113046
\(960\) 0 0
\(961\) −25501.1 −0.856000
\(962\) −2232.44 −0.0748198
\(963\) 0 0
\(964\) 7438.60 0.248528
\(965\) 0 0
\(966\) 0 0
\(967\) 8178.87 0.271990 0.135995 0.990710i \(-0.456577\pi\)
0.135995 + 0.990710i \(0.456577\pi\)
\(968\) 1369.78 0.0454819
\(969\) 0 0
\(970\) 0 0
\(971\) 20576.1 0.680039 0.340020 0.940418i \(-0.389566\pi\)
0.340020 + 0.940418i \(0.389566\pi\)
\(972\) 0 0
\(973\) 49094.1 1.61756
\(974\) 5156.96 0.169651
\(975\) 0 0
\(976\) 5209.55 0.170854
\(977\) 14541.9 0.476188 0.238094 0.971242i \(-0.423477\pi\)
0.238094 + 0.971242i \(0.423477\pi\)
\(978\) 0 0
\(979\) 3881.76 0.126723
\(980\) 0 0
\(981\) 0 0
\(982\) −9755.62 −0.317021
\(983\) −29285.7 −0.950223 −0.475111 0.879926i \(-0.657592\pi\)
−0.475111 + 0.879926i \(0.657592\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −10241.5 −0.330787
\(987\) 0 0
\(988\) −37841.8 −1.21853
\(989\) 30.5427 0.000982004 0
\(990\) 0 0
\(991\) −38085.9 −1.22083 −0.610413 0.792083i \(-0.708997\pi\)
−0.610413 + 0.792083i \(0.708997\pi\)
\(992\) 8397.44 0.268769
\(993\) 0 0
\(994\) 5832.26 0.186105
\(995\) 0 0
\(996\) 0 0
\(997\) 26803.6 0.851434 0.425717 0.904856i \(-0.360022\pi\)
0.425717 + 0.904856i \(0.360022\pi\)
\(998\) 14691.6 0.465987
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.q.1.1 2
3.2 odd 2 275.4.a.b.1.2 2
5.4 even 2 99.4.a.c.1.2 2
15.2 even 4 275.4.b.c.199.3 4
15.8 even 4 275.4.b.c.199.2 4
15.14 odd 2 11.4.a.a.1.1 2
20.19 odd 2 1584.4.a.bc.1.2 2
55.54 odd 2 1089.4.a.v.1.1 2
60.59 even 2 176.4.a.i.1.1 2
105.104 even 2 539.4.a.e.1.1 2
120.29 odd 2 704.4.a.p.1.1 2
120.59 even 2 704.4.a.n.1.2 2
165.14 odd 10 121.4.c.c.9.1 8
165.29 even 10 121.4.c.f.27.2 8
165.59 odd 10 121.4.c.c.27.1 8
165.74 even 10 121.4.c.f.9.2 8
165.104 odd 10 121.4.c.c.3.2 8
165.119 odd 10 121.4.c.c.81.2 8
165.134 even 10 121.4.c.f.81.1 8
165.149 even 10 121.4.c.f.3.1 8
165.164 even 2 121.4.a.c.1.2 2
195.194 odd 2 1859.4.a.a.1.2 2
660.659 odd 2 1936.4.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.1 2 15.14 odd 2
99.4.a.c.1.2 2 5.4 even 2
121.4.a.c.1.2 2 165.164 even 2
121.4.c.c.3.2 8 165.104 odd 10
121.4.c.c.9.1 8 165.14 odd 10
121.4.c.c.27.1 8 165.59 odd 10
121.4.c.c.81.2 8 165.119 odd 10
121.4.c.f.3.1 8 165.149 even 10
121.4.c.f.9.2 8 165.74 even 10
121.4.c.f.27.2 8 165.29 even 10
121.4.c.f.81.1 8 165.134 even 10
176.4.a.i.1.1 2 60.59 even 2
275.4.a.b.1.2 2 3.2 odd 2
275.4.b.c.199.2 4 15.8 even 4
275.4.b.c.199.3 4 15.2 even 4
539.4.a.e.1.1 2 105.104 even 2
704.4.a.n.1.2 2 120.59 even 2
704.4.a.p.1.1 2 120.29 odd 2
1089.4.a.v.1.1 2 55.54 odd 2
1584.4.a.bc.1.2 2 20.19 odd 2
1859.4.a.a.1.2 2 195.194 odd 2
1936.4.a.w.1.1 2 660.659 odd 2
2475.4.a.q.1.1 2 1.1 even 1 trivial