Properties

Label 2475.4.a.l
Level $2475$
Weight $4$
Character orbit 2475.a
Self dual yes
Analytic conductor $146.030$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 3) q^{2} + (7 \beta + 5) q^{4} + ( - 9 \beta + 17) q^{7} + ( - 25 \beta - 19) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta - 3) q^{2} + (7 \beta + 5) q^{4} + ( - 9 \beta + 17) q^{7} + ( - 25 \beta - 19) q^{8} + 11 q^{11} + ( - 10 \beta + 30) q^{13} + (19 \beta - 15) q^{14} + (63 \beta + 117) q^{16} + ( - 17 \beta - 67) q^{17} + ( - 45 \beta + 21) q^{19} + ( - 11 \beta - 33) q^{22} + ( - 4 \beta + 26) q^{23} + (10 \beta - 50) q^{26} + (11 \beta - 167) q^{28} + (71 \beta + 75) q^{29} + ( - 117 \beta + 129) q^{31} + ( - 169 \beta - 451) q^{32} + (135 \beta + 269) q^{34} + ( - 43 \beta + 301) q^{37} + (159 \beta + 117) q^{38} + ( - 156 \beta + 150) q^{41} + ( - 156 \beta + 108) q^{43} + (77 \beta + 55) q^{44} + ( - 10 \beta - 62) q^{46} + (100 \beta - 74) q^{47} + ( - 225 \beta + 270) q^{49} + (90 \beta - 130) q^{52} + ( - 169 \beta + 143) q^{53} + ( - 29 \beta + 577) q^{56} + ( - 359 \beta - 509) q^{58} + ( - 158 \beta + 122) q^{59} + (119 \beta - 137) q^{61} + (339 \beta + 81) q^{62} + (623 \beta + 1093) q^{64} + (150 \beta - 208) q^{67} + ( - 673 \beta - 811) q^{68} + ( - 61 \beta - 763) q^{71} + ( - 58 \beta - 6) q^{73} + ( - 129 \beta - 731) q^{74} + ( - 393 \beta - 1155) q^{76} + ( - 99 \beta + 187) q^{77} + ( - 114 \beta - 590) q^{79} + (474 \beta + 174) q^{82} + (270 \beta - 414) q^{83} + (516 \beta + 300) q^{86} + ( - 275 \beta - 209) q^{88} + (43 \beta + 867) q^{89} + ( - 350 \beta + 870) q^{91} + (134 \beta + 18) q^{92} + ( - 326 \beta - 178) q^{94} + (454 \beta - 60) q^{97} + (630 \beta + 90) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 7 q^{2} + 17 q^{4} + 25 q^{7} - 63 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 7 q^{2} + 17 q^{4} + 25 q^{7} - 63 q^{8} + 22 q^{11} + 50 q^{13} - 11 q^{14} + 297 q^{16} - 151 q^{17} - 3 q^{19} - 77 q^{22} + 48 q^{23} - 90 q^{26} - 323 q^{28} + 221 q^{29} + 141 q^{31} - 1071 q^{32} + 673 q^{34} + 559 q^{37} + 393 q^{38} + 144 q^{41} + 60 q^{43} + 187 q^{44} - 134 q^{46} - 48 q^{47} + 315 q^{49} - 170 q^{52} + 117 q^{53} + 1125 q^{56} - 1377 q^{58} + 86 q^{59} - 155 q^{61} + 501 q^{62} + 2809 q^{64} - 266 q^{67} - 2295 q^{68} - 1587 q^{71} - 70 q^{73} - 1591 q^{74} - 2703 q^{76} + 275 q^{77} - 1294 q^{79} + 822 q^{82} - 558 q^{83} + 1116 q^{86} - 693 q^{88} + 1777 q^{89} + 1390 q^{91} + 170 q^{92} - 682 q^{94} + 334 q^{97} + 810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−5.56155 0 22.9309 0 0 −6.05398 −83.0388 0 0
1.2 −1.43845 0 −5.93087 0 0 31.0540 20.0388 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2475.4.a.l 2
3.b odd 2 1 275.4.a.c 2
5.b even 2 1 495.4.a.e 2
15.d odd 2 1 55.4.a.b 2
15.e even 4 2 275.4.b.b 4
60.h even 2 1 880.4.a.r 2
165.d even 2 1 605.4.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.4.a.b 2 15.d odd 2 1
275.4.a.c 2 3.b odd 2 1
275.4.b.b 4 15.e even 4 2
495.4.a.e 2 5.b even 2 1
605.4.a.g 2 165.d even 2 1
880.4.a.r 2 60.h even 2 1
2475.4.a.l 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2475))\):

\( T_{2}^{2} + 7T_{2} + 8 \) Copy content Toggle raw display
\( T_{7}^{2} - 25T_{7} - 188 \) Copy content Toggle raw display
\( T_{29}^{2} - 221T_{29} - 9214 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 7T + 8 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 25T - 188 \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 50T + 200 \) Copy content Toggle raw display
$17$ \( T^{2} + 151T + 4472 \) Copy content Toggle raw display
$19$ \( T^{2} + 3T - 8604 \) Copy content Toggle raw display
$23$ \( T^{2} - 48T + 508 \) Copy content Toggle raw display
$29$ \( T^{2} - 221T - 9214 \) Copy content Toggle raw display
$31$ \( T^{2} - 141T - 53208 \) Copy content Toggle raw display
$37$ \( T^{2} - 559T + 70262 \) Copy content Toggle raw display
$41$ \( T^{2} - 144T - 98244 \) Copy content Toggle raw display
$43$ \( T^{2} - 60T - 102528 \) Copy content Toggle raw display
$47$ \( T^{2} + 48T - 41924 \) Copy content Toggle raw display
$53$ \( T^{2} - 117T - 117962 \) Copy content Toggle raw display
$59$ \( T^{2} - 86T - 104248 \) Copy content Toggle raw display
$61$ \( T^{2} + 155T - 54178 \) Copy content Toggle raw display
$67$ \( T^{2} + 266T - 77936 \) Copy content Toggle raw display
$71$ \( T^{2} + 1587 T + 613828 \) Copy content Toggle raw display
$73$ \( T^{2} + 70T - 13072 \) Copy content Toggle raw display
$79$ \( T^{2} + 1294 T + 363376 \) Copy content Toggle raw display
$83$ \( T^{2} + 558T - 231984 \) Copy content Toggle raw display
$89$ \( T^{2} - 1777 T + 781574 \) Copy content Toggle raw display
$97$ \( T^{2} - 334T - 848104 \) Copy content Toggle raw display
show more
show less