Properties

Label 2475.2.c.m
Level $2475$
Weight $2$
Character orbit 2475.c
Analytic conductor $19.763$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{2} + ( -1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{4} + ( 2 \zeta_{8} - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{7} + ( -\zeta_{8} - 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{8} +O(q^{10})\) \( q + ( \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{2} + ( -1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{4} + ( 2 \zeta_{8} - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{7} + ( -\zeta_{8} - 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{8} + q^{11} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{13} -2 q^{14} + 3 q^{16} + ( -2 \zeta_{8} + 4 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{17} + ( 4 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{19} + ( \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{22} -4 \zeta_{8}^{2} q^{23} + ( -8 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{26} + ( 2 \zeta_{8} - 6 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{28} + ( -2 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{29} + ( \zeta_{8} - 3 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{32} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{34} + ( 4 \zeta_{8} + 6 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{37} + ( 6 \zeta_{8} + 8 \zeta_{8}^{2} + 6 \zeta_{8}^{3} ) q^{38} + ( -2 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{41} + ( 2 \zeta_{8} + 6 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{43} + ( -1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{44} + ( 4 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{46} + 4 \zeta_{8}^{2} q^{47} + ( -5 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{49} + ( -4 \zeta_{8} - 16 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{52} + ( 8 \zeta_{8} - 2 \zeta_{8}^{2} + 8 \zeta_{8}^{3} ) q^{53} + ( -2 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{56} + ( -4 \zeta_{8} - 6 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{58} -4 q^{59} + ( -6 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{61} + ( 7 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{64} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{67} + ( -6 \zeta_{8} + 4 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{68} + ( -8 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{71} + ( -8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{73} + ( -14 - 10 \zeta_{8} + 10 \zeta_{8}^{3} ) q^{74} + ( -12 - 10 \zeta_{8} + 10 \zeta_{8}^{3} ) q^{76} + ( 2 \zeta_{8} - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{77} + ( -6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{79} + ( -4 \zeta_{8} - 6 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{82} -10 \zeta_{8}^{2} q^{83} + ( -10 - 8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{86} + ( -\zeta_{8} - 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{88} + ( -2 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{89} + ( -16 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{91} + ( 8 \zeta_{8} + 4 \zeta_{8}^{2} + 8 \zeta_{8}^{3} ) q^{92} + ( -4 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{94} + ( 4 \zeta_{8} + 6 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{97} + ( 3 \zeta_{8} + 11 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{4} + O(q^{10}) \) \( 4q - 4q^{4} + 4q^{11} - 8q^{14} + 12q^{16} + 16q^{19} - 32q^{26} - 8q^{29} - 8q^{41} - 4q^{44} + 16q^{46} - 20q^{49} - 8q^{56} - 16q^{59} - 24q^{61} + 28q^{64} - 32q^{71} - 56q^{74} - 48q^{76} - 40q^{86} - 8q^{89} - 64q^{91} - 16q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2475\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2026\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
2.41421i 0 −3.82843 0 0 0.828427i 4.41421i 0 0
199.2 0.414214i 0 1.82843 0 0 4.82843i 1.58579i 0 0
199.3 0.414214i 0 1.82843 0 0 4.82843i 1.58579i 0 0
199.4 2.41421i 0 −3.82843 0 0 0.828427i 4.41421i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2475.2.c.m 4
3.b odd 2 1 825.2.c.e 4
5.b even 2 1 inner 2475.2.c.m 4
5.c odd 4 1 495.2.a.d 2
5.c odd 4 1 2475.2.a.m 2
15.d odd 2 1 825.2.c.e 4
15.e even 4 1 165.2.a.a 2
15.e even 4 1 825.2.a.g 2
20.e even 4 1 7920.2.a.cg 2
55.e even 4 1 5445.2.a.m 2
60.l odd 4 1 2640.2.a.bb 2
105.k odd 4 1 8085.2.a.ba 2
165.l odd 4 1 1815.2.a.k 2
165.l odd 4 1 9075.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.a.a 2 15.e even 4 1
495.2.a.d 2 5.c odd 4 1
825.2.a.g 2 15.e even 4 1
825.2.c.e 4 3.b odd 2 1
825.2.c.e 4 15.d odd 2 1
1815.2.a.k 2 165.l odd 4 1
2475.2.a.m 2 5.c odd 4 1
2475.2.c.m 4 1.a even 1 1 trivial
2475.2.c.m 4 5.b even 2 1 inner
2640.2.a.bb 2 60.l odd 4 1
5445.2.a.m 2 55.e even 4 1
7920.2.a.cg 2 20.e even 4 1
8085.2.a.ba 2 105.k odd 4 1
9075.2.a.v 2 165.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2475, [\chi])\):

\( T_{2}^{4} + 6 T_{2}^{2} + 1 \)
\( T_{7}^{4} + 24 T_{7}^{2} + 16 \)
\( T_{29}^{2} + 4 T_{29} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 6 T^{2} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( T^{4} \)
$7$ \( 16 + 24 T^{2} + T^{4} \)
$11$ \( ( -1 + T )^{4} \)
$13$ \( ( 32 + T^{2} )^{2} \)
$17$ \( 64 + 48 T^{2} + T^{4} \)
$19$ \( ( 8 - 8 T + T^{2} )^{2} \)
$23$ \( ( 16 + T^{2} )^{2} \)
$29$ \( ( -4 + 4 T + T^{2} )^{2} \)
$31$ \( T^{4} \)
$37$ \( 16 + 136 T^{2} + T^{4} \)
$41$ \( ( -4 + 4 T + T^{2} )^{2} \)
$43$ \( 784 + 88 T^{2} + T^{4} \)
$47$ \( ( 16 + T^{2} )^{2} \)
$53$ \( 15376 + 264 T^{2} + T^{4} \)
$59$ \( ( 4 + T )^{4} \)
$61$ \( ( 4 + 12 T + T^{2} )^{2} \)
$67$ \( ( 32 + T^{2} )^{2} \)
$71$ \( ( 32 + 16 T + T^{2} )^{2} \)
$73$ \( ( 128 + T^{2} )^{2} \)
$79$ \( ( -72 + T^{2} )^{2} \)
$83$ \( ( 100 + T^{2} )^{2} \)
$89$ \( ( -28 + 4 T + T^{2} )^{2} \)
$97$ \( 16 + 136 T^{2} + T^{4} \)
show more
show less