Properties

Label 2475.2.c.c.199.2
Level $2475$
Weight $2$
Character 2475.199
Analytic conductor $19.763$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2475.199
Dual form 2475.2.c.c.199.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{4} -3.00000i q^{7} +3.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} +1.00000 q^{4} -3.00000i q^{7} +3.00000i q^{8} -1.00000 q^{11} -2.00000i q^{13} +3.00000 q^{14} -1.00000 q^{16} +3.00000i q^{17} +1.00000 q^{19} -1.00000i q^{22} -1.00000i q^{23} +2.00000 q^{26} -3.00000i q^{28} +6.00000 q^{29} +4.00000 q^{31} +5.00000i q^{32} -3.00000 q^{34} +1.00000i q^{37} +1.00000i q^{38} +5.00000 q^{41} -4.00000i q^{43} -1.00000 q^{44} +1.00000 q^{46} +3.00000i q^{47} -2.00000 q^{49} -2.00000i q^{52} -10.0000i q^{53} +9.00000 q^{56} +6.00000i q^{58} +11.0000 q^{59} +14.0000 q^{61} +4.00000i q^{62} -7.00000 q^{64} +2.00000i q^{67} +3.00000i q^{68} +5.00000 q^{71} -2.00000i q^{73} -1.00000 q^{74} +1.00000 q^{76} +3.00000i q^{77} -5.00000 q^{79} +5.00000i q^{82} -8.00000i q^{83} +4.00000 q^{86} -3.00000i q^{88} -10.0000 q^{89} -6.00000 q^{91} -1.00000i q^{92} -3.00000 q^{94} -17.0000i q^{97} -2.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + O(q^{10}) \) \( 2 q + 2 q^{4} - 2 q^{11} + 6 q^{14} - 2 q^{16} + 2 q^{19} + 4 q^{26} + 12 q^{29} + 8 q^{31} - 6 q^{34} + 10 q^{41} - 2 q^{44} + 2 q^{46} - 4 q^{49} + 18 q^{56} + 22 q^{59} + 28 q^{61} - 14 q^{64} + 10 q^{71} - 2 q^{74} + 2 q^{76} - 10 q^{79} + 8 q^{86} - 20 q^{89} - 12 q^{91} - 6 q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2475\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2026\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 3.00000i − 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 1.00000i − 0.213201i
\(23\) − 1.00000i − 0.208514i −0.994550 0.104257i \(-0.966753\pi\)
0.994550 0.104257i \(-0.0332465\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) − 3.00000i − 0.566947i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000i 0.164399i 0.996616 + 0.0821995i \(0.0261945\pi\)
−0.996616 + 0.0821995i \(0.973806\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 3.00000i 0.437595i 0.975770 + 0.218797i \(0.0702134\pi\)
−0.975770 + 0.218797i \(0.929787\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) − 2.00000i − 0.277350i
\(53\) − 10.0000i − 1.37361i −0.726844 0.686803i \(-0.759014\pi\)
0.726844 0.686803i \(-0.240986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 9.00000 1.20268
\(57\) 0 0
\(58\) 6.00000i 0.787839i
\(59\) 11.0000 1.43208 0.716039 0.698060i \(-0.245953\pi\)
0.716039 + 0.698060i \(0.245953\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000i 0.244339i 0.992509 + 0.122169i \(0.0389851\pi\)
−0.992509 + 0.122169i \(0.961015\pi\)
\(68\) 3.00000i 0.363803i
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) − 2.00000i − 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) 3.00000i 0.341882i
\(78\) 0 0
\(79\) −5.00000 −0.562544 −0.281272 0.959628i \(-0.590756\pi\)
−0.281272 + 0.959628i \(0.590756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.00000i 0.552158i
\(83\) − 8.00000i − 0.878114i −0.898459 0.439057i \(-0.855313\pi\)
0.898459 0.439057i \(-0.144687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) − 3.00000i − 0.319801i
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) − 1.00000i − 0.104257i
\(93\) 0 0
\(94\) −3.00000 −0.309426
\(95\) 0 0
\(96\) 0 0
\(97\) − 17.0000i − 1.72609i −0.505128 0.863044i \(-0.668555\pi\)
0.505128 0.863044i \(-0.331445\pi\)
\(98\) − 2.00000i − 0.202031i
\(99\) 0 0
\(100\) 0 0
\(101\) 11.0000 1.09454 0.547270 0.836956i \(-0.315667\pi\)
0.547270 + 0.836956i \(0.315667\pi\)
\(102\) 0 0
\(103\) − 2.00000i − 0.197066i −0.995134 0.0985329i \(-0.968585\pi\)
0.995134 0.0985329i \(-0.0314150\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) 10.0000 0.971286
\(107\) 18.0000i 1.74013i 0.492941 + 0.870063i \(0.335922\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 3.00000i 0.283473i
\(113\) − 18.0000i − 1.69330i −0.532152 0.846649i \(-0.678617\pi\)
0.532152 0.846649i \(-0.321383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 11.0000i 1.01263i
\(119\) 9.00000 0.825029
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 14.0000i 1.26750i
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) − 5.00000i − 0.443678i −0.975083 0.221839i \(-0.928794\pi\)
0.975083 0.221839i \(-0.0712060\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) − 3.00000i − 0.260133i
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −9.00000 −0.771744
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.00000i 0.419591i
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 0 0
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 1.00000i 0.0821995i
\(149\) 7.00000 0.573462 0.286731 0.958011i \(-0.407431\pi\)
0.286731 + 0.958011i \(0.407431\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 3.00000i 0.243332i
\(153\) 0 0
\(154\) −3.00000 −0.241747
\(155\) 0 0
\(156\) 0 0
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) − 5.00000i − 0.397779i
\(159\) 0 0
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) − 10.0000i − 0.783260i −0.920123 0.391630i \(-0.871911\pi\)
0.920123 0.391630i \(-0.128089\pi\)
\(164\) 5.00000 0.390434
\(165\) 0 0
\(166\) 8.00000 0.620920
\(167\) 10.0000i 0.773823i 0.922117 + 0.386912i \(0.126458\pi\)
−0.922117 + 0.386912i \(0.873542\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) − 4.00000i − 0.304997i
\(173\) 9.00000i 0.684257i 0.939653 + 0.342129i \(0.111148\pi\)
−0.939653 + 0.342129i \(0.888852\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) − 10.0000i − 0.749532i
\(179\) −1.00000 −0.0747435 −0.0373718 0.999301i \(-0.511899\pi\)
−0.0373718 + 0.999301i \(0.511899\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) − 6.00000i − 0.444750i
\(183\) 0 0
\(184\) 3.00000 0.221163
\(185\) 0 0
\(186\) 0 0
\(187\) − 3.00000i − 0.219382i
\(188\) 3.00000i 0.218797i
\(189\) 0 0
\(190\) 0 0
\(191\) −19.0000 −1.37479 −0.687396 0.726283i \(-0.741246\pi\)
−0.687396 + 0.726283i \(0.741246\pi\)
\(192\) 0 0
\(193\) − 4.00000i − 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 17.0000 1.22053
\(195\) 0 0
\(196\) −2.00000 −0.142857
\(197\) 23.0000i 1.63868i 0.573306 + 0.819341i \(0.305660\pi\)
−0.573306 + 0.819341i \(0.694340\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 11.0000i 0.773957i
\(203\) − 18.0000i − 1.26335i
\(204\) 0 0
\(205\) 0 0
\(206\) 2.00000 0.139347
\(207\) 0 0
\(208\) 2.00000i 0.138675i
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) − 10.0000i − 0.686803i
\(213\) 0 0
\(214\) −18.0000 −1.23045
\(215\) 0 0
\(216\) 0 0
\(217\) − 12.0000i − 0.814613i
\(218\) 12.0000i 0.812743i
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) 22.0000i 1.47323i 0.676313 + 0.736614i \(0.263577\pi\)
−0.676313 + 0.736614i \(0.736423\pi\)
\(224\) 15.0000 1.00223
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) − 8.00000i − 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) −11.0000 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 18.0000i 1.18176i
\(233\) − 9.00000i − 0.589610i −0.955557 0.294805i \(-0.904745\pi\)
0.955557 0.294805i \(-0.0952546\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.0000 0.716039
\(237\) 0 0
\(238\) 9.00000i 0.583383i
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) 0 0
\(246\) 0 0
\(247\) − 2.00000i − 0.127257i
\(248\) 12.0000i 0.762001i
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 1.00000i 0.0628695i
\(254\) 5.00000 0.313728
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) 0 0
\(262\) − 12.0000i − 0.741362i
\(263\) 18.0000i 1.10993i 0.831875 + 0.554964i \(0.187268\pi\)
−0.831875 + 0.554964i \(0.812732\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.00000 0.183942
\(267\) 0 0
\(268\) 2.00000i 0.122169i
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −3.00000 −0.182237 −0.0911185 0.995840i \(-0.529044\pi\)
−0.0911185 + 0.995840i \(0.529044\pi\)
\(272\) − 3.00000i − 0.181902i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.0000 1.25275 0.626377 0.779520i \(-0.284537\pi\)
0.626377 + 0.779520i \(0.284537\pi\)
\(282\) 0 0
\(283\) 23.0000i 1.36721i 0.729853 + 0.683604i \(0.239588\pi\)
−0.729853 + 0.683604i \(0.760412\pi\)
\(284\) 5.00000 0.296695
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) − 15.0000i − 0.885422i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) − 2.00000i − 0.117041i
\(293\) − 13.0000i − 0.759468i −0.925096 0.379734i \(-0.876015\pi\)
0.925096 0.379734i \(-0.123985\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.00000 −0.174371
\(297\) 0 0
\(298\) 7.00000i 0.405499i
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) − 16.0000i − 0.920697i
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) 32.0000i 1.82634i 0.407583 + 0.913168i \(0.366372\pi\)
−0.407583 + 0.913168i \(0.633628\pi\)
\(308\) 3.00000i 0.170941i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 1.00000i 0.0565233i 0.999601 + 0.0282617i \(0.00899717\pi\)
−0.999601 + 0.0282617i \(0.991003\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −5.00000 −0.281272
\(317\) − 6.00000i − 0.336994i −0.985702 0.168497i \(-0.946109\pi\)
0.985702 0.168497i \(-0.0538913\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) − 3.00000i − 0.167183i
\(323\) 3.00000i 0.166924i
\(324\) 0 0
\(325\) 0 0
\(326\) 10.0000 0.553849
\(327\) 0 0
\(328\) 15.0000i 0.828236i
\(329\) 9.00000 0.496186
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) − 8.00000i − 0.439057i
\(333\) 0 0
\(334\) −10.0000 −0.547176
\(335\) 0 0
\(336\) 0 0
\(337\) 6.00000i 0.326841i 0.986557 + 0.163420i \(0.0522527\pi\)
−0.986557 + 0.163420i \(0.947747\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 0 0
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) − 15.0000i − 0.809924i
\(344\) 12.0000 0.646997
\(345\) 0 0
\(346\) −9.00000 −0.483843
\(347\) − 10.0000i − 0.536828i −0.963304 0.268414i \(-0.913500\pi\)
0.963304 0.268414i \(-0.0864995\pi\)
\(348\) 0 0
\(349\) −8.00000 −0.428230 −0.214115 0.976808i \(-0.568687\pi\)
−0.214115 + 0.976808i \(0.568687\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 5.00000i − 0.266501i
\(353\) − 6.00000i − 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) − 1.00000i − 0.0528516i
\(359\) −28.0000 −1.47778 −0.738892 0.673824i \(-0.764651\pi\)
−0.738892 + 0.673824i \(0.764651\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) − 25.0000i − 1.31397i
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 0 0
\(366\) 0 0
\(367\) 4.00000i 0.208798i 0.994535 + 0.104399i \(0.0332919\pi\)
−0.994535 + 0.104399i \(0.966708\pi\)
\(368\) 1.00000i 0.0521286i
\(369\) 0 0
\(370\) 0 0
\(371\) −30.0000 −1.55752
\(372\) 0 0
\(373\) − 6.00000i − 0.310668i −0.987862 0.155334i \(-0.950355\pi\)
0.987862 0.155334i \(-0.0496454\pi\)
\(374\) 3.00000 0.155126
\(375\) 0 0
\(376\) −9.00000 −0.464140
\(377\) − 12.0000i − 0.618031i
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 19.0000i − 0.972125i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) 0 0
\(388\) − 17.0000i − 0.863044i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) − 6.00000i − 0.303046i
\(393\) 0 0
\(394\) −23.0000 −1.15872
\(395\) 0 0
\(396\) 0 0
\(397\) − 6.00000i − 0.301131i −0.988600 0.150566i \(-0.951890\pi\)
0.988600 0.150566i \(-0.0481095\pi\)
\(398\) 18.0000i 0.902258i
\(399\) 0 0
\(400\) 0 0
\(401\) 38.0000 1.89763 0.948815 0.315833i \(-0.102284\pi\)
0.948815 + 0.315833i \(0.102284\pi\)
\(402\) 0 0
\(403\) − 8.00000i − 0.398508i
\(404\) 11.0000 0.547270
\(405\) 0 0
\(406\) 18.0000 0.893325
\(407\) − 1.00000i − 0.0495682i
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 2.00000i − 0.0985329i
\(413\) − 33.0000i − 1.62382i
\(414\) 0 0
\(415\) 0 0
\(416\) 10.0000 0.490290
\(417\) 0 0
\(418\) − 1.00000i − 0.0489116i
\(419\) −23.0000 −1.12362 −0.561812 0.827265i \(-0.689895\pi\)
−0.561812 + 0.827265i \(0.689895\pi\)
\(420\) 0 0
\(421\) 9.00000 0.438633 0.219317 0.975654i \(-0.429617\pi\)
0.219317 + 0.975654i \(0.429617\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 0 0
\(424\) 30.0000 1.45693
\(425\) 0 0
\(426\) 0 0
\(427\) − 42.0000i − 2.03252i
\(428\) 18.0000i 0.870063i
\(429\) 0 0
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) − 2.00000i − 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 12.0000 0.576018
\(435\) 0 0
\(436\) 12.0000 0.574696
\(437\) − 1.00000i − 0.0478365i
\(438\) 0 0
\(439\) 35.0000 1.67046 0.835229 0.549902i \(-0.185335\pi\)
0.835229 + 0.549902i \(0.185335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.00000i 0.285391i
\(443\) 31.0000i 1.47285i 0.676517 + 0.736427i \(0.263489\pi\)
−0.676517 + 0.736427i \(0.736511\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −22.0000 −1.04173
\(447\) 0 0
\(448\) 21.0000i 0.992157i
\(449\) −8.00000 −0.377543 −0.188772 0.982021i \(-0.560451\pi\)
−0.188772 + 0.982021i \(0.560451\pi\)
\(450\) 0 0
\(451\) −5.00000 −0.235441
\(452\) − 18.0000i − 0.846649i
\(453\) 0 0
\(454\) 8.00000 0.375459
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0000i 1.30978i 0.755722 + 0.654892i \(0.227286\pi\)
−0.755722 + 0.654892i \(0.772714\pi\)
\(458\) − 11.0000i − 0.513996i
\(459\) 0 0
\(460\) 0 0
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 0 0
\(463\) − 24.0000i − 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 9.00000 0.416917
\(467\) − 36.0000i − 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 0 0
\(469\) 6.00000 0.277054
\(470\) 0 0
\(471\) 0 0
\(472\) 33.0000i 1.51895i
\(473\) 4.00000i 0.183920i
\(474\) 0 0
\(475\) 0 0
\(476\) 9.00000 0.412514
\(477\) 0 0
\(478\) − 20.0000i − 0.914779i
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 4.00000i 0.182195i
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) − 26.0000i − 1.17817i −0.808070 0.589086i \(-0.799488\pi\)
0.808070 0.589086i \(-0.200512\pi\)
\(488\) 42.0000i 1.90125i
\(489\) 0 0
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 18.0000i 0.810679i
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) − 15.0000i − 0.672842i
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 12.0000i − 0.535586i
\(503\) − 20.0000i − 0.891756i −0.895094 0.445878i \(-0.852892\pi\)
0.895094 0.445878i \(-0.147108\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.00000 −0.0444554
\(507\) 0 0
\(508\) − 5.00000i − 0.221839i
\(509\) −26.0000 −1.15243 −0.576215 0.817298i \(-0.695471\pi\)
−0.576215 + 0.817298i \(0.695471\pi\)
\(510\) 0 0
\(511\) −6.00000 −0.265424
\(512\) − 11.0000i − 0.486136i
\(513\) 0 0
\(514\) −12.0000 −0.529297
\(515\) 0 0
\(516\) 0 0
\(517\) − 3.00000i − 0.131940i
\(518\) 3.00000i 0.131812i
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) − 7.00000i − 0.306089i −0.988219 0.153044i \(-0.951092\pi\)
0.988219 0.153044i \(-0.0489077\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −18.0000 −0.784837
\(527\) 12.0000i 0.522728i
\(528\) 0 0
\(529\) 22.0000 0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) − 3.00000i − 0.130066i
\(533\) − 10.0000i − 0.433148i
\(534\) 0 0
\(535\) 0 0
\(536\) −6.00000 −0.259161
\(537\) 0 0
\(538\) − 24.0000i − 1.03471i
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) 32.0000 1.37579 0.687894 0.725811i \(-0.258536\pi\)
0.687894 + 0.725811i \(0.258536\pi\)
\(542\) − 3.00000i − 0.128861i
\(543\) 0 0
\(544\) −15.0000 −0.643120
\(545\) 0 0
\(546\) 0 0
\(547\) − 33.0000i − 1.41098i −0.708721 0.705489i \(-0.750727\pi\)
0.708721 0.705489i \(-0.249273\pi\)
\(548\) 6.00000i 0.256307i
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 15.0000i 0.637865i
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0000i 0.932170i 0.884740 + 0.466085i \(0.154336\pi\)
−0.884740 + 0.466085i \(0.845664\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 21.0000i 0.885832i
\(563\) − 18.0000i − 0.758610i −0.925272 0.379305i \(-0.876163\pi\)
0.925272 0.379305i \(-0.123837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −23.0000 −0.966762
\(567\) 0 0
\(568\) 15.0000i 0.629386i
\(569\) 37.0000 1.55112 0.775560 0.631273i \(-0.217467\pi\)
0.775560 + 0.631273i \(0.217467\pi\)
\(570\) 0 0
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) 2.00000i 0.0836242i
\(573\) 0 0
\(574\) 15.0000 0.626088
\(575\) 0 0
\(576\) 0 0
\(577\) − 43.0000i − 1.79011i −0.445952 0.895057i \(-0.647135\pi\)
0.445952 0.895057i \(-0.352865\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 0 0
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) 10.0000i 0.414158i
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) 13.0000 0.537025
\(587\) 9.00000i 0.371470i 0.982600 + 0.185735i \(0.0594666\pi\)
−0.982600 + 0.185735i \(0.940533\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) − 1.00000i − 0.0410997i
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.00000 0.286731
\(597\) 0 0
\(598\) − 2.00000i − 0.0817861i
\(599\) −27.0000 −1.10319 −0.551595 0.834112i \(-0.685981\pi\)
−0.551595 + 0.834112i \(0.685981\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) − 12.0000i − 0.489083i
\(603\) 0 0
\(604\) −16.0000 −0.651031
\(605\) 0 0
\(606\) 0 0
\(607\) 40.0000i 1.62355i 0.583970 + 0.811775i \(0.301498\pi\)
−0.583970 + 0.811775i \(0.698502\pi\)
\(608\) 5.00000i 0.202777i
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 0.242734
\(612\) 0 0
\(613\) − 16.0000i − 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) −32.0000 −1.29141
\(615\) 0 0
\(616\) −9.00000 −0.362620
\(617\) − 28.0000i − 1.12724i −0.826035 0.563619i \(-0.809409\pi\)
0.826035 0.563619i \(-0.190591\pi\)
\(618\) 0 0
\(619\) −34.0000 −1.36658 −0.683288 0.730149i \(-0.739451\pi\)
−0.683288 + 0.730149i \(0.739451\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) 30.0000i 1.20192i
\(624\) 0 0
\(625\) 0 0
\(626\) −1.00000 −0.0399680
\(627\) 0 0
\(628\) 10.0000i 0.399043i
\(629\) −3.00000 −0.119618
\(630\) 0 0
\(631\) 34.0000 1.35352 0.676759 0.736204i \(-0.263384\pi\)
0.676759 + 0.736204i \(0.263384\pi\)
\(632\) − 15.0000i − 0.596668i
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 0 0
\(637\) 4.00000i 0.158486i
\(638\) − 6.00000i − 0.237542i
\(639\) 0 0
\(640\) 0 0
\(641\) 16.0000 0.631962 0.315981 0.948766i \(-0.397666\pi\)
0.315981 + 0.948766i \(0.397666\pi\)
\(642\) 0 0
\(643\) − 14.0000i − 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) −3.00000 −0.118217
\(645\) 0 0
\(646\) −3.00000 −0.118033
\(647\) − 13.0000i − 0.511083i −0.966798 0.255541i \(-0.917746\pi\)
0.966798 0.255541i \(-0.0822537\pi\)
\(648\) 0 0
\(649\) −11.0000 −0.431788
\(650\) 0 0
\(651\) 0 0
\(652\) − 10.0000i − 0.391630i
\(653\) 4.00000i 0.156532i 0.996933 + 0.0782660i \(0.0249384\pi\)
−0.996933 + 0.0782660i \(0.975062\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −5.00000 −0.195217
\(657\) 0 0
\(658\) 9.00000i 0.350857i
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 35.0000 1.36134 0.680671 0.732589i \(-0.261688\pi\)
0.680671 + 0.732589i \(0.261688\pi\)
\(662\) 4.00000i 0.155464i
\(663\) 0 0
\(664\) 24.0000 0.931381
\(665\) 0 0
\(666\) 0 0
\(667\) − 6.00000i − 0.232321i
\(668\) 10.0000i 0.386912i
\(669\) 0 0
\(670\) 0 0
\(671\) −14.0000 −0.540464
\(672\) 0 0
\(673\) − 4.00000i − 0.154189i −0.997024 0.0770943i \(-0.975436\pi\)
0.997024 0.0770943i \(-0.0245643\pi\)
\(674\) −6.00000 −0.231111
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) − 14.0000i − 0.538064i −0.963131 0.269032i \(-0.913296\pi\)
0.963131 0.269032i \(-0.0867037\pi\)
\(678\) 0 0
\(679\) −51.0000 −1.95720
\(680\) 0 0
\(681\) 0 0
\(682\) − 4.00000i − 0.153168i
\(683\) − 47.0000i − 1.79841i −0.437533 0.899203i \(-0.644148\pi\)
0.437533 0.899203i \(-0.355852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 15.0000 0.572703
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) −40.0000 −1.52167 −0.760836 0.648944i \(-0.775211\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(692\) 9.00000i 0.342129i
\(693\) 0 0
\(694\) 10.0000 0.379595
\(695\) 0 0
\(696\) 0 0
\(697\) 15.0000i 0.568166i
\(698\) − 8.00000i − 0.302804i
\(699\) 0 0
\(700\) 0 0
\(701\) −23.0000 −0.868698 −0.434349 0.900745i \(-0.643022\pi\)
−0.434349 + 0.900745i \(0.643022\pi\)
\(702\) 0 0
\(703\) 1.00000i 0.0377157i
\(704\) 7.00000 0.263822
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) − 33.0000i − 1.24109i
\(708\) 0 0
\(709\) −35.0000 −1.31445 −0.657226 0.753693i \(-0.728270\pi\)
−0.657226 + 0.753693i \(0.728270\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 30.0000i − 1.12430i
\(713\) − 4.00000i − 0.149801i
\(714\) 0 0
\(715\) 0 0
\(716\) −1.00000 −0.0373718
\(717\) 0 0
\(718\) − 28.0000i − 1.04495i
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) −6.00000 −0.223452
\(722\) − 18.0000i − 0.669891i
\(723\) 0 0
\(724\) −25.0000 −0.929118
\(725\) 0 0
\(726\) 0 0
\(727\) 28.0000i 1.03846i 0.854634 + 0.519231i \(0.173782\pi\)
−0.854634 + 0.519231i \(0.826218\pi\)
\(728\) − 18.0000i − 0.667124i
\(729\) 0 0
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) 6.00000i 0.221615i 0.993842 + 0.110808i \(0.0353437\pi\)
−0.993842 + 0.110808i \(0.964656\pi\)
\(734\) −4.00000 −0.147643
\(735\) 0 0
\(736\) 5.00000 0.184302
\(737\) − 2.00000i − 0.0736709i
\(738\) 0 0
\(739\) −1.00000 −0.0367856 −0.0183928 0.999831i \(-0.505855\pi\)
−0.0183928 + 0.999831i \(0.505855\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 30.0000i − 1.10133i
\(743\) 14.0000i 0.513610i 0.966463 + 0.256805i \(0.0826698\pi\)
−0.966463 + 0.256805i \(0.917330\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) − 3.00000i − 0.109691i
\(749\) 54.0000 1.97312
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) − 3.00000i − 0.109399i
\(753\) 0 0
\(754\) 12.0000 0.437014
\(755\) 0 0
\(756\) 0 0
\(757\) − 42.0000i − 1.52652i −0.646094 0.763258i \(-0.723599\pi\)
0.646094 0.763258i \(-0.276401\pi\)
\(758\) 16.0000i 0.581146i
\(759\) 0 0
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 0 0
\(763\) − 36.0000i − 1.30329i
\(764\) −19.0000 −0.687396
\(765\) 0 0
\(766\) 0 0
\(767\) − 22.0000i − 0.794374i
\(768\) 0 0
\(769\) 28.0000 1.00971 0.504853 0.863205i \(-0.331547\pi\)
0.504853 + 0.863205i \(0.331547\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 4.00000i − 0.143963i
\(773\) − 44.0000i − 1.58257i −0.611448 0.791285i \(-0.709412\pi\)
0.611448 0.791285i \(-0.290588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 51.0000 1.83079
\(777\) 0 0
\(778\) − 6.00000i − 0.215110i
\(779\) 5.00000 0.179144
\(780\) 0 0
\(781\) −5.00000 −0.178914
\(782\) 3.00000i 0.107280i
\(783\) 0 0
\(784\) 2.00000 0.0714286
\(785\) 0 0
\(786\) 0 0
\(787\) 43.0000i 1.53278i 0.642373 + 0.766392i \(0.277950\pi\)
−0.642373 + 0.766392i \(0.722050\pi\)
\(788\) 23.0000i 0.819341i
\(789\) 0 0
\(790\) 0 0
\(791\) −54.0000 −1.92002
\(792\) 0 0
\(793\) − 28.0000i − 0.994309i
\(794\) 6.00000 0.212932
\(795\) 0 0
\(796\) 18.0000 0.637993
\(797\) 22.0000i 0.779280i 0.920967 + 0.389640i \(0.127401\pi\)
−0.920967 + 0.389640i \(0.872599\pi\)
\(798\) 0 0
\(799\) −9.00000 −0.318397
\(800\) 0 0
\(801\) 0 0
\(802\) 38.0000i 1.34183i
\(803\) 2.00000i 0.0705785i
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) 33.0000i 1.16094i
\(809\) −15.0000 −0.527372 −0.263686 0.964609i \(-0.584938\pi\)
−0.263686 + 0.964609i \(0.584938\pi\)
\(810\) 0 0
\(811\) −21.0000 −0.737410 −0.368705 0.929547i \(-0.620199\pi\)
−0.368705 + 0.929547i \(0.620199\pi\)
\(812\) − 18.0000i − 0.631676i
\(813\) 0 0
\(814\) 1.00000 0.0350500
\(815\) 0 0
\(816\) 0 0
\(817\) − 4.00000i − 0.139942i
\(818\) − 6.00000i − 0.209785i
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 42.0000i 1.46403i 0.681290 + 0.732014i \(0.261419\pi\)
−0.681290 + 0.732014i \(0.738581\pi\)
\(824\) 6.00000 0.209020
\(825\) 0 0
\(826\) 33.0000 1.14822
\(827\) − 48.0000i − 1.66912i −0.550914 0.834562i \(-0.685721\pi\)
0.550914 0.834562i \(-0.314279\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.0000i 0.485363i
\(833\) − 6.00000i − 0.207888i
\(834\) 0 0
\(835\) 0 0
\(836\) −1.00000 −0.0345857
\(837\) 0 0
\(838\) − 23.0000i − 0.794522i
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 9.00000i 0.310160i
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) − 3.00000i − 0.103081i
\(848\) 10.0000i 0.343401i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.00000 0.0342796
\(852\) 0 0
\(853\) 40.0000i 1.36957i 0.728743 + 0.684787i \(0.240105\pi\)
−0.728743 + 0.684787i \(0.759895\pi\)
\(854\) 42.0000 1.43721
\(855\) 0 0
\(856\) −54.0000 −1.84568
\(857\) 39.0000i 1.33221i 0.745856 + 0.666107i \(0.232041\pi\)
−0.745856 + 0.666107i \(0.767959\pi\)
\(858\) 0 0
\(859\) 26.0000 0.887109 0.443554 0.896248i \(-0.353717\pi\)
0.443554 + 0.896248i \(0.353717\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 36.0000i − 1.22616i
\(863\) − 4.00000i − 0.136162i −0.997680 0.0680808i \(-0.978312\pi\)
0.997680 0.0680808i \(-0.0216876\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.00000 0.0679628
\(867\) 0 0
\(868\) − 12.0000i − 0.407307i
\(869\) 5.00000 0.169613
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 36.0000i 1.21911i
\(873\) 0 0
\(874\) 1.00000 0.0338255
\(875\) 0 0
\(876\) 0 0
\(877\) − 52.0000i − 1.75592i −0.478738 0.877958i \(-0.658906\pi\)
0.478738 0.877958i \(-0.341094\pi\)
\(878\) 35.0000i 1.18119i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) − 2.00000i − 0.0673054i −0.999434 0.0336527i \(-0.989286\pi\)
0.999434 0.0336527i \(-0.0107140\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) −31.0000 −1.04147
\(887\) 14.0000i 0.470074i 0.971986 + 0.235037i \(0.0755211\pi\)
−0.971986 + 0.235037i \(0.924479\pi\)
\(888\) 0 0
\(889\) −15.0000 −0.503084
\(890\) 0 0
\(891\) 0 0
\(892\) 22.0000i 0.736614i
\(893\) 3.00000i 0.100391i
\(894\) 0 0
\(895\) 0 0
\(896\) 9.00000 0.300669
\(897\) 0 0
\(898\) − 8.00000i − 0.266963i
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 30.0000 0.999445
\(902\) − 5.00000i − 0.166482i
\(903\) 0 0
\(904\) 54.0000 1.79601
\(905\) 0 0
\(906\) 0 0
\(907\) 2.00000i 0.0664089i 0.999449 + 0.0332045i \(0.0105712\pi\)
−0.999449 + 0.0332045i \(0.989429\pi\)
\(908\) − 8.00000i − 0.265489i
\(909\) 0 0
\(910\) 0 0
\(911\) 53.0000 1.75597 0.877984 0.478690i \(-0.158888\pi\)
0.877984 + 0.478690i \(0.158888\pi\)
\(912\) 0 0
\(913\) 8.00000i 0.264761i
\(914\) −28.0000 −0.926158
\(915\) 0 0
\(916\) −11.0000 −0.363450
\(917\) 36.0000i 1.18882i
\(918\) 0 0
\(919\) 39.0000 1.28649 0.643246 0.765660i \(-0.277587\pi\)
0.643246 + 0.765660i \(0.277587\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 34.0000i − 1.11973i
\(923\) − 10.0000i − 0.329154i
\(924\) 0 0
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 30.0000i 0.984798i
\(929\) 32.0000 1.04989 0.524943 0.851137i \(-0.324087\pi\)
0.524943 + 0.851137i \(0.324087\pi\)
\(930\) 0 0
\(931\) −2.00000 −0.0655474
\(932\) − 9.00000i − 0.294805i
\(933\) 0 0
\(934\) 36.0000 1.17796
\(935\) 0 0
\(936\) 0 0
\(937\) 18.0000i 0.588034i 0.955800 + 0.294017i \(0.0949923\pi\)
−0.955800 + 0.294017i \(0.905008\pi\)
\(938\) 6.00000i 0.195907i
\(939\) 0 0
\(940\) 0 0
\(941\) −5.00000 −0.162995 −0.0814977 0.996674i \(-0.525970\pi\)
−0.0814977 + 0.996674i \(0.525970\pi\)
\(942\) 0 0
\(943\) − 5.00000i − 0.162822i
\(944\) −11.0000 −0.358020
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) − 27.0000i − 0.877382i −0.898638 0.438691i \(-0.855442\pi\)
0.898638 0.438691i \(-0.144558\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 0 0
\(952\) 27.0000i 0.875075i
\(953\) 21.0000i 0.680257i 0.940379 + 0.340128i \(0.110471\pi\)
−0.940379 + 0.340128i \(0.889529\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −20.0000 −0.646846
\(957\) 0 0
\(958\) − 18.0000i − 0.581554i
\(959\) 18.0000 0.581250
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 2.00000i 0.0644826i
\(963\) 0 0
\(964\) 4.00000 0.128831
\(965\) 0 0
\(966\) 0 0
\(967\) 20.0000i 0.643157i 0.946883 + 0.321578i \(0.104213\pi\)
−0.946883 + 0.321578i \(0.895787\pi\)
\(968\) 3.00000i 0.0964237i
\(969\) 0 0
\(970\) 0 0
\(971\) −21.0000 −0.673922 −0.336961 0.941519i \(-0.609399\pi\)
−0.336961 + 0.941519i \(0.609399\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 26.0000 0.833094
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) 46.0000i 1.47167i 0.677161 + 0.735835i \(0.263210\pi\)
−0.677161 + 0.735835i \(0.736790\pi\)
\(978\) 0 0
\(979\) 10.0000 0.319601
\(980\) 0 0
\(981\) 0 0
\(982\) − 28.0000i − 0.893516i
\(983\) 49.0000i 1.56286i 0.623995 + 0.781429i \(0.285509\pi\)
−0.623995 + 0.781429i \(0.714491\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −18.0000 −0.573237
\(987\) 0 0
\(988\) − 2.00000i − 0.0636285i
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) 20.0000i 0.635001i
\(993\) 0 0
\(994\) 15.0000 0.475771
\(995\) 0 0
\(996\) 0 0
\(997\) 50.0000i 1.58352i 0.610835 + 0.791758i \(0.290834\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(998\) − 24.0000i − 0.759707i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.2.c.c.199.2 2
3.2 odd 2 2475.2.c.e.199.1 2
5.2 odd 4 2475.2.a.d.1.1 yes 1
5.3 odd 4 2475.2.a.h.1.1 yes 1
5.4 even 2 inner 2475.2.c.c.199.1 2
15.2 even 4 2475.2.a.k.1.1 yes 1
15.8 even 4 2475.2.a.b.1.1 1
15.14 odd 2 2475.2.c.e.199.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2475.2.a.b.1.1 1 15.8 even 4
2475.2.a.d.1.1 yes 1 5.2 odd 4
2475.2.a.h.1.1 yes 1 5.3 odd 4
2475.2.a.k.1.1 yes 1 15.2 even 4
2475.2.c.c.199.1 2 5.4 even 2 inner
2475.2.c.c.199.2 2 1.1 even 1 trivial
2475.2.c.e.199.1 2 3.2 odd 2
2475.2.c.e.199.2 2 15.14 odd 2