Properties

Label 2475.2.a.x
Level $2475$
Weight $2$
Character orbit 2475.a
Self dual yes
Analytic conductor $19.763$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \beta ) q^{2} + ( 1 + 2 \beta ) q^{4} + 2 q^{7} + ( 3 + \beta ) q^{8} +O(q^{10})\) \( q + ( 1 + \beta ) q^{2} + ( 1 + 2 \beta ) q^{4} + 2 q^{7} + ( 3 + \beta ) q^{8} - q^{11} + ( 4 - 2 \beta ) q^{13} + ( 2 + 2 \beta ) q^{14} + 3 q^{16} + ( 4 + 2 \beta ) q^{17} + ( -1 - \beta ) q^{22} -2 \beta q^{23} + 2 \beta q^{26} + ( 2 + 4 \beta ) q^{28} + ( -2 + 4 \beta ) q^{29} + ( -3 + \beta ) q^{32} + ( 8 + 6 \beta ) q^{34} + ( 2 + 4 \beta ) q^{37} -6 q^{41} + 6 q^{43} + ( -1 - 2 \beta ) q^{44} + ( -4 - 2 \beta ) q^{46} + 2 \beta q^{47} -3 q^{49} + ( -4 + 6 \beta ) q^{52} + ( 6 + 4 \beta ) q^{53} + ( 6 + 2 \beta ) q^{56} + ( 6 + 2 \beta ) q^{58} + ( 4 - 4 \beta ) q^{59} + ( 2 - 8 \beta ) q^{61} + ( -7 - 2 \beta ) q^{64} + ( -4 - 6 \beta ) q^{67} + ( 12 + 10 \beta ) q^{68} -8 \beta q^{71} + ( 4 - 2 \beta ) q^{73} + ( 10 + 6 \beta ) q^{74} -2 q^{77} + 4 q^{79} + ( -6 - 6 \beta ) q^{82} -6 q^{83} + ( 6 + 6 \beta ) q^{86} + ( -3 - \beta ) q^{88} + ( 2 + 8 \beta ) q^{89} + ( 8 - 4 \beta ) q^{91} + ( -8 - 2 \beta ) q^{92} + ( 4 + 2 \beta ) q^{94} + ( 2 - 4 \beta ) q^{97} + ( -3 - 3 \beta ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 2q^{4} + 4q^{7} + 6q^{8} + O(q^{10}) \) \( 2q + 2q^{2} + 2q^{4} + 4q^{7} + 6q^{8} - 2q^{11} + 8q^{13} + 4q^{14} + 6q^{16} + 8q^{17} - 2q^{22} + 4q^{28} - 4q^{29} - 6q^{32} + 16q^{34} + 4q^{37} - 12q^{41} + 12q^{43} - 2q^{44} - 8q^{46} - 6q^{49} - 8q^{52} + 12q^{53} + 12q^{56} + 12q^{58} + 8q^{59} + 4q^{61} - 14q^{64} - 8q^{67} + 24q^{68} + 8q^{73} + 20q^{74} - 4q^{77} + 8q^{79} - 12q^{82} - 12q^{83} + 12q^{86} - 6q^{88} + 4q^{89} + 16q^{91} - 16q^{92} + 8q^{94} + 4q^{97} - 6q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−0.414214 0 −1.82843 0 0 2.00000 1.58579 0 0
1.2 2.41421 0 3.82843 0 0 2.00000 4.41421 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2475.2.a.x 2
3.b odd 2 1 275.2.a.c 2
5.b even 2 1 495.2.a.b 2
5.c odd 4 2 2475.2.c.l 4
12.b even 2 1 4400.2.a.bn 2
15.d odd 2 1 55.2.a.b 2
15.e even 4 2 275.2.b.d 4
20.d odd 2 1 7920.2.a.ch 2
33.d even 2 1 3025.2.a.o 2
55.d odd 2 1 5445.2.a.y 2
60.h even 2 1 880.2.a.m 2
60.l odd 4 2 4400.2.b.q 4
105.g even 2 1 2695.2.a.f 2
120.i odd 2 1 3520.2.a.bn 2
120.m even 2 1 3520.2.a.bo 2
165.d even 2 1 605.2.a.d 2
165.o odd 10 4 605.2.g.f 8
165.r even 10 4 605.2.g.l 8
195.e odd 2 1 9295.2.a.g 2
660.g odd 2 1 9680.2.a.bn 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.a.b 2 15.d odd 2 1
275.2.a.c 2 3.b odd 2 1
275.2.b.d 4 15.e even 4 2
495.2.a.b 2 5.b even 2 1
605.2.a.d 2 165.d even 2 1
605.2.g.f 8 165.o odd 10 4
605.2.g.l 8 165.r even 10 4
880.2.a.m 2 60.h even 2 1
2475.2.a.x 2 1.a even 1 1 trivial
2475.2.c.l 4 5.c odd 4 2
2695.2.a.f 2 105.g even 2 1
3025.2.a.o 2 33.d even 2 1
3520.2.a.bn 2 120.i odd 2 1
3520.2.a.bo 2 120.m even 2 1
4400.2.a.bn 2 12.b even 2 1
4400.2.b.q 4 60.l odd 4 2
5445.2.a.y 2 55.d odd 2 1
7920.2.a.ch 2 20.d odd 2 1
9295.2.a.g 2 195.e odd 2 1
9680.2.a.bn 2 660.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2475))\):

\( T_{2}^{2} - 2 T_{2} - 1 \)
\( T_{7} - 2 \)
\( T_{29}^{2} + 4 T_{29} - 28 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 - 2 T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( ( -2 + T )^{2} \)
$11$ \( ( 1 + T )^{2} \)
$13$ \( 8 - 8 T + T^{2} \)
$17$ \( 8 - 8 T + T^{2} \)
$19$ \( T^{2} \)
$23$ \( -8 + T^{2} \)
$29$ \( -28 + 4 T + T^{2} \)
$31$ \( T^{2} \)
$37$ \( -28 - 4 T + T^{2} \)
$41$ \( ( 6 + T )^{2} \)
$43$ \( ( -6 + T )^{2} \)
$47$ \( -8 + T^{2} \)
$53$ \( 4 - 12 T + T^{2} \)
$59$ \( -16 - 8 T + T^{2} \)
$61$ \( -124 - 4 T + T^{2} \)
$67$ \( -56 + 8 T + T^{2} \)
$71$ \( -128 + T^{2} \)
$73$ \( 8 - 8 T + T^{2} \)
$79$ \( ( -4 + T )^{2} \)
$83$ \( ( 6 + T )^{2} \)
$89$ \( -124 - 4 T + T^{2} \)
$97$ \( -28 - 4 T + T^{2} \)
show more
show less