Properties

Label 2475.2.a.f.1.1
Level $2475$
Weight $2$
Character 2475.1
Self dual yes
Analytic conductor $19.763$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.7629745003\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 825)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2475.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{4} +1.00000 q^{7} +O(q^{10})\) \(q-2.00000 q^{4} +1.00000 q^{7} +1.00000 q^{11} +1.00000 q^{13} +4.00000 q^{16} -6.00000 q^{17} -7.00000 q^{19} +6.00000 q^{23} -2.00000 q^{28} +6.00000 q^{29} -7.00000 q^{31} -2.00000 q^{37} +6.00000 q^{41} +1.00000 q^{43} -2.00000 q^{44} -6.00000 q^{49} -2.00000 q^{52} -6.00000 q^{53} +5.00000 q^{61} -8.00000 q^{64} -5.00000 q^{67} +12.0000 q^{68} +12.0000 q^{71} -14.0000 q^{73} +14.0000 q^{76} +1.00000 q^{77} -4.00000 q^{79} -6.00000 q^{83} -6.00000 q^{89} +1.00000 q^{91} -12.0000 q^{92} -17.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 12.0000 1.45521
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 14.0000 1.60591
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −12.0000 −1.25109
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −17.0000 −1.72609 −0.863044 0.505128i \(-0.831445\pi\)
−0.863044 + 0.505128i \(0.831445\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.00000 0.377964
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 14.0000 1.25724
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) −7.00000 −0.606977
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −7.00000 −0.569652 −0.284826 0.958579i \(-0.591936\pi\)
−0.284826 + 0.958579i \(0.591936\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −23.0000 −1.83560 −0.917800 0.397043i \(-0.870036\pi\)
−0.917800 + 0.397043i \(0.870036\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 13.0000 1.01824 0.509119 0.860696i \(-0.329971\pi\)
0.509119 + 0.860696i \(0.329971\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) −24.0000 −1.82469 −0.912343 0.409426i \(-0.865729\pi\)
−0.912343 + 0.409426i \(0.865729\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 7.00000 0.503871 0.251936 0.967744i \(-0.418933\pi\)
0.251936 + 0.967744i \(0.418933\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 12.0000 0.857143
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) −7.00000 −0.484200
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) 12.0000 0.824163
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −7.00000 −0.475191
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −5.00000 −0.334825 −0.167412 0.985887i \(-0.553541\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) 17.0000 1.12339 0.561696 0.827344i \(-0.310149\pi\)
0.561696 + 0.827344i \(0.310149\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30.0000 1.94054 0.970269 0.242028i \(-0.0778125\pi\)
0.970269 + 0.242028i \(0.0778125\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) −7.00000 −0.445399
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 10.0000 0.610847
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −24.0000 −1.45521
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 13.0000 0.781094 0.390547 0.920583i \(-0.372286\pi\)
0.390547 + 0.920583i \(0.372286\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) −29.0000 −1.72387 −0.861936 0.507018i \(-0.830748\pi\)
−0.861936 + 0.507018i \(0.830748\pi\)
\(284\) −24.0000 −1.42414
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 28.0000 1.63858
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 1.00000 0.0576390
\(302\) 0 0
\(303\) 0 0
\(304\) −28.0000 −1.60591
\(305\) 0 0
\(306\) 0 0
\(307\) −5.00000 −0.285365 −0.142683 0.989769i \(-0.545573\pi\)
−0.142683 + 0.989769i \(0.545573\pi\)
\(308\) −2.00000 −0.113961
\(309\) 0 0
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) 13.0000 0.734803 0.367402 0.930062i \(-0.380247\pi\)
0.367402 + 0.930062i \(0.380247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 42.0000 2.33694
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.00000 −0.379071
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.0000 1.28839 0.644194 0.764862i \(-0.277193\pi\)
0.644194 + 0.764862i \(0.277193\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.0000 0.635999
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) 37.0000 1.93138 0.965692 0.259690i \(-0.0836203\pi\)
0.965692 + 0.259690i \(0.0836203\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) 31.0000 1.60512 0.802560 0.596572i \(-0.203471\pi\)
0.802560 + 0.596572i \(0.203471\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 0.309016
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.00000 −0.306586 −0.153293 0.988181i \(-0.548988\pi\)
−0.153293 + 0.988181i \(0.548988\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 34.0000 1.72609
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 25.0000 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −7.00000 −0.348695
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.00000 −0.0991363
\(408\) 0 0
\(409\) −13.0000 −0.642809 −0.321404 0.946942i \(-0.604155\pi\)
−0.321404 + 0.946942i \(0.604155\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.00000 0.241967
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) −11.0000 −0.528626 −0.264313 0.964437i \(-0.585145\pi\)
−0.264313 + 0.964437i \(0.585145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −22.0000 −1.05361
\(437\) −42.0000 −2.00913
\(438\) 0 0
\(439\) 35.0000 1.67046 0.835229 0.549902i \(-0.185335\pi\)
0.835229 + 0.549902i \(0.185335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.0000 −1.42534 −0.712672 0.701498i \(-0.752515\pi\)
−0.712672 + 0.701498i \(0.752515\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −8.00000 −0.377964
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 36.0000 1.69330
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 24.0000 1.11417
\(465\) 0 0
\(466\) 0 0
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) −5.00000 −0.230879
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.00000 0.0459800
\(474\) 0 0
\(475\) 0 0
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 0 0
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) 13.0000 0.589086 0.294543 0.955638i \(-0.404833\pi\)
0.294543 + 0.955638i \(0.404833\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) 0 0
\(495\) 0 0
\(496\) −28.0000 −1.25724
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) −13.0000 −0.581960 −0.290980 0.956729i \(-0.593981\pi\)
−0.290980 + 0.956729i \(0.593981\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 16.0000 0.709885
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −17.0000 −0.743358 −0.371679 0.928361i \(-0.621218\pi\)
−0.371679 + 0.928361i \(0.621218\pi\)
\(524\) 36.0000 1.57267
\(525\) 0 0
\(526\) 0 0
\(527\) 42.0000 1.82955
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 14.0000 0.606977
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −37.0000 −1.59075 −0.795377 0.606115i \(-0.792727\pi\)
−0.795377 + 0.606115i \(0.792727\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −42.0000 −1.78926
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 8.00000 0.339276
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) 1.00000 0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.0000 1.26435 0.632175 0.774826i \(-0.282163\pi\)
0.632175 + 0.774826i \(0.282163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) −31.0000 −1.29731 −0.648655 0.761083i \(-0.724668\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.00000 0.0416305 0.0208153 0.999783i \(-0.493374\pi\)
0.0208153 + 0.999783i \(0.493374\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.00000 −0.248922
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) 49.0000 2.01901
\(590\) 0 0
\(591\) 0 0
\(592\) −8.00000 −0.328798
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.0000 −0.491539
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 17.0000 0.693444 0.346722 0.937968i \(-0.387295\pi\)
0.346722 + 0.937968i \(0.387295\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 14.0000 0.569652
\(605\) 0 0
\(606\) 0 0
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 0 0
\(619\) 47.0000 1.88909 0.944545 0.328383i \(-0.106504\pi\)
0.944545 + 0.328383i \(0.106504\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 46.0000 1.83560
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −19.0000 −0.756378 −0.378189 0.925728i \(-0.623453\pi\)
−0.378189 + 0.925728i \(0.623453\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −26.0000 −1.01824
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 24.0000 0.937043
\(657\) 0 0
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) 26.0000 1.01128 0.505641 0.862744i \(-0.331256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.00000 0.193023
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 24.0000 0.923077
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 0 0
\(679\) −17.0000 −0.652400
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) 48.0000 1.82469
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.0000 1.35970 0.679851 0.733351i \(-0.262045\pi\)
0.679851 + 0.733351i \(0.262045\pi\)
\(702\) 0 0
\(703\) 14.0000 0.528020
\(704\) −8.00000 −0.301511
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 17.0000 0.638448 0.319224 0.947679i \(-0.396578\pi\)
0.319224 + 0.947679i \(0.396578\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −42.0000 −1.57291
\(714\) 0 0
\(715\) 0 0
\(716\) 36.0000 1.34538
\(717\) 0 0
\(718\) 0 0
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) 0 0
\(727\) −5.00000 −0.185440 −0.0927199 0.995692i \(-0.529556\pi\)
−0.0927199 + 0.995692i \(0.529556\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.00000 −0.184177
\(738\) 0 0
\(739\) 32.0000 1.17714 0.588570 0.808447i \(-0.299691\pi\)
0.588570 + 0.808447i \(0.299691\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29.0000 −1.05402 −0.527011 0.849858i \(-0.676688\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 11.0000 0.398227
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 29.0000 1.04577 0.522883 0.852404i \(-0.324856\pi\)
0.522883 + 0.852404i \(0.324856\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −14.0000 −0.503871
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −42.0000 −1.50481
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) −24.0000 −0.857143
\(785\) 0 0
\(786\) 0 0
\(787\) 55.0000 1.96054 0.980269 0.197667i \(-0.0633366\pi\)
0.980269 + 0.197667i \(0.0633366\pi\)
\(788\) −48.0000 −1.70993
\(789\) 0 0
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 5.00000 0.177555
\(794\) 0 0
\(795\) 0 0
\(796\) −22.0000 −0.779769
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.0000 −0.494049
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) −12.0000 −0.421117
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −7.00000 −0.244899
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 31.0000 1.08059 0.540296 0.841475i \(-0.318312\pi\)
0.540296 + 0.841475i \(0.318312\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −8.00000 −0.277350
\(833\) 36.0000 1.24733
\(834\) 0 0
\(835\) 0 0
\(836\) 14.0000 0.484200
\(837\) 0 0
\(838\) 0 0
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) −10.0000 −0.344214
\(845\) 0 0
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) −24.0000 −0.824163
\(849\) 0 0
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 19.0000 0.650548 0.325274 0.945620i \(-0.394544\pi\)
0.325274 + 0.945620i \(0.394544\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 14.0000 0.475191
\(869\) −4.00000 −0.135691
\(870\) 0 0
\(871\) −5.00000 −0.169419
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −53.0000 −1.78968 −0.894841 0.446384i \(-0.852711\pi\)
−0.894841 + 0.446384i \(0.852711\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 7.00000 0.235569 0.117784 0.993039i \(-0.462421\pi\)
0.117784 + 0.993039i \(0.462421\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) 0 0
\(887\) −6.00000 −0.201460 −0.100730 0.994914i \(-0.532118\pi\)
−0.100730 + 0.994914i \(0.532118\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) 10.0000 0.334825
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −42.0000 −1.40078
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) 48.0000 1.59294
\(909\) 0 0
\(910\) 0 0
\(911\) 30.0000 0.993944 0.496972 0.867766i \(-0.334445\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) 0 0
\(913\) −6.00000 −0.198571
\(914\) 0 0
\(915\) 0 0
\(916\) −34.0000 −1.12339
\(917\) −18.0000 −0.594412
\(918\) 0 0
\(919\) −43.0000 −1.41844 −0.709220 0.704988i \(-0.750953\pi\)
−0.709220 + 0.704988i \(0.750953\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.0000 0.787414 0.393707 0.919236i \(-0.371192\pi\)
0.393707 + 0.919236i \(0.371192\pi\)
\(930\) 0 0
\(931\) 42.0000 1.37649
\(932\) −24.0000 −0.786146
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 24.0000 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.00000 −0.194974 −0.0974869 0.995237i \(-0.531080\pi\)
−0.0974869 + 0.995237i \(0.531080\pi\)
\(948\) 0 0
\(949\) −14.0000 −0.454459
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −60.0000 −1.94054
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 0 0
\(964\) 26.0000 0.837404
\(965\) 0 0
\(966\) 0 0
\(967\) 52.0000 1.67221 0.836104 0.548572i \(-0.184828\pi\)
0.836104 + 0.548572i \(0.184828\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 20.0000 0.640184
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 14.0000 0.445399
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) 5.00000 0.158830 0.0794151 0.996842i \(-0.474695\pi\)
0.0794151 + 0.996842i \(0.474695\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.2.a.f.1.1 1
3.2 odd 2 825.2.a.b.1.1 1
5.2 odd 4 2475.2.c.h.199.2 2
5.3 odd 4 2475.2.c.h.199.1 2
5.4 even 2 2475.2.a.e.1.1 1
15.2 even 4 825.2.c.b.199.2 2
15.8 even 4 825.2.c.b.199.1 2
15.14 odd 2 825.2.a.c.1.1 yes 1
33.32 even 2 9075.2.a.i.1.1 1
165.164 even 2 9075.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.2.a.b.1.1 1 3.2 odd 2
825.2.a.c.1.1 yes 1 15.14 odd 2
825.2.c.b.199.1 2 15.8 even 4
825.2.c.b.199.2 2 15.2 even 4
2475.2.a.e.1.1 1 5.4 even 2
2475.2.a.f.1.1 1 1.1 even 1 trivial
2475.2.c.h.199.1 2 5.3 odd 4
2475.2.c.h.199.2 2 5.2 odd 4
9075.2.a.i.1.1 1 33.32 even 2
9075.2.a.l.1.1 1 165.164 even 2