Properties

Label 2475.2.a.bi.1.2
Level $2475$
Weight $2$
Character 2475.1
Self dual yes
Analytic conductor $19.763$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,2,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.792287\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.792287 q^{2} -1.37228 q^{4} +3.46410 q^{7} +2.67181 q^{8} +1.00000 q^{11} -2.74456 q^{14} +0.627719 q^{16} +5.04868 q^{17} +4.00000 q^{19} -0.792287 q^{22} +2.52434 q^{23} -4.75372 q^{28} +2.74456 q^{29} -2.37228 q^{31} -5.84096 q^{32} -4.00000 q^{34} -11.0371 q^{37} -3.16915 q^{38} +2.74456 q^{41} +3.46410 q^{43} -1.37228 q^{44} -2.00000 q^{46} -6.63325 q^{47} +5.00000 q^{49} +3.16915 q^{53} +9.25544 q^{56} -2.17448 q^{58} +1.62772 q^{59} +10.7446 q^{61} +1.87953 q^{62} +3.37228 q^{64} -0.644810 q^{67} -6.92820 q^{68} -7.11684 q^{71} -6.92820 q^{73} +8.74456 q^{74} -5.48913 q^{76} +3.46410 q^{77} +12.7446 q^{79} -2.17448 q^{82} +6.63325 q^{83} -2.74456 q^{86} +2.67181 q^{88} +4.37228 q^{89} -3.46410 q^{92} +5.25544 q^{94} -4.10891 q^{97} -3.96143 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} + 4 q^{11} + 12 q^{14} + 14 q^{16} + 16 q^{19} - 12 q^{29} + 2 q^{31} - 16 q^{34} - 12 q^{41} + 6 q^{44} - 8 q^{46} + 20 q^{49} + 60 q^{56} + 18 q^{59} + 20 q^{61} + 2 q^{64} + 6 q^{71} + 12 q^{74}+ \cdots + 44 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.792287 −0.560232 −0.280116 0.959966i \(-0.590373\pi\)
−0.280116 + 0.959966i \(0.590373\pi\)
\(3\) 0 0
\(4\) −1.37228 −0.686141
\(5\) 0 0
\(6\) 0 0
\(7\) 3.46410 1.30931 0.654654 0.755929i \(-0.272814\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 2.67181 0.944629
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −2.74456 −0.733515
\(15\) 0 0
\(16\) 0.627719 0.156930
\(17\) 5.04868 1.22448 0.612242 0.790671i \(-0.290268\pi\)
0.612242 + 0.790671i \(0.290268\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.792287 −0.168916
\(23\) 2.52434 0.526361 0.263180 0.964747i \(-0.415229\pi\)
0.263180 + 0.964747i \(0.415229\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) −4.75372 −0.898369
\(29\) 2.74456 0.509652 0.254826 0.966987i \(-0.417982\pi\)
0.254826 + 0.966987i \(0.417982\pi\)
\(30\) 0 0
\(31\) −2.37228 −0.426074 −0.213037 0.977044i \(-0.568336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(32\) −5.84096 −1.03255
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) −11.0371 −1.81449 −0.907245 0.420602i \(-0.861819\pi\)
−0.907245 + 0.420602i \(0.861819\pi\)
\(38\) −3.16915 −0.514104
\(39\) 0 0
\(40\) 0 0
\(41\) 2.74456 0.428629 0.214314 0.976765i \(-0.431248\pi\)
0.214314 + 0.976765i \(0.431248\pi\)
\(42\) 0 0
\(43\) 3.46410 0.528271 0.264135 0.964486i \(-0.414913\pi\)
0.264135 + 0.964486i \(0.414913\pi\)
\(44\) −1.37228 −0.206879
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) −6.63325 −0.967559 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.16915 0.435316 0.217658 0.976025i \(-0.430158\pi\)
0.217658 + 0.976025i \(0.430158\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 9.25544 1.23681
\(57\) 0 0
\(58\) −2.17448 −0.285523
\(59\) 1.62772 0.211911 0.105955 0.994371i \(-0.466210\pi\)
0.105955 + 0.994371i \(0.466210\pi\)
\(60\) 0 0
\(61\) 10.7446 1.37570 0.687850 0.725853i \(-0.258555\pi\)
0.687850 + 0.725853i \(0.258555\pi\)
\(62\) 1.87953 0.238700
\(63\) 0 0
\(64\) 3.37228 0.421535
\(65\) 0 0
\(66\) 0 0
\(67\) −0.644810 −0.0787761 −0.0393880 0.999224i \(-0.512541\pi\)
−0.0393880 + 0.999224i \(0.512541\pi\)
\(68\) −6.92820 −0.840168
\(69\) 0 0
\(70\) 0 0
\(71\) −7.11684 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(72\) 0 0
\(73\) −6.92820 −0.810885 −0.405442 0.914121i \(-0.632883\pi\)
−0.405442 + 0.914121i \(0.632883\pi\)
\(74\) 8.74456 1.01653
\(75\) 0 0
\(76\) −5.48913 −0.629646
\(77\) 3.46410 0.394771
\(78\) 0 0
\(79\) 12.7446 1.43388 0.716938 0.697137i \(-0.245543\pi\)
0.716938 + 0.697137i \(0.245543\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2.17448 −0.240131
\(83\) 6.63325 0.728094 0.364047 0.931381i \(-0.381395\pi\)
0.364047 + 0.931381i \(0.381395\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.74456 −0.295954
\(87\) 0 0
\(88\) 2.67181 0.284816
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −3.46410 −0.361158
\(93\) 0 0
\(94\) 5.25544 0.542057
\(95\) 0 0
\(96\) 0 0
\(97\) −4.10891 −0.417197 −0.208598 0.978001i \(-0.566890\pi\)
−0.208598 + 0.978001i \(0.566890\pi\)
\(98\) −3.96143 −0.400165
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −10.3923 −1.02398 −0.511992 0.858990i \(-0.671092\pi\)
−0.511992 + 0.858990i \(0.671092\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.51087 −0.243878
\(107\) −6.63325 −0.641260 −0.320630 0.947204i \(-0.603895\pi\)
−0.320630 + 0.947204i \(0.603895\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.17448 0.205469
\(113\) −16.0858 −1.51322 −0.756612 0.653864i \(-0.773147\pi\)
−0.756612 + 0.653864i \(0.773147\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.76631 −0.349693
\(117\) 0 0
\(118\) −1.28962 −0.118719
\(119\) 17.4891 1.60323
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −8.51278 −0.770711
\(123\) 0 0
\(124\) 3.25544 0.292347
\(125\) 0 0
\(126\) 0 0
\(127\) 11.6819 1.03660 0.518302 0.855198i \(-0.326564\pi\)
0.518302 + 0.855198i \(0.326564\pi\)
\(128\) 9.01011 0.796389
\(129\) 0 0
\(130\) 0 0
\(131\) −8.74456 −0.764016 −0.382008 0.924159i \(-0.624767\pi\)
−0.382008 + 0.924159i \(0.624767\pi\)
\(132\) 0 0
\(133\) 13.8564 1.20150
\(134\) 0.510875 0.0441329
\(135\) 0 0
\(136\) 13.4891 1.15668
\(137\) 2.22938 0.190469 0.0952346 0.995455i \(-0.469640\pi\)
0.0952346 + 0.995455i \(0.469640\pi\)
\(138\) 0 0
\(139\) 18.2337 1.54656 0.773281 0.634064i \(-0.218614\pi\)
0.773281 + 0.634064i \(0.218614\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.63858 0.473179
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 5.48913 0.454283
\(147\) 0 0
\(148\) 15.1460 1.24500
\(149\) −11.4891 −0.941226 −0.470613 0.882340i \(-0.655967\pi\)
−0.470613 + 0.882340i \(0.655967\pi\)
\(150\) 0 0
\(151\) 22.2337 1.80935 0.904676 0.426100i \(-0.140113\pi\)
0.904676 + 0.426100i \(0.140113\pi\)
\(152\) 10.6873 0.866851
\(153\) 0 0
\(154\) −2.74456 −0.221163
\(155\) 0 0
\(156\) 0 0
\(157\) 5.39853 0.430850 0.215425 0.976520i \(-0.430886\pi\)
0.215425 + 0.976520i \(0.430886\pi\)
\(158\) −10.0974 −0.803302
\(159\) 0 0
\(160\) 0 0
\(161\) 8.74456 0.689168
\(162\) 0 0
\(163\) −3.46410 −0.271329 −0.135665 0.990755i \(-0.543317\pi\)
−0.135665 + 0.990755i \(0.543317\pi\)
\(164\) −3.76631 −0.294100
\(165\) 0 0
\(166\) −5.25544 −0.407901
\(167\) 22.3692 1.73098 0.865490 0.500927i \(-0.167007\pi\)
0.865490 + 0.500927i \(0.167007\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −4.75372 −0.362468
\(173\) 1.87953 0.142898 0.0714489 0.997444i \(-0.477238\pi\)
0.0714489 + 0.997444i \(0.477238\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.627719 0.0473161
\(177\) 0 0
\(178\) −3.46410 −0.259645
\(179\) 15.8614 1.18554 0.592769 0.805373i \(-0.298035\pi\)
0.592769 + 0.805373i \(0.298035\pi\)
\(180\) 0 0
\(181\) 6.88316 0.511621 0.255810 0.966727i \(-0.417658\pi\)
0.255810 + 0.966727i \(0.417658\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.74456 0.497216
\(185\) 0 0
\(186\) 0 0
\(187\) 5.04868 0.369196
\(188\) 9.10268 0.663881
\(189\) 0 0
\(190\) 0 0
\(191\) 13.6277 0.986067 0.493034 0.870010i \(-0.335888\pi\)
0.493034 + 0.870010i \(0.335888\pi\)
\(192\) 0 0
\(193\) 23.3639 1.68177 0.840883 0.541216i \(-0.182036\pi\)
0.840883 + 0.541216i \(0.182036\pi\)
\(194\) 3.25544 0.233727
\(195\) 0 0
\(196\) −6.86141 −0.490100
\(197\) −1.87953 −0.133911 −0.0669554 0.997756i \(-0.521329\pi\)
−0.0669554 + 0.997756i \(0.521329\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.75372 0.334471
\(203\) 9.50744 0.667292
\(204\) 0 0
\(205\) 0 0
\(206\) 8.23369 0.573668
\(207\) 0 0
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −21.4891 −1.47937 −0.739686 0.672952i \(-0.765026\pi\)
−0.739686 + 0.672952i \(0.765026\pi\)
\(212\) −4.34896 −0.298688
\(213\) 0 0
\(214\) 5.25544 0.359254
\(215\) 0 0
\(216\) 0 0
\(217\) −8.21782 −0.557862
\(218\) −7.92287 −0.536604
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.57301 0.507126 0.253563 0.967319i \(-0.418397\pi\)
0.253563 + 0.967319i \(0.418397\pi\)
\(224\) −20.2337 −1.35192
\(225\) 0 0
\(226\) 12.7446 0.847756
\(227\) 9.80240 0.650608 0.325304 0.945609i \(-0.394533\pi\)
0.325304 + 0.945609i \(0.394533\pi\)
\(228\) 0 0
\(229\) 20.3723 1.34624 0.673119 0.739534i \(-0.264954\pi\)
0.673119 + 0.739534i \(0.264954\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.33296 0.481433
\(233\) 17.0256 1.11538 0.557691 0.830049i \(-0.311688\pi\)
0.557691 + 0.830049i \(0.311688\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.23369 −0.145401
\(237\) 0 0
\(238\) −13.8564 −0.898177
\(239\) 3.25544 0.210577 0.105288 0.994442i \(-0.466423\pi\)
0.105288 + 0.994442i \(0.466423\pi\)
\(240\) 0 0
\(241\) 5.25544 0.338532 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(242\) −0.792287 −0.0509301
\(243\) 0 0
\(244\) −14.7446 −0.943924
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −6.33830 −0.402482
\(249\) 0 0
\(250\) 0 0
\(251\) 4.88316 0.308222 0.154111 0.988054i \(-0.450749\pi\)
0.154111 + 0.988054i \(0.450749\pi\)
\(252\) 0 0
\(253\) 2.52434 0.158704
\(254\) −9.25544 −0.580738
\(255\) 0 0
\(256\) −13.8832 −0.867697
\(257\) −23.9538 −1.49419 −0.747097 0.664715i \(-0.768553\pi\)
−0.747097 + 0.664715i \(0.768553\pi\)
\(258\) 0 0
\(259\) −38.2337 −2.37573
\(260\) 0 0
\(261\) 0 0
\(262\) 6.92820 0.428026
\(263\) −14.1514 −0.872610 −0.436305 0.899799i \(-0.643713\pi\)
−0.436305 + 0.899799i \(0.643713\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −10.9783 −0.673120
\(267\) 0 0
\(268\) 0.884861 0.0540515
\(269\) −11.4891 −0.700504 −0.350252 0.936655i \(-0.613904\pi\)
−0.350252 + 0.936655i \(0.613904\pi\)
\(270\) 0 0
\(271\) −9.48913 −0.576423 −0.288212 0.957567i \(-0.593061\pi\)
−0.288212 + 0.957567i \(0.593061\pi\)
\(272\) 3.16915 0.192158
\(273\) 0 0
\(274\) −1.76631 −0.106707
\(275\) 0 0
\(276\) 0 0
\(277\) 8.21782 0.493761 0.246881 0.969046i \(-0.420594\pi\)
0.246881 + 0.969046i \(0.420594\pi\)
\(278\) −14.4463 −0.866432
\(279\) 0 0
\(280\) 0 0
\(281\) 23.4891 1.40124 0.700622 0.713533i \(-0.252906\pi\)
0.700622 + 0.713533i \(0.252906\pi\)
\(282\) 0 0
\(283\) −4.75372 −0.282579 −0.141290 0.989968i \(-0.545125\pi\)
−0.141290 + 0.989968i \(0.545125\pi\)
\(284\) 9.76631 0.579524
\(285\) 0 0
\(286\) 0 0
\(287\) 9.50744 0.561207
\(288\) 0 0
\(289\) 8.48913 0.499360
\(290\) 0 0
\(291\) 0 0
\(292\) 9.50744 0.556381
\(293\) 10.0974 0.589894 0.294947 0.955514i \(-0.404698\pi\)
0.294947 + 0.955514i \(0.404698\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −29.4891 −1.71402
\(297\) 0 0
\(298\) 9.10268 0.527304
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) −17.6155 −1.01366
\(303\) 0 0
\(304\) 2.51087 0.144009
\(305\) 0 0
\(306\) 0 0
\(307\) −28.1176 −1.60475 −0.802377 0.596817i \(-0.796432\pi\)
−0.802377 + 0.596817i \(0.796432\pi\)
\(308\) −4.75372 −0.270868
\(309\) 0 0
\(310\) 0 0
\(311\) 17.4891 0.991717 0.495859 0.868403i \(-0.334853\pi\)
0.495859 + 0.868403i \(0.334853\pi\)
\(312\) 0 0
\(313\) −31.8217 −1.79867 −0.899335 0.437260i \(-0.855949\pi\)
−0.899335 + 0.437260i \(0.855949\pi\)
\(314\) −4.27719 −0.241376
\(315\) 0 0
\(316\) −17.4891 −0.983840
\(317\) 3.51900 0.197647 0.0988235 0.995105i \(-0.468492\pi\)
0.0988235 + 0.995105i \(0.468492\pi\)
\(318\) 0 0
\(319\) 2.74456 0.153666
\(320\) 0 0
\(321\) 0 0
\(322\) −6.92820 −0.386094
\(323\) 20.1947 1.12366
\(324\) 0 0
\(325\) 0 0
\(326\) 2.74456 0.152007
\(327\) 0 0
\(328\) 7.33296 0.404895
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) 3.11684 0.171317 0.0856586 0.996325i \(-0.472701\pi\)
0.0856586 + 0.996325i \(0.472701\pi\)
\(332\) −9.10268 −0.499575
\(333\) 0 0
\(334\) −17.7228 −0.969749
\(335\) 0 0
\(336\) 0 0
\(337\) −12.5668 −0.684556 −0.342278 0.939599i \(-0.611199\pi\)
−0.342278 + 0.939599i \(0.611199\pi\)
\(338\) 10.2997 0.560232
\(339\) 0 0
\(340\) 0 0
\(341\) −2.37228 −0.128466
\(342\) 0 0
\(343\) −6.92820 −0.374088
\(344\) 9.25544 0.499020
\(345\) 0 0
\(346\) −1.48913 −0.0800559
\(347\) 29.2974 1.57277 0.786383 0.617739i \(-0.211951\pi\)
0.786383 + 0.617739i \(0.211951\pi\)
\(348\) 0 0
\(349\) −7.48913 −0.400884 −0.200442 0.979706i \(-0.564238\pi\)
−0.200442 + 0.979706i \(0.564238\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.84096 −0.311324
\(353\) −21.7244 −1.15627 −0.578136 0.815941i \(-0.696220\pi\)
−0.578136 + 0.815941i \(0.696220\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −12.5668 −0.664175
\(359\) −6.51087 −0.343631 −0.171815 0.985129i \(-0.554963\pi\)
−0.171815 + 0.985129i \(0.554963\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −5.45343 −0.286626
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −24.0087 −1.25324 −0.626621 0.779324i \(-0.715563\pi\)
−0.626621 + 0.779324i \(0.715563\pi\)
\(368\) 1.58457 0.0826016
\(369\) 0 0
\(370\) 0 0
\(371\) 10.9783 0.569962
\(372\) 0 0
\(373\) 8.21782 0.425503 0.212751 0.977106i \(-0.431758\pi\)
0.212751 + 0.977106i \(0.431758\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −17.7228 −0.913984
\(377\) 0 0
\(378\) 0 0
\(379\) −6.37228 −0.327322 −0.163661 0.986517i \(-0.552330\pi\)
−0.163661 + 0.986517i \(0.552330\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −10.7971 −0.552426
\(383\) −5.69349 −0.290924 −0.145462 0.989364i \(-0.546467\pi\)
−0.145462 + 0.989364i \(0.546467\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −18.5109 −0.942179
\(387\) 0 0
\(388\) 5.63858 0.286256
\(389\) 9.86141 0.499993 0.249997 0.968247i \(-0.419571\pi\)
0.249997 + 0.968247i \(0.419571\pi\)
\(390\) 0 0
\(391\) 12.7446 0.644520
\(392\) 13.3591 0.674735
\(393\) 0 0
\(394\) 1.48913 0.0750210
\(395\) 0 0
\(396\) 0 0
\(397\) 23.3639 1.17260 0.586299 0.810095i \(-0.300584\pi\)
0.586299 + 0.810095i \(0.300584\pi\)
\(398\) 6.33830 0.317710
\(399\) 0 0
\(400\) 0 0
\(401\) −11.4891 −0.573740 −0.286870 0.957970i \(-0.592615\pi\)
−0.286870 + 0.957970i \(0.592615\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 8.23369 0.409641
\(405\) 0 0
\(406\) −7.53262 −0.373838
\(407\) −11.0371 −0.547089
\(408\) 0 0
\(409\) 4.51087 0.223048 0.111524 0.993762i \(-0.464427\pi\)
0.111524 + 0.993762i \(0.464427\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 14.2612 0.702597
\(413\) 5.63858 0.277457
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −3.16915 −0.155008
\(419\) −22.9783 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(420\) 0 0
\(421\) 31.4891 1.53469 0.767343 0.641237i \(-0.221578\pi\)
0.767343 + 0.641237i \(0.221578\pi\)
\(422\) 17.0256 0.828791
\(423\) 0 0
\(424\) 8.46738 0.411212
\(425\) 0 0
\(426\) 0 0
\(427\) 37.2203 1.80121
\(428\) 9.10268 0.439995
\(429\) 0 0
\(430\) 0 0
\(431\) −31.7228 −1.52803 −0.764017 0.645196i \(-0.776776\pi\)
−0.764017 + 0.645196i \(0.776776\pi\)
\(432\) 0 0
\(433\) −20.5446 −0.987308 −0.493654 0.869658i \(-0.664339\pi\)
−0.493654 + 0.869658i \(0.664339\pi\)
\(434\) 6.51087 0.312532
\(435\) 0 0
\(436\) −13.7228 −0.657204
\(437\) 10.0974 0.483022
\(438\) 0 0
\(439\) −1.48913 −0.0710721 −0.0355360 0.999368i \(-0.511314\pi\)
−0.0355360 + 0.999368i \(0.511314\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.0911 0.717001 0.358500 0.933530i \(-0.383288\pi\)
0.358500 + 0.933530i \(0.383288\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.00000 −0.284108
\(447\) 0 0
\(448\) 11.6819 0.551919
\(449\) 21.8614 1.03170 0.515852 0.856678i \(-0.327476\pi\)
0.515852 + 0.856678i \(0.327476\pi\)
\(450\) 0 0
\(451\) 2.74456 0.129236
\(452\) 22.0742 1.03828
\(453\) 0 0
\(454\) −7.76631 −0.364491
\(455\) 0 0
\(456\) 0 0
\(457\) −20.7846 −0.972263 −0.486132 0.873886i \(-0.661592\pi\)
−0.486132 + 0.873886i \(0.661592\pi\)
\(458\) −16.1407 −0.754205
\(459\) 0 0
\(460\) 0 0
\(461\) 32.2337 1.50127 0.750636 0.660716i \(-0.229747\pi\)
0.750636 + 0.660716i \(0.229747\pi\)
\(462\) 0 0
\(463\) −20.1398 −0.935976 −0.467988 0.883735i \(-0.655021\pi\)
−0.467988 + 0.883735i \(0.655021\pi\)
\(464\) 1.72281 0.0799796
\(465\) 0 0
\(466\) −13.4891 −0.624872
\(467\) 4.40387 0.203787 0.101893 0.994795i \(-0.467510\pi\)
0.101893 + 0.994795i \(0.467510\pi\)
\(468\) 0 0
\(469\) −2.23369 −0.103142
\(470\) 0 0
\(471\) 0 0
\(472\) 4.34896 0.200177
\(473\) 3.46410 0.159280
\(474\) 0 0
\(475\) 0 0
\(476\) −24.0000 −1.10004
\(477\) 0 0
\(478\) −2.57924 −0.117972
\(479\) −17.4891 −0.799099 −0.399549 0.916712i \(-0.630833\pi\)
−0.399549 + 0.916712i \(0.630833\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −4.16381 −0.189657
\(483\) 0 0
\(484\) −1.37228 −0.0623764
\(485\) 0 0
\(486\) 0 0
\(487\) 22.7190 1.02950 0.514749 0.857341i \(-0.327885\pi\)
0.514749 + 0.857341i \(0.327885\pi\)
\(488\) 28.7075 1.29953
\(489\) 0 0
\(490\) 0 0
\(491\) −29.4891 −1.33083 −0.665413 0.746476i \(-0.731744\pi\)
−0.665413 + 0.746476i \(0.731744\pi\)
\(492\) 0 0
\(493\) 13.8564 0.624061
\(494\) 0 0
\(495\) 0 0
\(496\) −1.48913 −0.0668637
\(497\) −24.6535 −1.10586
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −3.86886 −0.172676
\(503\) −0.294954 −0.0131513 −0.00657567 0.999978i \(-0.502093\pi\)
−0.00657567 + 0.999978i \(0.502093\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) −16.0309 −0.711256
\(509\) −28.3723 −1.25758 −0.628790 0.777575i \(-0.716449\pi\)
−0.628790 + 0.777575i \(0.716449\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) −7.02078 −0.310277
\(513\) 0 0
\(514\) 18.9783 0.837095
\(515\) 0 0
\(516\) 0 0
\(517\) −6.63325 −0.291730
\(518\) 30.2921 1.33096
\(519\) 0 0
\(520\) 0 0
\(521\) −18.6060 −0.815142 −0.407571 0.913173i \(-0.633624\pi\)
−0.407571 + 0.913173i \(0.633624\pi\)
\(522\) 0 0
\(523\) 9.10268 0.398033 0.199016 0.979996i \(-0.436225\pi\)
0.199016 + 0.979996i \(0.436225\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 11.2119 0.488864
\(527\) −11.9769 −0.521721
\(528\) 0 0
\(529\) −16.6277 −0.722944
\(530\) 0 0
\(531\) 0 0
\(532\) −19.0149 −0.824400
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −1.72281 −0.0744142
\(537\) 0 0
\(538\) 9.10268 0.392445
\(539\) 5.00000 0.215365
\(540\) 0 0
\(541\) −0.233688 −0.0100470 −0.00502351 0.999987i \(-0.501599\pi\)
−0.00502351 + 0.999987i \(0.501599\pi\)
\(542\) 7.51811 0.322930
\(543\) 0 0
\(544\) −29.4891 −1.26434
\(545\) 0 0
\(546\) 0 0
\(547\) −9.10268 −0.389203 −0.194601 0.980882i \(-0.562341\pi\)
−0.194601 + 0.980882i \(0.562341\pi\)
\(548\) −3.05934 −0.130689
\(549\) 0 0
\(550\) 0 0
\(551\) 10.9783 0.467689
\(552\) 0 0
\(553\) 44.1485 1.87738
\(554\) −6.51087 −0.276621
\(555\) 0 0
\(556\) −25.0217 −1.06116
\(557\) −32.1716 −1.36315 −0.681577 0.731747i \(-0.738705\pi\)
−0.681577 + 0.731747i \(0.738705\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −18.6101 −0.785021
\(563\) 12.2718 0.517196 0.258598 0.965985i \(-0.416739\pi\)
0.258598 + 0.965985i \(0.416739\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3.76631 0.158310
\(567\) 0 0
\(568\) −19.0149 −0.797847
\(569\) 38.7446 1.62426 0.812128 0.583479i \(-0.198309\pi\)
0.812128 + 0.583479i \(0.198309\pi\)
\(570\) 0 0
\(571\) −21.4891 −0.899292 −0.449646 0.893207i \(-0.648450\pi\)
−0.449646 + 0.893207i \(0.648450\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −7.53262 −0.314406
\(575\) 0 0
\(576\) 0 0
\(577\) 31.8217 1.32476 0.662378 0.749170i \(-0.269547\pi\)
0.662378 + 0.749170i \(0.269547\pi\)
\(578\) −6.72582 −0.279757
\(579\) 0 0
\(580\) 0 0
\(581\) 22.9783 0.953298
\(582\) 0 0
\(583\) 3.16915 0.131253
\(584\) −18.5109 −0.765985
\(585\) 0 0
\(586\) −8.00000 −0.330477
\(587\) 28.0078 1.15600 0.578002 0.816035i \(-0.303833\pi\)
0.578002 + 0.816035i \(0.303833\pi\)
\(588\) 0 0
\(589\) −9.48913 −0.390993
\(590\) 0 0
\(591\) 0 0
\(592\) −6.92820 −0.284747
\(593\) −43.5586 −1.78874 −0.894368 0.447333i \(-0.852374\pi\)
−0.894368 + 0.447333i \(0.852374\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.7663 0.645813
\(597\) 0 0
\(598\) 0 0
\(599\) 34.9783 1.42917 0.714586 0.699547i \(-0.246615\pi\)
0.714586 + 0.699547i \(0.246615\pi\)
\(600\) 0 0
\(601\) 30.4674 1.24279 0.621395 0.783497i \(-0.286566\pi\)
0.621395 + 0.783497i \(0.286566\pi\)
\(602\) −9.50744 −0.387494
\(603\) 0 0
\(604\) −30.5109 −1.24147
\(605\) 0 0
\(606\) 0 0
\(607\) 3.46410 0.140604 0.0703018 0.997526i \(-0.477604\pi\)
0.0703018 + 0.997526i \(0.477604\pi\)
\(608\) −23.3639 −0.947529
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −44.1485 −1.78314 −0.891570 0.452883i \(-0.850395\pi\)
−0.891570 + 0.452883i \(0.850395\pi\)
\(614\) 22.2772 0.899034
\(615\) 0 0
\(616\) 9.25544 0.372912
\(617\) 3.75906 0.151334 0.0756669 0.997133i \(-0.475891\pi\)
0.0756669 + 0.997133i \(0.475891\pi\)
\(618\) 0 0
\(619\) −3.11684 −0.125277 −0.0626383 0.998036i \(-0.519951\pi\)
−0.0626383 + 0.998036i \(0.519951\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −13.8564 −0.555591
\(623\) 15.1460 0.606813
\(624\) 0 0
\(625\) 0 0
\(626\) 25.2119 1.00767
\(627\) 0 0
\(628\) −7.40830 −0.295624
\(629\) −55.7228 −2.22181
\(630\) 0 0
\(631\) −16.6060 −0.661073 −0.330537 0.943793i \(-0.607230\pi\)
−0.330537 + 0.943793i \(0.607230\pi\)
\(632\) 34.0511 1.35448
\(633\) 0 0
\(634\) −2.78806 −0.110728
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −2.17448 −0.0860885
\(639\) 0 0
\(640\) 0 0
\(641\) 19.6277 0.775248 0.387624 0.921818i \(-0.373296\pi\)
0.387624 + 0.921818i \(0.373296\pi\)
\(642\) 0 0
\(643\) 39.1547 1.54411 0.772055 0.635556i \(-0.219229\pi\)
0.772055 + 0.635556i \(0.219229\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) −41.0342 −1.61322 −0.806611 0.591083i \(-0.798701\pi\)
−0.806611 + 0.591083i \(0.798701\pi\)
\(648\) 0 0
\(649\) 1.62772 0.0638935
\(650\) 0 0
\(651\) 0 0
\(652\) 4.75372 0.186170
\(653\) −25.5932 −1.00154 −0.500770 0.865580i \(-0.666950\pi\)
−0.500770 + 0.865580i \(0.666950\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.72281 0.0672646
\(657\) 0 0
\(658\) 18.2054 0.709719
\(659\) −32.7446 −1.27555 −0.637774 0.770224i \(-0.720144\pi\)
−0.637774 + 0.770224i \(0.720144\pi\)
\(660\) 0 0
\(661\) 35.3505 1.37498 0.687488 0.726196i \(-0.258713\pi\)
0.687488 + 0.726196i \(0.258713\pi\)
\(662\) −2.46943 −0.0959773
\(663\) 0 0
\(664\) 17.7228 0.687779
\(665\) 0 0
\(666\) 0 0
\(667\) 6.92820 0.268261
\(668\) −30.6968 −1.18770
\(669\) 0 0
\(670\) 0 0
\(671\) 10.7446 0.414789
\(672\) 0 0
\(673\) −1.28962 −0.0497112 −0.0248556 0.999691i \(-0.507913\pi\)
−0.0248556 + 0.999691i \(0.507913\pi\)
\(674\) 9.95650 0.383510
\(675\) 0 0
\(676\) 17.8397 0.686141
\(677\) −43.4487 −1.66987 −0.834935 0.550348i \(-0.814495\pi\)
−0.834935 + 0.550348i \(0.814495\pi\)
\(678\) 0 0
\(679\) −14.2337 −0.546239
\(680\) 0 0
\(681\) 0 0
\(682\) 1.87953 0.0719708
\(683\) −44.4434 −1.70058 −0.850290 0.526314i \(-0.823573\pi\)
−0.850290 + 0.526314i \(0.823573\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.48913 0.209576
\(687\) 0 0
\(688\) 2.17448 0.0829013
\(689\) 0 0
\(690\) 0 0
\(691\) 16.1386 0.613941 0.306971 0.951719i \(-0.400685\pi\)
0.306971 + 0.951719i \(0.400685\pi\)
\(692\) −2.57924 −0.0980480
\(693\) 0 0
\(694\) −23.2119 −0.881113
\(695\) 0 0
\(696\) 0 0
\(697\) 13.8564 0.524849
\(698\) 5.93354 0.224588
\(699\) 0 0
\(700\) 0 0
\(701\) 35.4891 1.34041 0.670203 0.742178i \(-0.266207\pi\)
0.670203 + 0.742178i \(0.266207\pi\)
\(702\) 0 0
\(703\) −44.1485 −1.66509
\(704\) 3.37228 0.127098
\(705\) 0 0
\(706\) 17.2119 0.647780
\(707\) −20.7846 −0.781686
\(708\) 0 0
\(709\) 41.1168 1.54418 0.772088 0.635516i \(-0.219213\pi\)
0.772088 + 0.635516i \(0.219213\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 11.6819 0.437799
\(713\) −5.98844 −0.224269
\(714\) 0 0
\(715\) 0 0
\(716\) −21.7663 −0.813445
\(717\) 0 0
\(718\) 5.15848 0.192513
\(719\) −21.3505 −0.796240 −0.398120 0.917333i \(-0.630337\pi\)
−0.398120 + 0.917333i \(0.630337\pi\)
\(720\) 0 0
\(721\) −36.0000 −1.34071
\(722\) 2.37686 0.0884576
\(723\) 0 0
\(724\) −9.44563 −0.351044
\(725\) 0 0
\(726\) 0 0
\(727\) −15.7908 −0.585650 −0.292825 0.956166i \(-0.594595\pi\)
−0.292825 + 0.956166i \(0.594595\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 17.4891 0.646859
\(732\) 0 0
\(733\) 30.2921 1.11886 0.559431 0.828877i \(-0.311020\pi\)
0.559431 + 0.828877i \(0.311020\pi\)
\(734\) 19.0217 0.702106
\(735\) 0 0
\(736\) −14.7446 −0.543492
\(737\) −0.644810 −0.0237519
\(738\) 0 0
\(739\) 0.744563 0.0273892 0.0136946 0.999906i \(-0.495641\pi\)
0.0136946 + 0.999906i \(0.495641\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −8.69793 −0.319311
\(743\) 21.7793 0.799004 0.399502 0.916732i \(-0.369183\pi\)
0.399502 + 0.916732i \(0.369183\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −6.51087 −0.238380
\(747\) 0 0
\(748\) −6.92820 −0.253320
\(749\) −22.9783 −0.839607
\(750\) 0 0
\(751\) 21.6277 0.789207 0.394603 0.918852i \(-0.370882\pi\)
0.394603 + 0.918852i \(0.370882\pi\)
\(752\) −4.16381 −0.151839
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −39.7995 −1.44654 −0.723269 0.690567i \(-0.757361\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 5.04868 0.183376
\(759\) 0 0
\(760\) 0 0
\(761\) −21.2554 −0.770509 −0.385255 0.922810i \(-0.625886\pi\)
−0.385255 + 0.922810i \(0.625886\pi\)
\(762\) 0 0
\(763\) 34.6410 1.25409
\(764\) −18.7011 −0.676581
\(765\) 0 0
\(766\) 4.51087 0.162985
\(767\) 0 0
\(768\) 0 0
\(769\) −51.2119 −1.84675 −0.923375 0.383900i \(-0.874581\pi\)
−0.923375 + 0.383900i \(0.874581\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −32.0618 −1.15393
\(773\) 30.8820 1.11075 0.555373 0.831601i \(-0.312575\pi\)
0.555373 + 0.831601i \(0.312575\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −10.9783 −0.394096
\(777\) 0 0
\(778\) −7.81306 −0.280112
\(779\) 10.9783 0.393337
\(780\) 0 0
\(781\) −7.11684 −0.254661
\(782\) −10.0974 −0.361081
\(783\) 0 0
\(784\) 3.13859 0.112093
\(785\) 0 0
\(786\) 0 0
\(787\) 4.75372 0.169452 0.0847259 0.996404i \(-0.472999\pi\)
0.0847259 + 0.996404i \(0.472999\pi\)
\(788\) 2.57924 0.0918816
\(789\) 0 0
\(790\) 0 0
\(791\) −55.7228 −1.98128
\(792\) 0 0
\(793\) 0 0
\(794\) −18.5109 −0.656926
\(795\) 0 0
\(796\) 10.9783 0.389114
\(797\) 31.2318 1.10629 0.553144 0.833086i \(-0.313428\pi\)
0.553144 + 0.833086i \(0.313428\pi\)
\(798\) 0 0
\(799\) −33.4891 −1.18476
\(800\) 0 0
\(801\) 0 0
\(802\) 9.10268 0.321427
\(803\) −6.92820 −0.244491
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −16.0309 −0.563965
\(809\) 21.2554 0.747301 0.373651 0.927569i \(-0.378106\pi\)
0.373651 + 0.927569i \(0.378106\pi\)
\(810\) 0 0
\(811\) 34.2337 1.20211 0.601054 0.799209i \(-0.294748\pi\)
0.601054 + 0.799209i \(0.294748\pi\)
\(812\) −13.0469 −0.457856
\(813\) 0 0
\(814\) 8.74456 0.306497
\(815\) 0 0
\(816\) 0 0
\(817\) 13.8564 0.484774
\(818\) −3.57391 −0.124959
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) −33.5161 −1.16830 −0.584149 0.811646i \(-0.698572\pi\)
−0.584149 + 0.811646i \(0.698572\pi\)
\(824\) −27.7663 −0.967285
\(825\) 0 0
\(826\) −4.46738 −0.155440
\(827\) 18.0202 0.626624 0.313312 0.949650i \(-0.398561\pi\)
0.313312 + 0.949650i \(0.398561\pi\)
\(828\) 0 0
\(829\) 31.3505 1.08885 0.544424 0.838810i \(-0.316748\pi\)
0.544424 + 0.838810i \(0.316748\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.2434 0.874631
\(834\) 0 0
\(835\) 0 0
\(836\) −5.48913 −0.189845
\(837\) 0 0
\(838\) 18.2054 0.628894
\(839\) −7.11684 −0.245701 −0.122850 0.992425i \(-0.539204\pi\)
−0.122850 + 0.992425i \(0.539204\pi\)
\(840\) 0 0
\(841\) −21.4674 −0.740254
\(842\) −24.9484 −0.859779
\(843\) 0 0
\(844\) 29.4891 1.01506
\(845\) 0 0
\(846\) 0 0
\(847\) 3.46410 0.119028
\(848\) 1.98933 0.0683140
\(849\) 0 0
\(850\) 0 0
\(851\) −27.8614 −0.955077
\(852\) 0 0
\(853\) −24.6535 −0.844119 −0.422059 0.906568i \(-0.638693\pi\)
−0.422059 + 0.906568i \(0.638693\pi\)
\(854\) −29.4891 −1.00910
\(855\) 0 0
\(856\) −17.7228 −0.605753
\(857\) 10.6873 0.365070 0.182535 0.983199i \(-0.441570\pi\)
0.182535 + 0.983199i \(0.441570\pi\)
\(858\) 0 0
\(859\) 11.1168 0.379302 0.189651 0.981852i \(-0.439264\pi\)
0.189651 + 0.981852i \(0.439264\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 25.1336 0.856053
\(863\) −23.6588 −0.805355 −0.402678 0.915342i \(-0.631920\pi\)
−0.402678 + 0.915342i \(0.631920\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 16.2772 0.553121
\(867\) 0 0
\(868\) 11.2772 0.382772
\(869\) 12.7446 0.432330
\(870\) 0 0
\(871\) 0 0
\(872\) 26.7181 0.904791
\(873\) 0 0
\(874\) −8.00000 −0.270604
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 1.17981 0.0398168
\(879\) 0 0
\(880\) 0 0
\(881\) −21.8614 −0.736530 −0.368265 0.929721i \(-0.620048\pi\)
−0.368265 + 0.929721i \(0.620048\pi\)
\(882\) 0 0
\(883\) 24.2487 0.816034 0.408017 0.912974i \(-0.366220\pi\)
0.408017 + 0.912974i \(0.366220\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −11.9565 −0.401687
\(887\) 14.1514 0.475156 0.237578 0.971368i \(-0.423646\pi\)
0.237578 + 0.971368i \(0.423646\pi\)
\(888\) 0 0
\(889\) 40.4674 1.35723
\(890\) 0 0
\(891\) 0 0
\(892\) −10.3923 −0.347960
\(893\) −26.5330 −0.887893
\(894\) 0 0
\(895\) 0 0
\(896\) 31.2119 1.04272
\(897\) 0 0
\(898\) −17.3205 −0.577993
\(899\) −6.51087 −0.217150
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) −2.17448 −0.0724023
\(903\) 0 0
\(904\) −42.9783 −1.42944
\(905\) 0 0
\(906\) 0 0
\(907\) 19.8997 0.660760 0.330380 0.943848i \(-0.392823\pi\)
0.330380 + 0.943848i \(0.392823\pi\)
\(908\) −13.4516 −0.446409
\(909\) 0 0
\(910\) 0 0
\(911\) 30.5109 1.01087 0.505435 0.862865i \(-0.331332\pi\)
0.505435 + 0.862865i \(0.331332\pi\)
\(912\) 0 0
\(913\) 6.63325 0.219529
\(914\) 16.4674 0.544692
\(915\) 0 0
\(916\) −27.9565 −0.923709
\(917\) −30.2921 −1.00033
\(918\) 0 0
\(919\) 6.23369 0.205630 0.102815 0.994700i \(-0.467215\pi\)
0.102815 + 0.994700i \(0.467215\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −25.5383 −0.841060
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 15.9565 0.524363
\(927\) 0 0
\(928\) −16.0309 −0.526240
\(929\) 52.9783 1.73816 0.869080 0.494672i \(-0.164712\pi\)
0.869080 + 0.494672i \(0.164712\pi\)
\(930\) 0 0
\(931\) 20.0000 0.655474
\(932\) −23.3639 −0.765308
\(933\) 0 0
\(934\) −3.48913 −0.114168
\(935\) 0 0
\(936\) 0 0
\(937\) −25.9431 −0.847524 −0.423762 0.905774i \(-0.639291\pi\)
−0.423762 + 0.905774i \(0.639291\pi\)
\(938\) 1.76972 0.0577835
\(939\) 0 0
\(940\) 0 0
\(941\) −10.4674 −0.341227 −0.170613 0.985338i \(-0.554575\pi\)
−0.170613 + 0.985338i \(0.554575\pi\)
\(942\) 0 0
\(943\) 6.92820 0.225613
\(944\) 1.02175 0.0332551
\(945\) 0 0
\(946\) −2.74456 −0.0892334
\(947\) −56.1802 −1.82561 −0.912806 0.408393i \(-0.866089\pi\)
−0.912806 + 0.408393i \(0.866089\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 46.7277 1.51445
\(953\) 41.6790 1.35012 0.675058 0.737765i \(-0.264119\pi\)
0.675058 + 0.737765i \(0.264119\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −4.46738 −0.144485
\(957\) 0 0
\(958\) 13.8564 0.447680
\(959\) 7.72281 0.249383
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) 0 0
\(963\) 0 0
\(964\) −7.21194 −0.232281
\(965\) 0 0
\(966\) 0 0
\(967\) −46.3229 −1.48965 −0.744823 0.667262i \(-0.767466\pi\)
−0.744823 + 0.667262i \(0.767466\pi\)
\(968\) 2.67181 0.0858754
\(969\) 0 0
\(970\) 0 0
\(971\) −54.0951 −1.73599 −0.867997 0.496569i \(-0.834593\pi\)
−0.867997 + 0.496569i \(0.834593\pi\)
\(972\) 0 0
\(973\) 63.1633 2.02492
\(974\) −18.0000 −0.576757
\(975\) 0 0
\(976\) 6.74456 0.215888
\(977\) 27.3630 0.875419 0.437709 0.899117i \(-0.355790\pi\)
0.437709 + 0.899117i \(0.355790\pi\)
\(978\) 0 0
\(979\) 4.37228 0.139739
\(980\) 0 0
\(981\) 0 0
\(982\) 23.3639 0.745570
\(983\) 8.16292 0.260357 0.130178 0.991491i \(-0.458445\pi\)
0.130178 + 0.991491i \(0.458445\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −10.9783 −0.349619
\(987\) 0 0
\(988\) 0 0
\(989\) 8.74456 0.278061
\(990\) 0 0
\(991\) −26.9783 −0.856992 −0.428496 0.903544i \(-0.640956\pi\)
−0.428496 + 0.903544i \(0.640956\pi\)
\(992\) 13.8564 0.439941
\(993\) 0 0
\(994\) 19.5326 0.619537
\(995\) 0 0
\(996\) 0 0
\(997\) 22.0742 0.699098 0.349549 0.936918i \(-0.386335\pi\)
0.349549 + 0.936918i \(0.386335\pi\)
\(998\) 15.8457 0.501588
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.2.a.bi.1.2 4
3.2 odd 2 275.2.a.h.1.3 4
5.2 odd 4 495.2.c.a.199.2 4
5.3 odd 4 495.2.c.a.199.3 4
5.4 even 2 inner 2475.2.a.bi.1.3 4
12.11 even 2 4400.2.a.cc.1.1 4
15.2 even 4 55.2.b.a.34.3 yes 4
15.8 even 4 55.2.b.a.34.2 4
15.14 odd 2 275.2.a.h.1.2 4
33.32 even 2 3025.2.a.ba.1.2 4
60.23 odd 4 880.2.b.h.529.1 4
60.47 odd 4 880.2.b.h.529.4 4
60.59 even 2 4400.2.a.cc.1.4 4
165.2 odd 20 605.2.j.j.444.2 16
165.8 odd 20 605.2.j.j.9.3 16
165.17 odd 20 605.2.j.j.124.3 16
165.32 odd 4 605.2.b.c.364.2 4
165.38 even 20 605.2.j.i.124.3 16
165.47 even 20 605.2.j.i.9.3 16
165.53 even 20 605.2.j.i.444.2 16
165.62 odd 20 605.2.j.j.269.3 16
165.68 odd 20 605.2.j.j.444.3 16
165.83 odd 20 605.2.j.j.124.2 16
165.92 even 20 605.2.j.i.269.2 16
165.98 odd 4 605.2.b.c.364.3 4
165.107 odd 20 605.2.j.j.9.2 16
165.113 even 20 605.2.j.i.9.2 16
165.128 odd 20 605.2.j.j.269.2 16
165.137 even 20 605.2.j.i.124.2 16
165.152 even 20 605.2.j.i.444.3 16
165.158 even 20 605.2.j.i.269.3 16
165.164 even 2 3025.2.a.ba.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.2 4 15.8 even 4
55.2.b.a.34.3 yes 4 15.2 even 4
275.2.a.h.1.2 4 15.14 odd 2
275.2.a.h.1.3 4 3.2 odd 2
495.2.c.a.199.2 4 5.2 odd 4
495.2.c.a.199.3 4 5.3 odd 4
605.2.b.c.364.2 4 165.32 odd 4
605.2.b.c.364.3 4 165.98 odd 4
605.2.j.i.9.2 16 165.113 even 20
605.2.j.i.9.3 16 165.47 even 20
605.2.j.i.124.2 16 165.137 even 20
605.2.j.i.124.3 16 165.38 even 20
605.2.j.i.269.2 16 165.92 even 20
605.2.j.i.269.3 16 165.158 even 20
605.2.j.i.444.2 16 165.53 even 20
605.2.j.i.444.3 16 165.152 even 20
605.2.j.j.9.2 16 165.107 odd 20
605.2.j.j.9.3 16 165.8 odd 20
605.2.j.j.124.2 16 165.83 odd 20
605.2.j.j.124.3 16 165.17 odd 20
605.2.j.j.269.2 16 165.128 odd 20
605.2.j.j.269.3 16 165.62 odd 20
605.2.j.j.444.2 16 165.2 odd 20
605.2.j.j.444.3 16 165.68 odd 20
880.2.b.h.529.1 4 60.23 odd 4
880.2.b.h.529.4 4 60.47 odd 4
2475.2.a.bi.1.2 4 1.1 even 1 trivial
2475.2.a.bi.1.3 4 5.4 even 2 inner
3025.2.a.ba.1.2 4 33.32 even 2
3025.2.a.ba.1.3 4 165.164 even 2
4400.2.a.cc.1.1 4 12.11 even 2
4400.2.a.cc.1.4 4 60.59 even 2