Properties

Label 2475.2.a.bi.1.1
Level $2475$
Weight $2$
Character 2475.1
Self dual yes
Analytic conductor $19.763$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,2,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.52434\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52434 q^{2} +4.37228 q^{4} -3.46410 q^{7} -5.98844 q^{8} +1.00000 q^{11} +8.74456 q^{14} +6.37228 q^{16} +1.58457 q^{17} +4.00000 q^{19} -2.52434 q^{22} +0.792287 q^{23} -15.1460 q^{28} -8.74456 q^{29} +3.37228 q^{31} -4.10891 q^{32} -4.00000 q^{34} +1.08724 q^{37} -10.0974 q^{38} -8.74456 q^{41} -3.46410 q^{43} +4.37228 q^{44} -2.00000 q^{46} -6.63325 q^{47} +5.00000 q^{49} +10.0974 q^{53} +20.7446 q^{56} +22.0742 q^{58} +7.37228 q^{59} -0.744563 q^{61} -8.51278 q^{62} -2.37228 q^{64} -9.30506 q^{67} +6.92820 q^{68} +10.1168 q^{71} +6.92820 q^{73} -2.74456 q^{74} +17.4891 q^{76} -3.46410 q^{77} +1.25544 q^{79} +22.0742 q^{82} +6.63325 q^{83} +8.74456 q^{86} -5.98844 q^{88} -1.37228 q^{89} +3.46410 q^{92} +16.7446 q^{94} -5.84096 q^{97} -12.6217 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} + 4 q^{11} + 12 q^{14} + 14 q^{16} + 16 q^{19} - 12 q^{29} + 2 q^{31} - 16 q^{34} - 12 q^{41} + 6 q^{44} - 8 q^{46} + 20 q^{49} + 60 q^{56} + 18 q^{59} + 20 q^{61} + 2 q^{64} + 6 q^{71} + 12 q^{74}+ \cdots + 44 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.52434 −1.78498 −0.892488 0.451071i \(-0.851042\pi\)
−0.892488 + 0.451071i \(0.851042\pi\)
\(3\) 0 0
\(4\) 4.37228 2.18614
\(5\) 0 0
\(6\) 0 0
\(7\) −3.46410 −1.30931 −0.654654 0.755929i \(-0.727186\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) −5.98844 −2.11723
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 8.74456 2.33708
\(15\) 0 0
\(16\) 6.37228 1.59307
\(17\) 1.58457 0.384316 0.192158 0.981364i \(-0.438451\pi\)
0.192158 + 0.981364i \(0.438451\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.52434 −0.538191
\(23\) 0.792287 0.165203 0.0826016 0.996583i \(-0.473677\pi\)
0.0826016 + 0.996583i \(0.473677\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) −15.1460 −2.86233
\(29\) −8.74456 −1.62382 −0.811912 0.583779i \(-0.801573\pi\)
−0.811912 + 0.583779i \(0.801573\pi\)
\(30\) 0 0
\(31\) 3.37228 0.605680 0.302840 0.953041i \(-0.402065\pi\)
0.302840 + 0.953041i \(0.402065\pi\)
\(32\) −4.10891 −0.726360
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) 1.08724 0.178741 0.0893706 0.995998i \(-0.471514\pi\)
0.0893706 + 0.995998i \(0.471514\pi\)
\(38\) −10.0974 −1.63801
\(39\) 0 0
\(40\) 0 0
\(41\) −8.74456 −1.36567 −0.682836 0.730572i \(-0.739253\pi\)
−0.682836 + 0.730572i \(0.739253\pi\)
\(42\) 0 0
\(43\) −3.46410 −0.528271 −0.264135 0.964486i \(-0.585087\pi\)
−0.264135 + 0.964486i \(0.585087\pi\)
\(44\) 4.37228 0.659146
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) −6.63325 −0.967559 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0974 1.38698 0.693489 0.720467i \(-0.256073\pi\)
0.693489 + 0.720467i \(0.256073\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 20.7446 2.77211
\(57\) 0 0
\(58\) 22.0742 2.89849
\(59\) 7.37228 0.959789 0.479895 0.877326i \(-0.340675\pi\)
0.479895 + 0.877326i \(0.340675\pi\)
\(60\) 0 0
\(61\) −0.744563 −0.0953315 −0.0476657 0.998863i \(-0.515178\pi\)
−0.0476657 + 0.998863i \(0.515178\pi\)
\(62\) −8.51278 −1.08112
\(63\) 0 0
\(64\) −2.37228 −0.296535
\(65\) 0 0
\(66\) 0 0
\(67\) −9.30506 −1.13679 −0.568397 0.822754i \(-0.692436\pi\)
−0.568397 + 0.822754i \(0.692436\pi\)
\(68\) 6.92820 0.840168
\(69\) 0 0
\(70\) 0 0
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) 0 0
\(73\) 6.92820 0.810885 0.405442 0.914121i \(-0.367117\pi\)
0.405442 + 0.914121i \(0.367117\pi\)
\(74\) −2.74456 −0.319049
\(75\) 0 0
\(76\) 17.4891 2.00614
\(77\) −3.46410 −0.394771
\(78\) 0 0
\(79\) 1.25544 0.141248 0.0706239 0.997503i \(-0.477501\pi\)
0.0706239 + 0.997503i \(0.477501\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 22.0742 2.43769
\(83\) 6.63325 0.728094 0.364047 0.931381i \(-0.381395\pi\)
0.364047 + 0.931381i \(0.381395\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.74456 0.942950
\(87\) 0 0
\(88\) −5.98844 −0.638370
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.46410 0.361158
\(93\) 0 0
\(94\) 16.7446 1.72707
\(95\) 0 0
\(96\) 0 0
\(97\) −5.84096 −0.593060 −0.296530 0.955024i \(-0.595829\pi\)
−0.296530 + 0.955024i \(0.595829\pi\)
\(98\) −12.6217 −1.27498
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 10.3923 1.02398 0.511992 0.858990i \(-0.328908\pi\)
0.511992 + 0.858990i \(0.328908\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −25.4891 −2.47572
\(107\) −6.63325 −0.641260 −0.320630 0.947204i \(-0.603895\pi\)
−0.320630 + 0.947204i \(0.603895\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −22.0742 −2.08582
\(113\) −0.497333 −0.0467852 −0.0233926 0.999726i \(-0.507447\pi\)
−0.0233926 + 0.999726i \(0.507447\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −38.2337 −3.54991
\(117\) 0 0
\(118\) −18.6101 −1.71320
\(119\) −5.48913 −0.503187
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 1.87953 0.170164
\(123\) 0 0
\(124\) 14.7446 1.32410
\(125\) 0 0
\(126\) 0 0
\(127\) 8.21782 0.729214 0.364607 0.931162i \(-0.381203\pi\)
0.364607 + 0.931162i \(0.381203\pi\)
\(128\) 14.2063 1.25567
\(129\) 0 0
\(130\) 0 0
\(131\) 2.74456 0.239794 0.119897 0.992786i \(-0.461744\pi\)
0.119897 + 0.992786i \(0.461744\pi\)
\(132\) 0 0
\(133\) −13.8564 −1.20150
\(134\) 23.4891 2.02915
\(135\) 0 0
\(136\) −9.48913 −0.813686
\(137\) 14.3537 1.22632 0.613161 0.789958i \(-0.289898\pi\)
0.613161 + 0.789958i \(0.289898\pi\)
\(138\) 0 0
\(139\) −16.2337 −1.37692 −0.688462 0.725273i \(-0.741714\pi\)
−0.688462 + 0.725273i \(0.741714\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −25.5383 −2.14313
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −17.4891 −1.44741
\(147\) 0 0
\(148\) 4.75372 0.390754
\(149\) 11.4891 0.941226 0.470613 0.882340i \(-0.344033\pi\)
0.470613 + 0.882340i \(0.344033\pi\)
\(150\) 0 0
\(151\) −12.2337 −0.995563 −0.497782 0.867302i \(-0.665852\pi\)
−0.497782 + 0.867302i \(0.665852\pi\)
\(152\) −23.9538 −1.94291
\(153\) 0 0
\(154\) 8.74456 0.704657
\(155\) 0 0
\(156\) 0 0
\(157\) 24.4511 1.95141 0.975705 0.219090i \(-0.0703087\pi\)
0.975705 + 0.219090i \(0.0703087\pi\)
\(158\) −3.16915 −0.252124
\(159\) 0 0
\(160\) 0 0
\(161\) −2.74456 −0.216302
\(162\) 0 0
\(163\) 3.46410 0.271329 0.135665 0.990755i \(-0.456683\pi\)
0.135665 + 0.990755i \(0.456683\pi\)
\(164\) −38.2337 −2.98555
\(165\) 0 0
\(166\) −16.7446 −1.29963
\(167\) −15.7359 −1.21768 −0.608842 0.793292i \(-0.708365\pi\)
−0.608842 + 0.793292i \(0.708365\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −15.1460 −1.15487
\(173\) −8.51278 −0.647214 −0.323607 0.946192i \(-0.604896\pi\)
−0.323607 + 0.946192i \(0.604896\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.37228 0.480329
\(177\) 0 0
\(178\) 3.46410 0.259645
\(179\) −12.8614 −0.961307 −0.480653 0.876911i \(-0.659600\pi\)
−0.480653 + 0.876911i \(0.659600\pi\)
\(180\) 0 0
\(181\) 24.1168 1.79259 0.896295 0.443457i \(-0.146248\pi\)
0.896295 + 0.443457i \(0.146248\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.74456 −0.349774
\(185\) 0 0
\(186\) 0 0
\(187\) 1.58457 0.115876
\(188\) −29.0024 −2.11522
\(189\) 0 0
\(190\) 0 0
\(191\) 19.3723 1.40173 0.700865 0.713294i \(-0.252798\pi\)
0.700865 + 0.713294i \(0.252798\pi\)
\(192\) 0 0
\(193\) 16.4356 1.18306 0.591532 0.806282i \(-0.298523\pi\)
0.591532 + 0.806282i \(0.298523\pi\)
\(194\) 14.7446 1.05860
\(195\) 0 0
\(196\) 21.8614 1.56153
\(197\) 8.51278 0.606510 0.303255 0.952909i \(-0.401927\pi\)
0.303255 + 0.952909i \(0.401927\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 15.1460 1.06567
\(203\) 30.2921 2.12609
\(204\) 0 0
\(205\) 0 0
\(206\) −26.2337 −1.82779
\(207\) 0 0
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 1.48913 0.102516 0.0512578 0.998685i \(-0.483677\pi\)
0.0512578 + 0.998685i \(0.483677\pi\)
\(212\) 44.1485 3.03213
\(213\) 0 0
\(214\) 16.7446 1.14463
\(215\) 0 0
\(216\) 0 0
\(217\) −11.6819 −0.793021
\(218\) −25.2434 −1.70970
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.37686 0.159166 0.0795832 0.996828i \(-0.474641\pi\)
0.0795832 + 0.996828i \(0.474641\pi\)
\(224\) 14.2337 0.951028
\(225\) 0 0
\(226\) 1.25544 0.0835105
\(227\) 16.7306 1.11045 0.555224 0.831701i \(-0.312632\pi\)
0.555224 + 0.831701i \(0.312632\pi\)
\(228\) 0 0
\(229\) 14.6277 0.966627 0.483313 0.875447i \(-0.339433\pi\)
0.483313 + 0.875447i \(0.339433\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 52.3663 3.43801
\(233\) −3.75906 −0.246264 −0.123132 0.992390i \(-0.539294\pi\)
−0.123132 + 0.992390i \(0.539294\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 32.2337 2.09823
\(237\) 0 0
\(238\) 13.8564 0.898177
\(239\) 14.7446 0.953746 0.476873 0.878972i \(-0.341770\pi\)
0.476873 + 0.878972i \(0.341770\pi\)
\(240\) 0 0
\(241\) 16.7446 1.07861 0.539306 0.842110i \(-0.318687\pi\)
0.539306 + 0.842110i \(0.318687\pi\)
\(242\) −2.52434 −0.162271
\(243\) 0 0
\(244\) −3.25544 −0.208408
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −20.1947 −1.28236
\(249\) 0 0
\(250\) 0 0
\(251\) 22.1168 1.39600 0.698001 0.716096i \(-0.254073\pi\)
0.698001 + 0.716096i \(0.254073\pi\)
\(252\) 0 0
\(253\) 0.792287 0.0498107
\(254\) −20.7446 −1.30163
\(255\) 0 0
\(256\) −31.1168 −1.94480
\(257\) 10.6873 0.666653 0.333326 0.942811i \(-0.391829\pi\)
0.333326 + 0.942811i \(0.391829\pi\)
\(258\) 0 0
\(259\) −3.76631 −0.234027
\(260\) 0 0
\(261\) 0 0
\(262\) −6.92820 −0.428026
\(263\) 27.4179 1.69066 0.845329 0.534246i \(-0.179405\pi\)
0.845329 + 0.534246i \(0.179405\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 34.9783 2.14465
\(267\) 0 0
\(268\) −40.6844 −2.48519
\(269\) 11.4891 0.700504 0.350252 0.936655i \(-0.386096\pi\)
0.350252 + 0.936655i \(0.386096\pi\)
\(270\) 0 0
\(271\) 13.4891 0.819406 0.409703 0.912219i \(-0.365632\pi\)
0.409703 + 0.912219i \(0.365632\pi\)
\(272\) 10.0974 0.612242
\(273\) 0 0
\(274\) −36.2337 −2.18896
\(275\) 0 0
\(276\) 0 0
\(277\) 11.6819 0.701899 0.350949 0.936394i \(-0.385859\pi\)
0.350949 + 0.936394i \(0.385859\pi\)
\(278\) 40.9793 2.45778
\(279\) 0 0
\(280\) 0 0
\(281\) 0.510875 0.0304762 0.0152381 0.999884i \(-0.495149\pi\)
0.0152381 + 0.999884i \(0.495149\pi\)
\(282\) 0 0
\(283\) −15.1460 −0.900338 −0.450169 0.892943i \(-0.648636\pi\)
−0.450169 + 0.892943i \(0.648636\pi\)
\(284\) 44.2337 2.62479
\(285\) 0 0
\(286\) 0 0
\(287\) 30.2921 1.78808
\(288\) 0 0
\(289\) −14.4891 −0.852301
\(290\) 0 0
\(291\) 0 0
\(292\) 30.2921 1.77271
\(293\) 3.16915 0.185144 0.0925718 0.995706i \(-0.470491\pi\)
0.0925718 + 0.995706i \(0.470491\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.51087 −0.378437
\(297\) 0 0
\(298\) −29.0024 −1.68007
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 30.8820 1.77706
\(303\) 0 0
\(304\) 25.4891 1.46190
\(305\) 0 0
\(306\) 0 0
\(307\) −31.5817 −1.80246 −0.901231 0.433340i \(-0.857335\pi\)
−0.901231 + 0.433340i \(0.857335\pi\)
\(308\) −15.1460 −0.863025
\(309\) 0 0
\(310\) 0 0
\(311\) −5.48913 −0.311260 −0.155630 0.987815i \(-0.549741\pi\)
−0.155630 + 0.987815i \(0.549741\pi\)
\(312\) 0 0
\(313\) 21.8719 1.23627 0.618135 0.786072i \(-0.287888\pi\)
0.618135 + 0.786072i \(0.287888\pi\)
\(314\) −61.7228 −3.48322
\(315\) 0 0
\(316\) 5.48913 0.308787
\(317\) 32.9639 1.85144 0.925718 0.378215i \(-0.123462\pi\)
0.925718 + 0.378215i \(0.123462\pi\)
\(318\) 0 0
\(319\) −8.74456 −0.489602
\(320\) 0 0
\(321\) 0 0
\(322\) 6.92820 0.386094
\(323\) 6.33830 0.352672
\(324\) 0 0
\(325\) 0 0
\(326\) −8.74456 −0.484317
\(327\) 0 0
\(328\) 52.3663 2.89144
\(329\) 22.9783 1.26683
\(330\) 0 0
\(331\) −14.1168 −0.775932 −0.387966 0.921674i \(-0.626822\pi\)
−0.387966 + 0.921674i \(0.626822\pi\)
\(332\) 29.0024 1.59172
\(333\) 0 0
\(334\) 39.7228 2.17354
\(335\) 0 0
\(336\) 0 0
\(337\) 32.4665 1.76856 0.884282 0.466952i \(-0.154648\pi\)
0.884282 + 0.466952i \(0.154648\pi\)
\(338\) 32.8164 1.78498
\(339\) 0 0
\(340\) 0 0
\(341\) 3.37228 0.182619
\(342\) 0 0
\(343\) 6.92820 0.374088
\(344\) 20.7446 1.11847
\(345\) 0 0
\(346\) 21.4891 1.15526
\(347\) −22.6641 −1.21667 −0.608337 0.793679i \(-0.708163\pi\)
−0.608337 + 0.793679i \(0.708163\pi\)
\(348\) 0 0
\(349\) 15.4891 0.829114 0.414557 0.910023i \(-0.363937\pi\)
0.414557 + 0.910023i \(0.363937\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.10891 −0.219006
\(353\) 25.0410 1.33280 0.666399 0.745595i \(-0.267835\pi\)
0.666399 + 0.745595i \(0.267835\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 32.4665 1.71591
\(359\) −29.4891 −1.55638 −0.778188 0.628031i \(-0.783861\pi\)
−0.778188 + 0.628031i \(0.783861\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −60.8791 −3.19973
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −25.7407 −1.34365 −0.671827 0.740708i \(-0.734490\pi\)
−0.671827 + 0.740708i \(0.734490\pi\)
\(368\) 5.04868 0.263180
\(369\) 0 0
\(370\) 0 0
\(371\) −34.9783 −1.81598
\(372\) 0 0
\(373\) 11.6819 0.604867 0.302434 0.953170i \(-0.402201\pi\)
0.302434 + 0.953170i \(0.402201\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) 39.7228 2.04855
\(377\) 0 0
\(378\) 0 0
\(379\) −0.627719 −0.0322437 −0.0161219 0.999870i \(-0.505132\pi\)
−0.0161219 + 0.999870i \(0.505132\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −48.9022 −2.50205
\(383\) −10.8896 −0.556435 −0.278217 0.960518i \(-0.589744\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −41.4891 −2.11174
\(387\) 0 0
\(388\) −25.5383 −1.29651
\(389\) −18.8614 −0.956311 −0.478156 0.878275i \(-0.658695\pi\)
−0.478156 + 0.878275i \(0.658695\pi\)
\(390\) 0 0
\(391\) 1.25544 0.0634902
\(392\) −29.9422 −1.51231
\(393\) 0 0
\(394\) −21.4891 −1.08261
\(395\) 0 0
\(396\) 0 0
\(397\) 16.4356 0.824881 0.412441 0.910984i \(-0.364676\pi\)
0.412441 + 0.910984i \(0.364676\pi\)
\(398\) 20.1947 1.01227
\(399\) 0 0
\(400\) 0 0
\(401\) 11.4891 0.573740 0.286870 0.957970i \(-0.407385\pi\)
0.286870 + 0.957970i \(0.407385\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −26.2337 −1.30517
\(405\) 0 0
\(406\) −76.4674 −3.79501
\(407\) 1.08724 0.0538925
\(408\) 0 0
\(409\) 27.4891 1.35925 0.679625 0.733560i \(-0.262143\pi\)
0.679625 + 0.733560i \(0.262143\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 45.4381 2.23857
\(413\) −25.5383 −1.25666
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −10.0974 −0.493878
\(419\) 22.9783 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(420\) 0 0
\(421\) 8.51087 0.414795 0.207397 0.978257i \(-0.433501\pi\)
0.207397 + 0.978257i \(0.433501\pi\)
\(422\) −3.75906 −0.182988
\(423\) 0 0
\(424\) −60.4674 −2.93656
\(425\) 0 0
\(426\) 0 0
\(427\) 2.57924 0.124818
\(428\) −29.0024 −1.40189
\(429\) 0 0
\(430\) 0 0
\(431\) 25.7228 1.23902 0.619512 0.784987i \(-0.287330\pi\)
0.619512 + 0.784987i \(0.287330\pi\)
\(432\) 0 0
\(433\) −29.2048 −1.40349 −0.701747 0.712426i \(-0.747596\pi\)
−0.701747 + 0.712426i \(0.747596\pi\)
\(434\) 29.4891 1.41552
\(435\) 0 0
\(436\) 43.7228 2.09394
\(437\) 3.16915 0.151601
\(438\) 0 0
\(439\) 21.4891 1.02562 0.512810 0.858502i \(-0.328605\pi\)
0.512810 + 0.858502i \(0.328605\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.6742 −1.50489 −0.752444 0.658656i \(-0.771125\pi\)
−0.752444 + 0.658656i \(0.771125\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.00000 −0.284108
\(447\) 0 0
\(448\) 8.21782 0.388256
\(449\) −6.86141 −0.323810 −0.161905 0.986806i \(-0.551764\pi\)
−0.161905 + 0.986806i \(0.551764\pi\)
\(450\) 0 0
\(451\) −8.74456 −0.411765
\(452\) −2.17448 −0.102279
\(453\) 0 0
\(454\) −42.2337 −1.98213
\(455\) 0 0
\(456\) 0 0
\(457\) 20.7846 0.972263 0.486132 0.873886i \(-0.338408\pi\)
0.486132 + 0.873886i \(0.338408\pi\)
\(458\) −36.9253 −1.72541
\(459\) 0 0
\(460\) 0 0
\(461\) −2.23369 −0.104033 −0.0520166 0.998646i \(-0.516565\pi\)
−0.0520166 + 0.998646i \(0.516565\pi\)
\(462\) 0 0
\(463\) 30.0897 1.39839 0.699193 0.714933i \(-0.253543\pi\)
0.699193 + 0.714933i \(0.253543\pi\)
\(464\) −55.7228 −2.58687
\(465\) 0 0
\(466\) 9.48913 0.439575
\(467\) −7.72049 −0.357262 −0.178631 0.983916i \(-0.557167\pi\)
−0.178631 + 0.983916i \(0.557167\pi\)
\(468\) 0 0
\(469\) 32.2337 1.48841
\(470\) 0 0
\(471\) 0 0
\(472\) −44.1485 −2.03210
\(473\) −3.46410 −0.159280
\(474\) 0 0
\(475\) 0 0
\(476\) −24.0000 −1.10004
\(477\) 0 0
\(478\) −37.2203 −1.70241
\(479\) 5.48913 0.250805 0.125402 0.992106i \(-0.459978\pi\)
0.125402 + 0.992106i \(0.459978\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −42.2689 −1.92530
\(483\) 0 0
\(484\) 4.37228 0.198740
\(485\) 0 0
\(486\) 0 0
\(487\) 7.13058 0.323118 0.161559 0.986863i \(-0.448348\pi\)
0.161559 + 0.986863i \(0.448348\pi\)
\(488\) 4.45877 0.201839
\(489\) 0 0
\(490\) 0 0
\(491\) −6.51087 −0.293832 −0.146916 0.989149i \(-0.546935\pi\)
−0.146916 + 0.989149i \(0.546935\pi\)
\(492\) 0 0
\(493\) −13.8564 −0.624061
\(494\) 0 0
\(495\) 0 0
\(496\) 21.4891 0.964890
\(497\) −35.0458 −1.57202
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −55.8304 −2.49183
\(503\) 13.5615 0.604675 0.302338 0.953201i \(-0.402233\pi\)
0.302338 + 0.953201i \(0.402233\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) 35.9306 1.59416
\(509\) −22.6277 −1.00296 −0.501478 0.865170i \(-0.667210\pi\)
−0.501478 + 0.865170i \(0.667210\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 50.1369 2.21576
\(513\) 0 0
\(514\) −26.9783 −1.18996
\(515\) 0 0
\(516\) 0 0
\(517\) −6.63325 −0.291730
\(518\) 9.50744 0.417733
\(519\) 0 0
\(520\) 0 0
\(521\) 21.6060 0.946575 0.473287 0.880908i \(-0.343067\pi\)
0.473287 + 0.880908i \(0.343067\pi\)
\(522\) 0 0
\(523\) −29.0024 −1.26819 −0.634094 0.773256i \(-0.718627\pi\)
−0.634094 + 0.773256i \(0.718627\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) −69.2119 −3.01778
\(527\) 5.34363 0.232772
\(528\) 0 0
\(529\) −22.3723 −0.972708
\(530\) 0 0
\(531\) 0 0
\(532\) −60.5841 −2.62665
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 55.7228 2.40686
\(537\) 0 0
\(538\) −29.0024 −1.25038
\(539\) 5.00000 0.215365
\(540\) 0 0
\(541\) 34.2337 1.47182 0.735911 0.677079i \(-0.236754\pi\)
0.735911 + 0.677079i \(0.236754\pi\)
\(542\) −34.0511 −1.46262
\(543\) 0 0
\(544\) −6.51087 −0.279151
\(545\) 0 0
\(546\) 0 0
\(547\) 29.0024 1.24005 0.620027 0.784580i \(-0.287122\pi\)
0.620027 + 0.784580i \(0.287122\pi\)
\(548\) 62.7586 2.68091
\(549\) 0 0
\(550\) 0 0
\(551\) −34.9783 −1.49012
\(552\) 0 0
\(553\) −4.34896 −0.184937
\(554\) −29.4891 −1.25287
\(555\) 0 0
\(556\) −70.9783 −3.01015
\(557\) −0.994667 −0.0421454 −0.0210727 0.999778i \(-0.506708\pi\)
−0.0210727 + 0.999778i \(0.506708\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −1.28962 −0.0543994
\(563\) −18.9051 −0.796754 −0.398377 0.917222i \(-0.630426\pi\)
−0.398377 + 0.917222i \(0.630426\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 38.2337 1.60708
\(567\) 0 0
\(568\) −60.5841 −2.54205
\(569\) 27.2554 1.14261 0.571304 0.820739i \(-0.306438\pi\)
0.571304 + 0.820739i \(0.306438\pi\)
\(570\) 0 0
\(571\) 1.48913 0.0623180 0.0311590 0.999514i \(-0.490080\pi\)
0.0311590 + 0.999514i \(0.490080\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −76.4674 −3.19169
\(575\) 0 0
\(576\) 0 0
\(577\) −21.8719 −0.910537 −0.455269 0.890354i \(-0.650457\pi\)
−0.455269 + 0.890354i \(0.650457\pi\)
\(578\) 36.5754 1.52134
\(579\) 0 0
\(580\) 0 0
\(581\) −22.9783 −0.953298
\(582\) 0 0
\(583\) 10.0974 0.418190
\(584\) −41.4891 −1.71683
\(585\) 0 0
\(586\) −8.00000 −0.330477
\(587\) −41.2743 −1.70357 −0.851786 0.523890i \(-0.824480\pi\)
−0.851786 + 0.523890i \(0.824480\pi\)
\(588\) 0 0
\(589\) 13.4891 0.555810
\(590\) 0 0
\(591\) 0 0
\(592\) 6.92820 0.284747
\(593\) −22.7739 −0.935214 −0.467607 0.883937i \(-0.654884\pi\)
−0.467607 + 0.883937i \(0.654884\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 50.2337 2.05765
\(597\) 0 0
\(598\) 0 0
\(599\) −10.9783 −0.448559 −0.224280 0.974525i \(-0.572003\pi\)
−0.224280 + 0.974525i \(0.572003\pi\)
\(600\) 0 0
\(601\) −38.4674 −1.56912 −0.784558 0.620055i \(-0.787110\pi\)
−0.784558 + 0.620055i \(0.787110\pi\)
\(602\) −30.2921 −1.23461
\(603\) 0 0
\(604\) −53.4891 −2.17644
\(605\) 0 0
\(606\) 0 0
\(607\) −3.46410 −0.140604 −0.0703018 0.997526i \(-0.522396\pi\)
−0.0703018 + 0.997526i \(0.522396\pi\)
\(608\) −16.4356 −0.666554
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 4.34896 0.175653 0.0878265 0.996136i \(-0.472008\pi\)
0.0878265 + 0.996136i \(0.472008\pi\)
\(614\) 79.7228 3.21735
\(615\) 0 0
\(616\) 20.7446 0.835822
\(617\) −17.0256 −0.685423 −0.342712 0.939441i \(-0.611345\pi\)
−0.342712 + 0.939441i \(0.611345\pi\)
\(618\) 0 0
\(619\) 14.1168 0.567404 0.283702 0.958913i \(-0.408437\pi\)
0.283702 + 0.958913i \(0.408437\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 13.8564 0.555591
\(623\) 4.75372 0.190454
\(624\) 0 0
\(625\) 0 0
\(626\) −55.2119 −2.20671
\(627\) 0 0
\(628\) 106.907 4.26606
\(629\) 1.72281 0.0686931
\(630\) 0 0
\(631\) 23.6060 0.939739 0.469869 0.882736i \(-0.344301\pi\)
0.469869 + 0.882736i \(0.344301\pi\)
\(632\) −7.51811 −0.299054
\(633\) 0 0
\(634\) −83.2119 −3.30477
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 22.0742 0.873927
\(639\) 0 0
\(640\) 0 0
\(641\) 25.3723 1.00214 0.501072 0.865405i \(-0.332939\pi\)
0.501072 + 0.865405i \(0.332939\pi\)
\(642\) 0 0
\(643\) 30.4944 1.20258 0.601292 0.799030i \(-0.294653\pi\)
0.601292 + 0.799030i \(0.294653\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) −21.9817 −0.864188 −0.432094 0.901829i \(-0.642225\pi\)
−0.432094 + 0.901829i \(0.642225\pi\)
\(648\) 0 0
\(649\) 7.37228 0.289387
\(650\) 0 0
\(651\) 0 0
\(652\) 15.1460 0.593164
\(653\) −30.7894 −1.20488 −0.602441 0.798163i \(-0.705805\pi\)
−0.602441 + 0.798163i \(0.705805\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −55.7228 −2.17561
\(657\) 0 0
\(658\) −58.0049 −2.26127
\(659\) −21.2554 −0.827994 −0.413997 0.910278i \(-0.635868\pi\)
−0.413997 + 0.910278i \(0.635868\pi\)
\(660\) 0 0
\(661\) −16.3505 −0.635962 −0.317981 0.948097i \(-0.603005\pi\)
−0.317981 + 0.948097i \(0.603005\pi\)
\(662\) 35.6357 1.38502
\(663\) 0 0
\(664\) −39.7228 −1.54154
\(665\) 0 0
\(666\) 0 0
\(667\) −6.92820 −0.268261
\(668\) −68.8019 −2.66203
\(669\) 0 0
\(670\) 0 0
\(671\) −0.744563 −0.0287435
\(672\) 0 0
\(673\) −18.6101 −0.717368 −0.358684 0.933459i \(-0.616774\pi\)
−0.358684 + 0.933459i \(0.616774\pi\)
\(674\) −81.9565 −3.15685
\(675\) 0 0
\(676\) −56.8397 −2.18614
\(677\) 50.0820 1.92481 0.962404 0.271623i \(-0.0875604\pi\)
0.962404 + 0.271623i \(0.0875604\pi\)
\(678\) 0 0
\(679\) 20.2337 0.776498
\(680\) 0 0
\(681\) 0 0
\(682\) −8.51278 −0.325971
\(683\) 17.9104 0.685323 0.342661 0.939459i \(-0.388672\pi\)
0.342661 + 0.939459i \(0.388672\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −17.4891 −0.667738
\(687\) 0 0
\(688\) −22.0742 −0.841572
\(689\) 0 0
\(690\) 0 0
\(691\) 44.8614 1.70661 0.853304 0.521413i \(-0.174595\pi\)
0.853304 + 0.521413i \(0.174595\pi\)
\(692\) −37.2203 −1.41490
\(693\) 0 0
\(694\) 57.2119 2.17174
\(695\) 0 0
\(696\) 0 0
\(697\) −13.8564 −0.524849
\(698\) −39.0998 −1.47995
\(699\) 0 0
\(700\) 0 0
\(701\) 12.5109 0.472529 0.236265 0.971689i \(-0.424077\pi\)
0.236265 + 0.971689i \(0.424077\pi\)
\(702\) 0 0
\(703\) 4.34896 0.164024
\(704\) −2.37228 −0.0894087
\(705\) 0 0
\(706\) −63.2119 −2.37901
\(707\) 20.7846 0.781686
\(708\) 0 0
\(709\) 23.8832 0.896951 0.448475 0.893795i \(-0.351967\pi\)
0.448475 + 0.893795i \(0.351967\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 8.21782 0.307976
\(713\) 2.67181 0.100060
\(714\) 0 0
\(715\) 0 0
\(716\) −56.2337 −2.10155
\(717\) 0 0
\(718\) 74.4405 2.77810
\(719\) 30.3505 1.13188 0.565942 0.824445i \(-0.308513\pi\)
0.565942 + 0.824445i \(0.308513\pi\)
\(720\) 0 0
\(721\) −36.0000 −1.34071
\(722\) 7.57301 0.281838
\(723\) 0 0
\(724\) 105.446 3.91886
\(725\) 0 0
\(726\) 0 0
\(727\) −14.0588 −0.521412 −0.260706 0.965418i \(-0.583955\pi\)
−0.260706 + 0.965418i \(0.583955\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.48913 −0.203023
\(732\) 0 0
\(733\) 9.50744 0.351165 0.175583 0.984465i \(-0.443819\pi\)
0.175583 + 0.984465i \(0.443819\pi\)
\(734\) 64.9783 2.39839
\(735\) 0 0
\(736\) −3.25544 −0.119997
\(737\) −9.30506 −0.342756
\(738\) 0 0
\(739\) −10.7446 −0.395245 −0.197623 0.980278i \(-0.563322\pi\)
−0.197623 + 0.980278i \(0.563322\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 88.2969 3.24148
\(743\) 11.3870 0.417747 0.208874 0.977943i \(-0.433020\pi\)
0.208874 + 0.977943i \(0.433020\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −29.4891 −1.07967
\(747\) 0 0
\(748\) 6.92820 0.253320
\(749\) 22.9783 0.839607
\(750\) 0 0
\(751\) 27.3723 0.998829 0.499414 0.866363i \(-0.333549\pi\)
0.499414 + 0.866363i \(0.333549\pi\)
\(752\) −42.2689 −1.54139
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −39.7995 −1.44654 −0.723269 0.690567i \(-0.757361\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 1.58457 0.0575543
\(759\) 0 0
\(760\) 0 0
\(761\) −32.7446 −1.18699 −0.593495 0.804838i \(-0.702252\pi\)
−0.593495 + 0.804838i \(0.702252\pi\)
\(762\) 0 0
\(763\) −34.6410 −1.25409
\(764\) 84.7011 3.06438
\(765\) 0 0
\(766\) 27.4891 0.993222
\(767\) 0 0
\(768\) 0 0
\(769\) 29.2119 1.05341 0.526705 0.850048i \(-0.323427\pi\)
0.526705 + 0.850048i \(0.323427\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 71.8613 2.58634
\(773\) −17.6155 −0.633584 −0.316792 0.948495i \(-0.602606\pi\)
−0.316792 + 0.948495i \(0.602606\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 34.9783 1.25565
\(777\) 0 0
\(778\) 47.6126 1.70699
\(779\) −34.9783 −1.25323
\(780\) 0 0
\(781\) 10.1168 0.362009
\(782\) −3.16915 −0.113328
\(783\) 0 0
\(784\) 31.8614 1.13791
\(785\) 0 0
\(786\) 0 0
\(787\) 15.1460 0.539898 0.269949 0.962875i \(-0.412993\pi\)
0.269949 + 0.962875i \(0.412993\pi\)
\(788\) 37.2203 1.32592
\(789\) 0 0
\(790\) 0 0
\(791\) 1.72281 0.0612562
\(792\) 0 0
\(793\) 0 0
\(794\) −41.4891 −1.47239
\(795\) 0 0
\(796\) −34.9783 −1.23977
\(797\) 5.25106 0.186002 0.0930010 0.995666i \(-0.470354\pi\)
0.0930010 + 0.995666i \(0.470354\pi\)
\(798\) 0 0
\(799\) −10.5109 −0.371848
\(800\) 0 0
\(801\) 0 0
\(802\) −29.0024 −1.02411
\(803\) 6.92820 0.244491
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 35.9306 1.26404
\(809\) 32.7446 1.15124 0.575619 0.817718i \(-0.304761\pi\)
0.575619 + 0.817718i \(0.304761\pi\)
\(810\) 0 0
\(811\) −0.233688 −0.00820589 −0.00410295 0.999992i \(-0.501306\pi\)
−0.00410295 + 0.999992i \(0.501306\pi\)
\(812\) 132.445 4.64792
\(813\) 0 0
\(814\) −2.74456 −0.0961969
\(815\) 0 0
\(816\) 0 0
\(817\) −13.8564 −0.484774
\(818\) −69.3918 −2.42623
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) −56.0328 −1.95318 −0.976590 0.215111i \(-0.930989\pi\)
−0.976590 + 0.215111i \(0.930989\pi\)
\(824\) −62.2337 −2.16801
\(825\) 0 0
\(826\) 64.4674 2.24311
\(827\) 28.4125 0.988000 0.494000 0.869462i \(-0.335534\pi\)
0.494000 + 0.869462i \(0.335534\pi\)
\(828\) 0 0
\(829\) −20.3505 −0.706803 −0.353402 0.935472i \(-0.614975\pi\)
−0.353402 + 0.935472i \(0.614975\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 7.92287 0.274511
\(834\) 0 0
\(835\) 0 0
\(836\) 17.4891 0.604874
\(837\) 0 0
\(838\) −58.0049 −2.00374
\(839\) 10.1168 0.349272 0.174636 0.984633i \(-0.444125\pi\)
0.174636 + 0.984633i \(0.444125\pi\)
\(840\) 0 0
\(841\) 47.4674 1.63681
\(842\) −21.4843 −0.740399
\(843\) 0 0
\(844\) 6.51087 0.224114
\(845\) 0 0
\(846\) 0 0
\(847\) −3.46410 −0.119028
\(848\) 64.3432 2.20955
\(849\) 0 0
\(850\) 0 0
\(851\) 0.861407 0.0295286
\(852\) 0 0
\(853\) −35.0458 −1.19994 −0.599972 0.800021i \(-0.704822\pi\)
−0.599972 + 0.800021i \(0.704822\pi\)
\(854\) −6.51087 −0.222798
\(855\) 0 0
\(856\) 39.7228 1.35770
\(857\) −23.9538 −0.818245 −0.409122 0.912480i \(-0.634165\pi\)
−0.409122 + 0.912480i \(0.634165\pi\)
\(858\) 0 0
\(859\) −6.11684 −0.208704 −0.104352 0.994540i \(-0.533277\pi\)
−0.104352 + 0.994540i \(0.533277\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −64.9331 −2.21163
\(863\) −2.87419 −0.0978387 −0.0489194 0.998803i \(-0.515578\pi\)
−0.0489194 + 0.998803i \(0.515578\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 73.7228 2.50520
\(867\) 0 0
\(868\) −51.0767 −1.73365
\(869\) 1.25544 0.0425878
\(870\) 0 0
\(871\) 0 0
\(872\) −59.8844 −2.02794
\(873\) 0 0
\(874\) −8.00000 −0.270604
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) −54.2458 −1.83071
\(879\) 0 0
\(880\) 0 0
\(881\) 6.86141 0.231167 0.115583 0.993298i \(-0.463126\pi\)
0.115583 + 0.993298i \(0.463126\pi\)
\(882\) 0 0
\(883\) −24.2487 −0.816034 −0.408017 0.912974i \(-0.633780\pi\)
−0.408017 + 0.912974i \(0.633780\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 79.9565 2.68619
\(887\) −27.4179 −0.920602 −0.460301 0.887763i \(-0.652258\pi\)
−0.460301 + 0.887763i \(0.652258\pi\)
\(888\) 0 0
\(889\) −28.4674 −0.954765
\(890\) 0 0
\(891\) 0 0
\(892\) 10.3923 0.347960
\(893\) −26.5330 −0.887893
\(894\) 0 0
\(895\) 0 0
\(896\) −49.2119 −1.64406
\(897\) 0 0
\(898\) 17.3205 0.577993
\(899\) −29.4891 −0.983517
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 22.0742 0.734991
\(903\) 0 0
\(904\) 2.97825 0.0990551
\(905\) 0 0
\(906\) 0 0
\(907\) 19.8997 0.660760 0.330380 0.943848i \(-0.392823\pi\)
0.330380 + 0.943848i \(0.392823\pi\)
\(908\) 73.1509 2.42760
\(909\) 0 0
\(910\) 0 0
\(911\) 53.4891 1.77217 0.886087 0.463519i \(-0.153413\pi\)
0.886087 + 0.463519i \(0.153413\pi\)
\(912\) 0 0
\(913\) 6.63325 0.219529
\(914\) −52.4674 −1.73547
\(915\) 0 0
\(916\) 63.9565 2.11318
\(917\) −9.50744 −0.313963
\(918\) 0 0
\(919\) −28.2337 −0.931343 −0.465672 0.884958i \(-0.654187\pi\)
−0.465672 + 0.884958i \(0.654187\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 5.63858 0.185697
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −75.9565 −2.49609
\(927\) 0 0
\(928\) 35.9306 1.17948
\(929\) 7.02175 0.230376 0.115188 0.993344i \(-0.463253\pi\)
0.115188 + 0.993344i \(0.463253\pi\)
\(930\) 0 0
\(931\) 20.0000 0.655474
\(932\) −16.4356 −0.538368
\(933\) 0 0
\(934\) 19.4891 0.637704
\(935\) 0 0
\(936\) 0 0
\(937\) −53.6559 −1.75286 −0.876431 0.481527i \(-0.840082\pi\)
−0.876431 + 0.481527i \(0.840082\pi\)
\(938\) −81.3687 −2.65678
\(939\) 0 0
\(940\) 0 0
\(941\) 58.4674 1.90598 0.952991 0.302999i \(-0.0979878\pi\)
0.952991 + 0.302999i \(0.0979878\pi\)
\(942\) 0 0
\(943\) −6.92820 −0.225613
\(944\) 46.9783 1.52901
\(945\) 0 0
\(946\) 8.74456 0.284310
\(947\) −26.7354 −0.868783 −0.434392 0.900724i \(-0.643037\pi\)
−0.434392 + 0.900724i \(0.643037\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 32.8713 1.06536
\(953\) 31.2867 1.01348 0.506738 0.862100i \(-0.330851\pi\)
0.506738 + 0.862100i \(0.330851\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 64.4674 2.08502
\(957\) 0 0
\(958\) −13.8564 −0.447680
\(959\) −49.7228 −1.60563
\(960\) 0 0
\(961\) −19.6277 −0.633152
\(962\) 0 0
\(963\) 0 0
\(964\) 73.2119 2.35800
\(965\) 0 0
\(966\) 0 0
\(967\) 26.4232 0.849713 0.424856 0.905261i \(-0.360325\pi\)
0.424856 + 0.905261i \(0.360325\pi\)
\(968\) −5.98844 −0.192476
\(969\) 0 0
\(970\) 0 0
\(971\) 9.09509 0.291875 0.145938 0.989294i \(-0.453380\pi\)
0.145938 + 0.989294i \(0.453380\pi\)
\(972\) 0 0
\(973\) 56.2351 1.80282
\(974\) −18.0000 −0.576757
\(975\) 0 0
\(976\) −4.74456 −0.151870
\(977\) −50.5793 −1.61818 −0.809088 0.587687i \(-0.800038\pi\)
−0.809088 + 0.587687i \(0.800038\pi\)
\(978\) 0 0
\(979\) −1.37228 −0.0438583
\(980\) 0 0
\(981\) 0 0
\(982\) 16.4356 0.524483
\(983\) −24.7460 −0.789276 −0.394638 0.918837i \(-0.629130\pi\)
−0.394638 + 0.918837i \(0.629130\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 34.9783 1.11393
\(987\) 0 0
\(988\) 0 0
\(989\) −2.74456 −0.0872720
\(990\) 0 0
\(991\) 18.9783 0.602864 0.301432 0.953488i \(-0.402535\pi\)
0.301432 + 0.953488i \(0.402535\pi\)
\(992\) −13.8564 −0.439941
\(993\) 0 0
\(994\) 88.4674 2.80601
\(995\) 0 0
\(996\) 0 0
\(997\) −2.17448 −0.0688665 −0.0344333 0.999407i \(-0.510963\pi\)
−0.0344333 + 0.999407i \(0.510963\pi\)
\(998\) 50.4868 1.59813
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.2.a.bi.1.1 4
3.2 odd 2 275.2.a.h.1.4 4
5.2 odd 4 495.2.c.a.199.1 4
5.3 odd 4 495.2.c.a.199.4 4
5.4 even 2 inner 2475.2.a.bi.1.4 4
12.11 even 2 4400.2.a.cc.1.2 4
15.2 even 4 55.2.b.a.34.4 yes 4
15.8 even 4 55.2.b.a.34.1 4
15.14 odd 2 275.2.a.h.1.1 4
33.32 even 2 3025.2.a.ba.1.1 4
60.23 odd 4 880.2.b.h.529.2 4
60.47 odd 4 880.2.b.h.529.3 4
60.59 even 2 4400.2.a.cc.1.3 4
165.2 odd 20 605.2.j.j.444.1 16
165.8 odd 20 605.2.j.j.9.4 16
165.17 odd 20 605.2.j.j.124.4 16
165.32 odd 4 605.2.b.c.364.1 4
165.38 even 20 605.2.j.i.124.4 16
165.47 even 20 605.2.j.i.9.4 16
165.53 even 20 605.2.j.i.444.1 16
165.62 odd 20 605.2.j.j.269.4 16
165.68 odd 20 605.2.j.j.444.4 16
165.83 odd 20 605.2.j.j.124.1 16
165.92 even 20 605.2.j.i.269.1 16
165.98 odd 4 605.2.b.c.364.4 4
165.107 odd 20 605.2.j.j.9.1 16
165.113 even 20 605.2.j.i.9.1 16
165.128 odd 20 605.2.j.j.269.1 16
165.137 even 20 605.2.j.i.124.1 16
165.152 even 20 605.2.j.i.444.4 16
165.158 even 20 605.2.j.i.269.4 16
165.164 even 2 3025.2.a.ba.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.1 4 15.8 even 4
55.2.b.a.34.4 yes 4 15.2 even 4
275.2.a.h.1.1 4 15.14 odd 2
275.2.a.h.1.4 4 3.2 odd 2
495.2.c.a.199.1 4 5.2 odd 4
495.2.c.a.199.4 4 5.3 odd 4
605.2.b.c.364.1 4 165.32 odd 4
605.2.b.c.364.4 4 165.98 odd 4
605.2.j.i.9.1 16 165.113 even 20
605.2.j.i.9.4 16 165.47 even 20
605.2.j.i.124.1 16 165.137 even 20
605.2.j.i.124.4 16 165.38 even 20
605.2.j.i.269.1 16 165.92 even 20
605.2.j.i.269.4 16 165.158 even 20
605.2.j.i.444.1 16 165.53 even 20
605.2.j.i.444.4 16 165.152 even 20
605.2.j.j.9.1 16 165.107 odd 20
605.2.j.j.9.4 16 165.8 odd 20
605.2.j.j.124.1 16 165.83 odd 20
605.2.j.j.124.4 16 165.17 odd 20
605.2.j.j.269.1 16 165.128 odd 20
605.2.j.j.269.4 16 165.62 odd 20
605.2.j.j.444.1 16 165.2 odd 20
605.2.j.j.444.4 16 165.68 odd 20
880.2.b.h.529.2 4 60.23 odd 4
880.2.b.h.529.3 4 60.47 odd 4
2475.2.a.bi.1.1 4 1.1 even 1 trivial
2475.2.a.bi.1.4 4 5.4 even 2 inner
3025.2.a.ba.1.1 4 33.32 even 2
3025.2.a.ba.1.4 4 165.164 even 2
4400.2.a.cc.1.2 4 12.11 even 2
4400.2.a.cc.1.3 4 60.59 even 2