Properties

Label 2450.4.a.ch
Level $2450$
Weight $4$
Character orbit 2450.a
Self dual yes
Analytic conductor $144.555$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,4,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,-3,12,0,-6,0,24,56,0,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.238585.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 67x - 189 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 350)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} + (2 \beta_1 - 2) q^{6} + 8 q^{8} + (\beta_{2} + 2 \beta_1 + 19) q^{9} + (2 \beta_{2} - 3 \beta_1 - 8) q^{11} + (4 \beta_1 - 4) q^{12} + (4 \beta_{2} - \beta_1 + 28) q^{13}+ \cdots + (6 \beta_{2} - 121 \beta_1 - 17) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 3 q^{3} + 12 q^{4} - 6 q^{6} + 24 q^{8} + 56 q^{9} - 26 q^{11} - 12 q^{12} + 80 q^{13} + 48 q^{16} + 30 q^{17} + 112 q^{18} + 18 q^{19} - 52 q^{22} - 53 q^{23} - 24 q^{24} + 160 q^{26} + 324 q^{27}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 67x - 189 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4\nu - 45 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4\beta _1 + 45 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.92433
−3.41567
9.34000
2.00000 −6.92433 4.00000 0 −13.8487 0 8.00000 20.9463 0
1.2 2.00000 −4.41567 4.00000 0 −8.83134 0 8.00000 −7.50184 0
1.3 2.00000 8.34000 4.00000 0 16.6800 0 8.00000 42.5556 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.4.a.ch 3
5.b even 2 1 2450.4.a.cd 3
7.b odd 2 1 2450.4.a.ci 3
7.d odd 6 2 350.4.e.i 6
35.c odd 2 1 2450.4.a.cc 3
35.i odd 6 2 350.4.e.j yes 6
35.k even 12 4 350.4.j.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.4.e.i 6 7.d odd 6 2
350.4.e.j yes 6 35.i odd 6 2
350.4.j.h 12 35.k even 12 4
2450.4.a.cc 3 35.c odd 2 1
2450.4.a.cd 3 5.b even 2 1
2450.4.a.ch 3 1.a even 1 1 trivial
2450.4.a.ci 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2450))\):

\( T_{3}^{3} + 3T_{3}^{2} - 64T_{3} - 255 \) Copy content Toggle raw display
\( T_{11}^{3} + 26T_{11}^{2} - 1393T_{11} - 36407 \) Copy content Toggle raw display
\( T_{19}^{3} - 18T_{19}^{2} - 12709T_{19} - 95205 \) Copy content Toggle raw display
\( T_{23}^{3} + 53T_{23}^{2} - 14822T_{23} - 94749 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 3 T^{2} + \cdots - 255 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 26 T^{2} + \cdots - 36407 \) Copy content Toggle raw display
$13$ \( T^{3} - 80 T^{2} + \cdots + 160725 \) Copy content Toggle raw display
$17$ \( T^{3} - 30 T^{2} + \cdots - 6341 \) Copy content Toggle raw display
$19$ \( T^{3} - 18 T^{2} + \cdots - 95205 \) Copy content Toggle raw display
$23$ \( T^{3} + 53 T^{2} + \cdots - 94749 \) Copy content Toggle raw display
$29$ \( T^{3} + 404 T^{2} + \cdots + 1808541 \) Copy content Toggle raw display
$31$ \( T^{3} - 615 T^{2} + \cdots - 7562577 \) Copy content Toggle raw display
$37$ \( T^{3} - 426 T^{2} + \cdots + 11343957 \) Copy content Toggle raw display
$41$ \( T^{3} - 101 T^{2} + \cdots + 7167 \) Copy content Toggle raw display
$43$ \( T^{3} + 249 T^{2} + \cdots - 27999735 \) Copy content Toggle raw display
$47$ \( T^{3} - 402 T^{2} + \cdots + 52820631 \) Copy content Toggle raw display
$53$ \( T^{3} - 390 T^{2} + \cdots + 93437133 \) Copy content Toggle raw display
$59$ \( T^{3} - 91 T^{2} + \cdots + 92928465 \) Copy content Toggle raw display
$61$ \( T^{3} - 647 T^{2} + \cdots + 929141 \) Copy content Toggle raw display
$67$ \( T^{3} - 708 T^{2} + \cdots + 2673864 \) Copy content Toggle raw display
$71$ \( T^{3} - 533 T^{2} + \cdots + 74350109 \) Copy content Toggle raw display
$73$ \( T^{3} - 772 T^{2} + \cdots + 209497408 \) Copy content Toggle raw display
$79$ \( T^{3} - 1421 T^{2} + \cdots - 54979815 \) Copy content Toggle raw display
$83$ \( T^{3} + 520 T^{2} + \cdots + 294469047 \) Copy content Toggle raw display
$89$ \( T^{3} - 194 T^{2} + \cdots + 843604613 \) Copy content Toggle raw display
$97$ \( T^{3} + 1027 T^{2} + \cdots - 883021 \) Copy content Toggle raw display
show more
show less