Properties

Label 2450.4.a.bx
Level $2450$
Weight $4$
Character orbit 2450.a
Self dual yes
Analytic conductor $144.555$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 98)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 5 \beta q^{3} + 4 q^{4} + 10 \beta q^{6} + 8 q^{8} + 23 q^{9} +O(q^{10})\) \( q + 2 q^{2} + 5 \beta q^{3} + 4 q^{4} + 10 \beta q^{6} + 8 q^{8} + 23 q^{9} -14 q^{11} + 20 \beta q^{12} -36 \beta q^{13} + 16 q^{16} -\beta q^{17} + 46 q^{18} -\beta q^{19} -28 q^{22} -140 q^{23} + 40 \beta q^{24} -72 \beta q^{26} -20 \beta q^{27} -286 q^{29} -66 \beta q^{31} + 32 q^{32} -70 \beta q^{33} -2 \beta q^{34} + 92 q^{36} + 38 q^{37} -2 \beta q^{38} -360 q^{39} -89 \beta q^{41} + 34 q^{43} -56 q^{44} -280 q^{46} -370 \beta q^{47} + 80 \beta q^{48} -10 q^{51} -144 \beta q^{52} + 74 q^{53} -40 \beta q^{54} -10 q^{57} -572 q^{58} + 307 \beta q^{59} + 10 \beta q^{61} -132 \beta q^{62} + 64 q^{64} -140 \beta q^{66} -684 q^{67} -4 \beta q^{68} -700 \beta q^{69} + 588 q^{71} + 184 q^{72} + 191 \beta q^{73} + 76 q^{74} -4 \beta q^{76} -720 q^{78} + 1220 q^{79} -821 q^{81} -178 \beta q^{82} -299 \beta q^{83} + 68 q^{86} -1430 \beta q^{87} -112 q^{88} + 437 \beta q^{89} -560 q^{92} -660 q^{93} -740 \beta q^{94} + 160 \beta q^{96} -1049 \beta q^{97} -322 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{2} + 8q^{4} + 16q^{8} + 46q^{9} + O(q^{10}) \) \( 2q + 4q^{2} + 8q^{4} + 16q^{8} + 46q^{9} - 28q^{11} + 32q^{16} + 92q^{18} - 56q^{22} - 280q^{23} - 572q^{29} + 64q^{32} + 184q^{36} + 76q^{37} - 720q^{39} + 68q^{43} - 112q^{44} - 560q^{46} - 20q^{51} + 148q^{53} - 20q^{57} - 1144q^{58} + 128q^{64} - 1368q^{67} + 1176q^{71} + 368q^{72} + 152q^{74} - 1440q^{78} + 2440q^{79} - 1642q^{81} + 136q^{86} - 224q^{88} - 1120q^{92} - 1320q^{93} - 644q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
2.00000 −7.07107 4.00000 0 −14.1421 0 8.00000 23.0000 0
1.2 2.00000 7.07107 4.00000 0 14.1421 0 8.00000 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.4.a.bx 2
5.b even 2 1 98.4.a.g 2
7.b odd 2 1 inner 2450.4.a.bx 2
15.d odd 2 1 882.4.a.bg 2
20.d odd 2 1 784.4.a.y 2
35.c odd 2 1 98.4.a.g 2
35.i odd 6 2 98.4.c.h 4
35.j even 6 2 98.4.c.h 4
105.g even 2 1 882.4.a.bg 2
105.o odd 6 2 882.4.g.ba 4
105.p even 6 2 882.4.g.ba 4
140.c even 2 1 784.4.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.4.a.g 2 5.b even 2 1
98.4.a.g 2 35.c odd 2 1
98.4.c.h 4 35.i odd 6 2
98.4.c.h 4 35.j even 6 2
784.4.a.y 2 20.d odd 2 1
784.4.a.y 2 140.c even 2 1
882.4.a.bg 2 15.d odd 2 1
882.4.a.bg 2 105.g even 2 1
882.4.g.ba 4 105.o odd 6 2
882.4.g.ba 4 105.p even 6 2
2450.4.a.bx 2 1.a even 1 1 trivial
2450.4.a.bx 2 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2450))\):

\( T_{3}^{2} - 50 \)
\( T_{11} + 14 \)
\( T_{19}^{2} - 2 \)
\( T_{23} + 140 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -2 + T )^{2} \)
$3$ \( -50 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( 14 + T )^{2} \)
$13$ \( -2592 + T^{2} \)
$17$ \( -2 + T^{2} \)
$19$ \( -2 + T^{2} \)
$23$ \( ( 140 + T )^{2} \)
$29$ \( ( 286 + T )^{2} \)
$31$ \( -8712 + T^{2} \)
$37$ \( ( -38 + T )^{2} \)
$41$ \( -15842 + T^{2} \)
$43$ \( ( -34 + T )^{2} \)
$47$ \( -273800 + T^{2} \)
$53$ \( ( -74 + T )^{2} \)
$59$ \( -188498 + T^{2} \)
$61$ \( -200 + T^{2} \)
$67$ \( ( 684 + T )^{2} \)
$71$ \( ( -588 + T )^{2} \)
$73$ \( -72962 + T^{2} \)
$79$ \( ( -1220 + T )^{2} \)
$83$ \( -178802 + T^{2} \)
$89$ \( -381938 + T^{2} \)
$97$ \( -2200802 + T^{2} \)
show more
show less