Properties

Label 2450.4.a.b.1.1
Level $2450$
Weight $4$
Character 2450.1
Self dual yes
Analytic conductor $144.555$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2450,4,Mod(1,2450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -8.00000 q^{3} +4.00000 q^{4} +16.0000 q^{6} -8.00000 q^{8} +37.0000 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} -8.00000 q^{3} +4.00000 q^{4} +16.0000 q^{6} -8.00000 q^{8} +37.0000 q^{9} +12.0000 q^{11} -32.0000 q^{12} -58.0000 q^{13} +16.0000 q^{16} +66.0000 q^{17} -74.0000 q^{18} +100.000 q^{19} -24.0000 q^{22} -132.000 q^{23} +64.0000 q^{24} +116.000 q^{26} -80.0000 q^{27} -90.0000 q^{29} -152.000 q^{31} -32.0000 q^{32} -96.0000 q^{33} -132.000 q^{34} +148.000 q^{36} +34.0000 q^{37} -200.000 q^{38} +464.000 q^{39} +438.000 q^{41} -32.0000 q^{43} +48.0000 q^{44} +264.000 q^{46} -204.000 q^{47} -128.000 q^{48} -528.000 q^{51} -232.000 q^{52} -222.000 q^{53} +160.000 q^{54} -800.000 q^{57} +180.000 q^{58} -420.000 q^{59} -902.000 q^{61} +304.000 q^{62} +64.0000 q^{64} +192.000 q^{66} +1024.00 q^{67} +264.000 q^{68} +1056.00 q^{69} +432.000 q^{71} -296.000 q^{72} +362.000 q^{73} -68.0000 q^{74} +400.000 q^{76} -928.000 q^{78} -160.000 q^{79} -359.000 q^{81} -876.000 q^{82} +72.0000 q^{83} +64.0000 q^{86} +720.000 q^{87} -96.0000 q^{88} -810.000 q^{89} -528.000 q^{92} +1216.00 q^{93} +408.000 q^{94} +256.000 q^{96} +1106.00 q^{97} +444.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −8.00000 −1.53960 −0.769800 0.638285i \(-0.779644\pi\)
−0.769800 + 0.638285i \(0.779644\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 16.0000 1.08866
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 37.0000 1.37037
\(10\) 0 0
\(11\) 12.0000 0.328921 0.164461 0.986384i \(-0.447412\pi\)
0.164461 + 0.986384i \(0.447412\pi\)
\(12\) −32.0000 −0.769800
\(13\) −58.0000 −1.23741 −0.618704 0.785624i \(-0.712342\pi\)
−0.618704 + 0.785624i \(0.712342\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 66.0000 0.941609 0.470804 0.882238i \(-0.343964\pi\)
0.470804 + 0.882238i \(0.343964\pi\)
\(18\) −74.0000 −0.968998
\(19\) 100.000 1.20745 0.603726 0.797192i \(-0.293682\pi\)
0.603726 + 0.797192i \(0.293682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −24.0000 −0.232583
\(23\) −132.000 −1.19669 −0.598346 0.801238i \(-0.704175\pi\)
−0.598346 + 0.801238i \(0.704175\pi\)
\(24\) 64.0000 0.544331
\(25\) 0 0
\(26\) 116.000 0.874980
\(27\) −80.0000 −0.570222
\(28\) 0 0
\(29\) −90.0000 −0.576296 −0.288148 0.957586i \(-0.593039\pi\)
−0.288148 + 0.957586i \(0.593039\pi\)
\(30\) 0 0
\(31\) −152.000 −0.880645 −0.440323 0.897840i \(-0.645136\pi\)
−0.440323 + 0.897840i \(0.645136\pi\)
\(32\) −32.0000 −0.176777
\(33\) −96.0000 −0.506408
\(34\) −132.000 −0.665818
\(35\) 0 0
\(36\) 148.000 0.685185
\(37\) 34.0000 0.151069 0.0755347 0.997143i \(-0.475934\pi\)
0.0755347 + 0.997143i \(0.475934\pi\)
\(38\) −200.000 −0.853797
\(39\) 464.000 1.90511
\(40\) 0 0
\(41\) 438.000 1.66839 0.834196 0.551467i \(-0.185932\pi\)
0.834196 + 0.551467i \(0.185932\pi\)
\(42\) 0 0
\(43\) −32.0000 −0.113487 −0.0567437 0.998389i \(-0.518072\pi\)
−0.0567437 + 0.998389i \(0.518072\pi\)
\(44\) 48.0000 0.164461
\(45\) 0 0
\(46\) 264.000 0.846189
\(47\) −204.000 −0.633116 −0.316558 0.948573i \(-0.602527\pi\)
−0.316558 + 0.948573i \(0.602527\pi\)
\(48\) −128.000 −0.384900
\(49\) 0 0
\(50\) 0 0
\(51\) −528.000 −1.44970
\(52\) −232.000 −0.618704
\(53\) −222.000 −0.575359 −0.287680 0.957727i \(-0.592884\pi\)
−0.287680 + 0.957727i \(0.592884\pi\)
\(54\) 160.000 0.403208
\(55\) 0 0
\(56\) 0 0
\(57\) −800.000 −1.85899
\(58\) 180.000 0.407503
\(59\) −420.000 −0.926769 −0.463384 0.886157i \(-0.653365\pi\)
−0.463384 + 0.886157i \(0.653365\pi\)
\(60\) 0 0
\(61\) −902.000 −1.89327 −0.946633 0.322312i \(-0.895540\pi\)
−0.946633 + 0.322312i \(0.895540\pi\)
\(62\) 304.000 0.622710
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 192.000 0.358084
\(67\) 1024.00 1.86719 0.933593 0.358334i \(-0.116655\pi\)
0.933593 + 0.358334i \(0.116655\pi\)
\(68\) 264.000 0.470804
\(69\) 1056.00 1.84243
\(70\) 0 0
\(71\) 432.000 0.722098 0.361049 0.932547i \(-0.382419\pi\)
0.361049 + 0.932547i \(0.382419\pi\)
\(72\) −296.000 −0.484499
\(73\) 362.000 0.580396 0.290198 0.956967i \(-0.406279\pi\)
0.290198 + 0.956967i \(0.406279\pi\)
\(74\) −68.0000 −0.106822
\(75\) 0 0
\(76\) 400.000 0.603726
\(77\) 0 0
\(78\) −928.000 −1.34712
\(79\) −160.000 −0.227866 −0.113933 0.993488i \(-0.536345\pi\)
−0.113933 + 0.993488i \(0.536345\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) −876.000 −1.17973
\(83\) 72.0000 0.0952172 0.0476086 0.998866i \(-0.484840\pi\)
0.0476086 + 0.998866i \(0.484840\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 64.0000 0.0802476
\(87\) 720.000 0.887266
\(88\) −96.0000 −0.116291
\(89\) −810.000 −0.964717 −0.482359 0.875974i \(-0.660220\pi\)
−0.482359 + 0.875974i \(0.660220\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −528.000 −0.598346
\(93\) 1216.00 1.35584
\(94\) 408.000 0.447681
\(95\) 0 0
\(96\) 256.000 0.272166
\(97\) 1106.00 1.15770 0.578852 0.815433i \(-0.303501\pi\)
0.578852 + 0.815433i \(0.303501\pi\)
\(98\) 0 0
\(99\) 444.000 0.450744
\(100\) 0 0
\(101\) 258.000 0.254178 0.127089 0.991891i \(-0.459437\pi\)
0.127089 + 0.991891i \(0.459437\pi\)
\(102\) 1056.00 1.02509
\(103\) −988.000 −0.945151 −0.472575 0.881290i \(-0.656676\pi\)
−0.472575 + 0.881290i \(0.656676\pi\)
\(104\) 464.000 0.437490
\(105\) 0 0
\(106\) 444.000 0.406840
\(107\) 24.0000 0.0216838 0.0108419 0.999941i \(-0.496549\pi\)
0.0108419 + 0.999941i \(0.496549\pi\)
\(108\) −320.000 −0.285111
\(109\) 950.000 0.834803 0.417401 0.908722i \(-0.362941\pi\)
0.417401 + 0.908722i \(0.362941\pi\)
\(110\) 0 0
\(111\) −272.000 −0.232586
\(112\) 0 0
\(113\) 1038.00 0.864131 0.432066 0.901842i \(-0.357785\pi\)
0.432066 + 0.901842i \(0.357785\pi\)
\(114\) 1600.00 1.31451
\(115\) 0 0
\(116\) −360.000 −0.288148
\(117\) −2146.00 −1.69571
\(118\) 840.000 0.655324
\(119\) 0 0
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 1804.00 1.33874
\(123\) −3504.00 −2.56866
\(124\) −608.000 −0.440323
\(125\) 0 0
\(126\) 0 0
\(127\) 124.000 0.0866395 0.0433198 0.999061i \(-0.486207\pi\)
0.0433198 + 0.999061i \(0.486207\pi\)
\(128\) −128.000 −0.0883883
\(129\) 256.000 0.174725
\(130\) 0 0
\(131\) −132.000 −0.0880374 −0.0440187 0.999031i \(-0.514016\pi\)
−0.0440187 + 0.999031i \(0.514016\pi\)
\(132\) −384.000 −0.253204
\(133\) 0 0
\(134\) −2048.00 −1.32030
\(135\) 0 0
\(136\) −528.000 −0.332909
\(137\) 1254.00 0.782018 0.391009 0.920387i \(-0.372126\pi\)
0.391009 + 0.920387i \(0.372126\pi\)
\(138\) −2112.00 −1.30279
\(139\) 2860.00 1.74519 0.872597 0.488440i \(-0.162434\pi\)
0.872597 + 0.488440i \(0.162434\pi\)
\(140\) 0 0
\(141\) 1632.00 0.974746
\(142\) −864.000 −0.510600
\(143\) −696.000 −0.407010
\(144\) 592.000 0.342593
\(145\) 0 0
\(146\) −724.000 −0.410402
\(147\) 0 0
\(148\) 136.000 0.0755347
\(149\) 750.000 0.412365 0.206183 0.978514i \(-0.433896\pi\)
0.206183 + 0.978514i \(0.433896\pi\)
\(150\) 0 0
\(151\) −448.000 −0.241442 −0.120721 0.992686i \(-0.538521\pi\)
−0.120721 + 0.992686i \(0.538521\pi\)
\(152\) −800.000 −0.426898
\(153\) 2442.00 1.29035
\(154\) 0 0
\(155\) 0 0
\(156\) 1856.00 0.952557
\(157\) 2246.00 1.14172 0.570861 0.821047i \(-0.306610\pi\)
0.570861 + 0.821047i \(0.306610\pi\)
\(158\) 320.000 0.161126
\(159\) 1776.00 0.885824
\(160\) 0 0
\(161\) 0 0
\(162\) 718.000 0.348219
\(163\) 568.000 0.272940 0.136470 0.990644i \(-0.456424\pi\)
0.136470 + 0.990644i \(0.456424\pi\)
\(164\) 1752.00 0.834196
\(165\) 0 0
\(166\) −144.000 −0.0673287
\(167\) −1524.00 −0.706172 −0.353086 0.935591i \(-0.614868\pi\)
−0.353086 + 0.935591i \(0.614868\pi\)
\(168\) 0 0
\(169\) 1167.00 0.531179
\(170\) 0 0
\(171\) 3700.00 1.65466
\(172\) −128.000 −0.0567437
\(173\) 3702.00 1.62692 0.813462 0.581618i \(-0.197580\pi\)
0.813462 + 0.581618i \(0.197580\pi\)
\(174\) −1440.00 −0.627391
\(175\) 0 0
\(176\) 192.000 0.0822304
\(177\) 3360.00 1.42685
\(178\) 1620.00 0.682158
\(179\) 3180.00 1.32785 0.663923 0.747801i \(-0.268890\pi\)
0.663923 + 0.747801i \(0.268890\pi\)
\(180\) 0 0
\(181\) 2098.00 0.861564 0.430782 0.902456i \(-0.358238\pi\)
0.430782 + 0.902456i \(0.358238\pi\)
\(182\) 0 0
\(183\) 7216.00 2.91487
\(184\) 1056.00 0.423094
\(185\) 0 0
\(186\) −2432.00 −0.958725
\(187\) 792.000 0.309715
\(188\) −816.000 −0.316558
\(189\) 0 0
\(190\) 0 0
\(191\) 4392.00 1.66384 0.831921 0.554894i \(-0.187241\pi\)
0.831921 + 0.554894i \(0.187241\pi\)
\(192\) −512.000 −0.192450
\(193\) 2158.00 0.804851 0.402425 0.915453i \(-0.368167\pi\)
0.402425 + 0.915453i \(0.368167\pi\)
\(194\) −2212.00 −0.818620
\(195\) 0 0
\(196\) 0 0
\(197\) 1074.00 0.388423 0.194212 0.980960i \(-0.437785\pi\)
0.194212 + 0.980960i \(0.437785\pi\)
\(198\) −888.000 −0.318724
\(199\) −2840.00 −1.01167 −0.505835 0.862630i \(-0.668815\pi\)
−0.505835 + 0.862630i \(0.668815\pi\)
\(200\) 0 0
\(201\) −8192.00 −2.87472
\(202\) −516.000 −0.179731
\(203\) 0 0
\(204\) −2112.00 −0.724851
\(205\) 0 0
\(206\) 1976.00 0.668323
\(207\) −4884.00 −1.63991
\(208\) −928.000 −0.309352
\(209\) 1200.00 0.397157
\(210\) 0 0
\(211\) −2668.00 −0.870487 −0.435243 0.900313i \(-0.643338\pi\)
−0.435243 + 0.900313i \(0.643338\pi\)
\(212\) −888.000 −0.287680
\(213\) −3456.00 −1.11174
\(214\) −48.0000 −0.0153328
\(215\) 0 0
\(216\) 640.000 0.201604
\(217\) 0 0
\(218\) −1900.00 −0.590295
\(219\) −2896.00 −0.893578
\(220\) 0 0
\(221\) −3828.00 −1.16515
\(222\) 544.000 0.164463
\(223\) 1772.00 0.532116 0.266058 0.963957i \(-0.414279\pi\)
0.266058 + 0.963957i \(0.414279\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2076.00 −0.611033
\(227\) −2784.00 −0.814011 −0.407006 0.913426i \(-0.633427\pi\)
−0.407006 + 0.913426i \(0.633427\pi\)
\(228\) −3200.00 −0.929496
\(229\) −350.000 −0.100998 −0.0504992 0.998724i \(-0.516081\pi\)
−0.0504992 + 0.998724i \(0.516081\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 720.000 0.203751
\(233\) −1962.00 −0.551652 −0.275826 0.961208i \(-0.588951\pi\)
−0.275826 + 0.961208i \(0.588951\pi\)
\(234\) 4292.00 1.19905
\(235\) 0 0
\(236\) −1680.00 −0.463384
\(237\) 1280.00 0.350823
\(238\) 0 0
\(239\) −4320.00 −1.16919 −0.584597 0.811324i \(-0.698748\pi\)
−0.584597 + 0.811324i \(0.698748\pi\)
\(240\) 0 0
\(241\) 478.000 0.127762 0.0638811 0.997958i \(-0.479652\pi\)
0.0638811 + 0.997958i \(0.479652\pi\)
\(242\) 2374.00 0.630605
\(243\) 5032.00 1.32841
\(244\) −3608.00 −0.946633
\(245\) 0 0
\(246\) 7008.00 1.81632
\(247\) −5800.00 −1.49411
\(248\) 1216.00 0.311355
\(249\) −576.000 −0.146596
\(250\) 0 0
\(251\) −2652.00 −0.666903 −0.333452 0.942767i \(-0.608213\pi\)
−0.333452 + 0.942767i \(0.608213\pi\)
\(252\) 0 0
\(253\) −1584.00 −0.393617
\(254\) −248.000 −0.0612634
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2334.00 −0.566502 −0.283251 0.959046i \(-0.591413\pi\)
−0.283251 + 0.959046i \(0.591413\pi\)
\(258\) −512.000 −0.123549
\(259\) 0 0
\(260\) 0 0
\(261\) −3330.00 −0.789739
\(262\) 264.000 0.0622518
\(263\) 3948.00 0.925643 0.462822 0.886451i \(-0.346837\pi\)
0.462822 + 0.886451i \(0.346837\pi\)
\(264\) 768.000 0.179042
\(265\) 0 0
\(266\) 0 0
\(267\) 6480.00 1.48528
\(268\) 4096.00 0.933593
\(269\) −1590.00 −0.360387 −0.180193 0.983631i \(-0.557672\pi\)
−0.180193 + 0.983631i \(0.557672\pi\)
\(270\) 0 0
\(271\) −4952.00 −1.11001 −0.555005 0.831847i \(-0.687284\pi\)
−0.555005 + 0.831847i \(0.687284\pi\)
\(272\) 1056.00 0.235402
\(273\) 0 0
\(274\) −2508.00 −0.552970
\(275\) 0 0
\(276\) 4224.00 0.921213
\(277\) −1646.00 −0.357034 −0.178517 0.983937i \(-0.557130\pi\)
−0.178517 + 0.983937i \(0.557130\pi\)
\(278\) −5720.00 −1.23404
\(279\) −5624.00 −1.20681
\(280\) 0 0
\(281\) −1158.00 −0.245838 −0.122919 0.992417i \(-0.539226\pi\)
−0.122919 + 0.992417i \(0.539226\pi\)
\(282\) −3264.00 −0.689250
\(283\) 6992.00 1.46866 0.734331 0.678792i \(-0.237496\pi\)
0.734331 + 0.678792i \(0.237496\pi\)
\(284\) 1728.00 0.361049
\(285\) 0 0
\(286\) 1392.00 0.287800
\(287\) 0 0
\(288\) −1184.00 −0.242250
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) −8848.00 −1.78240
\(292\) 1448.00 0.290198
\(293\) −258.000 −0.0514421 −0.0257210 0.999669i \(-0.508188\pi\)
−0.0257210 + 0.999669i \(0.508188\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −272.000 −0.0534111
\(297\) −960.000 −0.187558
\(298\) −1500.00 −0.291586
\(299\) 7656.00 1.48080
\(300\) 0 0
\(301\) 0 0
\(302\) 896.000 0.170725
\(303\) −2064.00 −0.391332
\(304\) 1600.00 0.301863
\(305\) 0 0
\(306\) −4884.00 −0.912417
\(307\) −8944.00 −1.66274 −0.831370 0.555720i \(-0.812443\pi\)
−0.831370 + 0.555720i \(0.812443\pi\)
\(308\) 0 0
\(309\) 7904.00 1.45515
\(310\) 0 0
\(311\) −1392.00 −0.253804 −0.126902 0.991915i \(-0.540503\pi\)
−0.126902 + 0.991915i \(0.540503\pi\)
\(312\) −3712.00 −0.673560
\(313\) −5878.00 −1.06148 −0.530742 0.847534i \(-0.678087\pi\)
−0.530742 + 0.847534i \(0.678087\pi\)
\(314\) −4492.00 −0.807319
\(315\) 0 0
\(316\) −640.000 −0.113933
\(317\) −10326.0 −1.82955 −0.914773 0.403969i \(-0.867630\pi\)
−0.914773 + 0.403969i \(0.867630\pi\)
\(318\) −3552.00 −0.626372
\(319\) −1080.00 −0.189556
\(320\) 0 0
\(321\) −192.000 −0.0333844
\(322\) 0 0
\(323\) 6600.00 1.13695
\(324\) −1436.00 −0.246228
\(325\) 0 0
\(326\) −1136.00 −0.192998
\(327\) −7600.00 −1.28526
\(328\) −3504.00 −0.589866
\(329\) 0 0
\(330\) 0 0
\(331\) −4228.00 −0.702090 −0.351045 0.936359i \(-0.614174\pi\)
−0.351045 + 0.936359i \(0.614174\pi\)
\(332\) 288.000 0.0476086
\(333\) 1258.00 0.207021
\(334\) 3048.00 0.499339
\(335\) 0 0
\(336\) 0 0
\(337\) −1106.00 −0.178776 −0.0893882 0.995997i \(-0.528491\pi\)
−0.0893882 + 0.995997i \(0.528491\pi\)
\(338\) −2334.00 −0.375600
\(339\) −8304.00 −1.33042
\(340\) 0 0
\(341\) −1824.00 −0.289663
\(342\) −7400.00 −1.17002
\(343\) 0 0
\(344\) 256.000 0.0401238
\(345\) 0 0
\(346\) −7404.00 −1.15041
\(347\) −9336.00 −1.44433 −0.722165 0.691720i \(-0.756853\pi\)
−0.722165 + 0.691720i \(0.756853\pi\)
\(348\) 2880.00 0.443633
\(349\) 11770.0 1.80525 0.902627 0.430424i \(-0.141636\pi\)
0.902627 + 0.430424i \(0.141636\pi\)
\(350\) 0 0
\(351\) 4640.00 0.705598
\(352\) −384.000 −0.0581456
\(353\) 8322.00 1.25477 0.627387 0.778707i \(-0.284124\pi\)
0.627387 + 0.778707i \(0.284124\pi\)
\(354\) −6720.00 −1.00894
\(355\) 0 0
\(356\) −3240.00 −0.482359
\(357\) 0 0
\(358\) −6360.00 −0.938929
\(359\) 10680.0 1.57011 0.785054 0.619427i \(-0.212635\pi\)
0.785054 + 0.619427i \(0.212635\pi\)
\(360\) 0 0
\(361\) 3141.00 0.457938
\(362\) −4196.00 −0.609218
\(363\) 9496.00 1.37303
\(364\) 0 0
\(365\) 0 0
\(366\) −14432.0 −2.06113
\(367\) −5884.00 −0.836900 −0.418450 0.908240i \(-0.637426\pi\)
−0.418450 + 0.908240i \(0.637426\pi\)
\(368\) −2112.00 −0.299173
\(369\) 16206.0 2.28632
\(370\) 0 0
\(371\) 0 0
\(372\) 4864.00 0.677921
\(373\) 2098.00 0.291234 0.145617 0.989341i \(-0.453483\pi\)
0.145617 + 0.989341i \(0.453483\pi\)
\(374\) −1584.00 −0.219002
\(375\) 0 0
\(376\) 1632.00 0.223840
\(377\) 5220.00 0.713113
\(378\) 0 0
\(379\) 3860.00 0.523153 0.261576 0.965183i \(-0.415758\pi\)
0.261576 + 0.965183i \(0.415758\pi\)
\(380\) 0 0
\(381\) −992.000 −0.133390
\(382\) −8784.00 −1.17651
\(383\) −9588.00 −1.27917 −0.639587 0.768718i \(-0.720895\pi\)
−0.639587 + 0.768718i \(0.720895\pi\)
\(384\) 1024.00 0.136083
\(385\) 0 0
\(386\) −4316.00 −0.569116
\(387\) −1184.00 −0.155520
\(388\) 4424.00 0.578852
\(389\) −13410.0 −1.74785 −0.873925 0.486060i \(-0.838434\pi\)
−0.873925 + 0.486060i \(0.838434\pi\)
\(390\) 0 0
\(391\) −8712.00 −1.12682
\(392\) 0 0
\(393\) 1056.00 0.135542
\(394\) −2148.00 −0.274657
\(395\) 0 0
\(396\) 1776.00 0.225372
\(397\) −13114.0 −1.65787 −0.828933 0.559348i \(-0.811052\pi\)
−0.828933 + 0.559348i \(0.811052\pi\)
\(398\) 5680.00 0.715358
\(399\) 0 0
\(400\) 0 0
\(401\) −5838.00 −0.727022 −0.363511 0.931590i \(-0.618422\pi\)
−0.363511 + 0.931590i \(0.618422\pi\)
\(402\) 16384.0 2.03274
\(403\) 8816.00 1.08972
\(404\) 1032.00 0.127089
\(405\) 0 0
\(406\) 0 0
\(407\) 408.000 0.0496899
\(408\) 4224.00 0.512547
\(409\) −9530.00 −1.15215 −0.576074 0.817398i \(-0.695416\pi\)
−0.576074 + 0.817398i \(0.695416\pi\)
\(410\) 0 0
\(411\) −10032.0 −1.20400
\(412\) −3952.00 −0.472575
\(413\) 0 0
\(414\) 9768.00 1.15959
\(415\) 0 0
\(416\) 1856.00 0.218745
\(417\) −22880.0 −2.68690
\(418\) −2400.00 −0.280832
\(419\) −7260.00 −0.846478 −0.423239 0.906018i \(-0.639107\pi\)
−0.423239 + 0.906018i \(0.639107\pi\)
\(420\) 0 0
\(421\) 12062.0 1.39636 0.698178 0.715924i \(-0.253994\pi\)
0.698178 + 0.715924i \(0.253994\pi\)
\(422\) 5336.00 0.615527
\(423\) −7548.00 −0.867604
\(424\) 1776.00 0.203420
\(425\) 0 0
\(426\) 6912.00 0.786121
\(427\) 0 0
\(428\) 96.0000 0.0108419
\(429\) 5568.00 0.626633
\(430\) 0 0
\(431\) −13608.0 −1.52082 −0.760411 0.649442i \(-0.775002\pi\)
−0.760411 + 0.649442i \(0.775002\pi\)
\(432\) −1280.00 −0.142556
\(433\) −3838.00 −0.425964 −0.212982 0.977056i \(-0.568318\pi\)
−0.212982 + 0.977056i \(0.568318\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3800.00 0.417401
\(437\) −13200.0 −1.44495
\(438\) 5792.00 0.631855
\(439\) −7400.00 −0.804516 −0.402258 0.915526i \(-0.631775\pi\)
−0.402258 + 0.915526i \(0.631775\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 7656.00 0.823889
\(443\) −8352.00 −0.895746 −0.447873 0.894097i \(-0.647818\pi\)
−0.447873 + 0.894097i \(0.647818\pi\)
\(444\) −1088.00 −0.116293
\(445\) 0 0
\(446\) −3544.00 −0.376263
\(447\) −6000.00 −0.634878
\(448\) 0 0
\(449\) 10770.0 1.13200 0.566000 0.824405i \(-0.308490\pi\)
0.566000 + 0.824405i \(0.308490\pi\)
\(450\) 0 0
\(451\) 5256.00 0.548770
\(452\) 4152.00 0.432066
\(453\) 3584.00 0.371724
\(454\) 5568.00 0.575593
\(455\) 0 0
\(456\) 6400.00 0.657253
\(457\) 6694.00 0.685191 0.342595 0.939483i \(-0.388694\pi\)
0.342595 + 0.939483i \(0.388694\pi\)
\(458\) 700.000 0.0714167
\(459\) −5280.00 −0.536927
\(460\) 0 0
\(461\) 3018.00 0.304907 0.152454 0.988311i \(-0.451283\pi\)
0.152454 + 0.988311i \(0.451283\pi\)
\(462\) 0 0
\(463\) −14492.0 −1.45464 −0.727322 0.686296i \(-0.759235\pi\)
−0.727322 + 0.686296i \(0.759235\pi\)
\(464\) −1440.00 −0.144074
\(465\) 0 0
\(466\) 3924.00 0.390077
\(467\) 7776.00 0.770515 0.385257 0.922809i \(-0.374113\pi\)
0.385257 + 0.922809i \(0.374113\pi\)
\(468\) −8584.00 −0.847854
\(469\) 0 0
\(470\) 0 0
\(471\) −17968.0 −1.75780
\(472\) 3360.00 0.327662
\(473\) −384.000 −0.0373284
\(474\) −2560.00 −0.248069
\(475\) 0 0
\(476\) 0 0
\(477\) −8214.00 −0.788455
\(478\) 8640.00 0.826746
\(479\) 13680.0 1.30492 0.652458 0.757825i \(-0.273738\pi\)
0.652458 + 0.757825i \(0.273738\pi\)
\(480\) 0 0
\(481\) −1972.00 −0.186934
\(482\) −956.000 −0.0903415
\(483\) 0 0
\(484\) −4748.00 −0.445905
\(485\) 0 0
\(486\) −10064.0 −0.939326
\(487\) −7916.00 −0.736567 −0.368284 0.929714i \(-0.620054\pi\)
−0.368284 + 0.929714i \(0.620054\pi\)
\(488\) 7216.00 0.669371
\(489\) −4544.00 −0.420218
\(490\) 0 0
\(491\) 13932.0 1.28053 0.640267 0.768152i \(-0.278824\pi\)
0.640267 + 0.768152i \(0.278824\pi\)
\(492\) −14016.0 −1.28433
\(493\) −5940.00 −0.542645
\(494\) 11600.0 1.05650
\(495\) 0 0
\(496\) −2432.00 −0.220161
\(497\) 0 0
\(498\) 1152.00 0.103659
\(499\) −8260.00 −0.741019 −0.370509 0.928829i \(-0.620817\pi\)
−0.370509 + 0.928829i \(0.620817\pi\)
\(500\) 0 0
\(501\) 12192.0 1.08722
\(502\) 5304.00 0.471572
\(503\) −11148.0 −0.988200 −0.494100 0.869405i \(-0.664502\pi\)
−0.494100 + 0.869405i \(0.664502\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3168.00 0.278330
\(507\) −9336.00 −0.817803
\(508\) 496.000 0.0433198
\(509\) 9690.00 0.843815 0.421907 0.906639i \(-0.361361\pi\)
0.421907 + 0.906639i \(0.361361\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −8000.00 −0.688516
\(514\) 4668.00 0.400577
\(515\) 0 0
\(516\) 1024.00 0.0873626
\(517\) −2448.00 −0.208245
\(518\) 0 0
\(519\) −29616.0 −2.50481
\(520\) 0 0
\(521\) 16038.0 1.34863 0.674316 0.738443i \(-0.264438\pi\)
0.674316 + 0.738443i \(0.264438\pi\)
\(522\) 6660.00 0.558430
\(523\) 992.000 0.0829391 0.0414695 0.999140i \(-0.486796\pi\)
0.0414695 + 0.999140i \(0.486796\pi\)
\(524\) −528.000 −0.0440187
\(525\) 0 0
\(526\) −7896.00 −0.654528
\(527\) −10032.0 −0.829223
\(528\) −1536.00 −0.126602
\(529\) 5257.00 0.432070
\(530\) 0 0
\(531\) −15540.0 −1.27002
\(532\) 0 0
\(533\) −25404.0 −2.06448
\(534\) −12960.0 −1.05025
\(535\) 0 0
\(536\) −8192.00 −0.660150
\(537\) −25440.0 −2.04435
\(538\) 3180.00 0.254832
\(539\) 0 0
\(540\) 0 0
\(541\) 7142.00 0.567576 0.283788 0.958887i \(-0.408409\pi\)
0.283788 + 0.958887i \(0.408409\pi\)
\(542\) 9904.00 0.784895
\(543\) −16784.0 −1.32646
\(544\) −2112.00 −0.166455
\(545\) 0 0
\(546\) 0 0
\(547\) −7616.00 −0.595314 −0.297657 0.954673i \(-0.596205\pi\)
−0.297657 + 0.954673i \(0.596205\pi\)
\(548\) 5016.00 0.391009
\(549\) −33374.0 −2.59448
\(550\) 0 0
\(551\) −9000.00 −0.695849
\(552\) −8448.00 −0.651396
\(553\) 0 0
\(554\) 3292.00 0.252462
\(555\) 0 0
\(556\) 11440.0 0.872597
\(557\) 10314.0 0.784593 0.392296 0.919839i \(-0.371681\pi\)
0.392296 + 0.919839i \(0.371681\pi\)
\(558\) 11248.0 0.853344
\(559\) 1856.00 0.140430
\(560\) 0 0
\(561\) −6336.00 −0.476838
\(562\) 2316.00 0.173834
\(563\) −7128.00 −0.533587 −0.266793 0.963754i \(-0.585964\pi\)
−0.266793 + 0.963754i \(0.585964\pi\)
\(564\) 6528.00 0.487373
\(565\) 0 0
\(566\) −13984.0 −1.03850
\(567\) 0 0
\(568\) −3456.00 −0.255300
\(569\) 2010.00 0.148091 0.0740453 0.997255i \(-0.476409\pi\)
0.0740453 + 0.997255i \(0.476409\pi\)
\(570\) 0 0
\(571\) −23188.0 −1.69945 −0.849726 0.527224i \(-0.823233\pi\)
−0.849726 + 0.527224i \(0.823233\pi\)
\(572\) −2784.00 −0.203505
\(573\) −35136.0 −2.56165
\(574\) 0 0
\(575\) 0 0
\(576\) 2368.00 0.171296
\(577\) 22466.0 1.62092 0.810461 0.585793i \(-0.199217\pi\)
0.810461 + 0.585793i \(0.199217\pi\)
\(578\) 1114.00 0.0801666
\(579\) −17264.0 −1.23915
\(580\) 0 0
\(581\) 0 0
\(582\) 17696.0 1.26035
\(583\) −2664.00 −0.189248
\(584\) −2896.00 −0.205201
\(585\) 0 0
\(586\) 516.000 0.0363750
\(587\) 22776.0 1.60148 0.800738 0.599015i \(-0.204441\pi\)
0.800738 + 0.599015i \(0.204441\pi\)
\(588\) 0 0
\(589\) −15200.0 −1.06334
\(590\) 0 0
\(591\) −8592.00 −0.598016
\(592\) 544.000 0.0377673
\(593\) −21198.0 −1.46796 −0.733978 0.679174i \(-0.762338\pi\)
−0.733978 + 0.679174i \(0.762338\pi\)
\(594\) 1920.00 0.132624
\(595\) 0 0
\(596\) 3000.00 0.206183
\(597\) 22720.0 1.55757
\(598\) −15312.0 −1.04708
\(599\) 15960.0 1.08866 0.544330 0.838871i \(-0.316784\pi\)
0.544330 + 0.838871i \(0.316784\pi\)
\(600\) 0 0
\(601\) −5882.00 −0.399221 −0.199610 0.979875i \(-0.563968\pi\)
−0.199610 + 0.979875i \(0.563968\pi\)
\(602\) 0 0
\(603\) 37888.0 2.55874
\(604\) −1792.00 −0.120721
\(605\) 0 0
\(606\) 4128.00 0.276714
\(607\) 8516.00 0.569446 0.284723 0.958610i \(-0.408098\pi\)
0.284723 + 0.958610i \(0.408098\pi\)
\(608\) −3200.00 −0.213449
\(609\) 0 0
\(610\) 0 0
\(611\) 11832.0 0.783423
\(612\) 9768.00 0.645176
\(613\) −8462.00 −0.557548 −0.278774 0.960357i \(-0.589928\pi\)
−0.278774 + 0.960357i \(0.589928\pi\)
\(614\) 17888.0 1.17573
\(615\) 0 0
\(616\) 0 0
\(617\) 11094.0 0.723870 0.361935 0.932203i \(-0.382116\pi\)
0.361935 + 0.932203i \(0.382116\pi\)
\(618\) −15808.0 −1.02895
\(619\) −2180.00 −0.141553 −0.0707767 0.997492i \(-0.522548\pi\)
−0.0707767 + 0.997492i \(0.522548\pi\)
\(620\) 0 0
\(621\) 10560.0 0.682380
\(622\) 2784.00 0.179467
\(623\) 0 0
\(624\) 7424.00 0.476279
\(625\) 0 0
\(626\) 11756.0 0.750582
\(627\) −9600.00 −0.611463
\(628\) 8984.00 0.570861
\(629\) 2244.00 0.142248
\(630\) 0 0
\(631\) −26848.0 −1.69382 −0.846911 0.531734i \(-0.821541\pi\)
−0.846911 + 0.531734i \(0.821541\pi\)
\(632\) 1280.00 0.0805628
\(633\) 21344.0 1.34020
\(634\) 20652.0 1.29368
\(635\) 0 0
\(636\) 7104.00 0.442912
\(637\) 0 0
\(638\) 2160.00 0.134036
\(639\) 15984.0 0.989542
\(640\) 0 0
\(641\) 26322.0 1.62193 0.810965 0.585095i \(-0.198943\pi\)
0.810965 + 0.585095i \(0.198943\pi\)
\(642\) 384.000 0.0236063
\(643\) −10168.0 −0.623619 −0.311809 0.950145i \(-0.600935\pi\)
−0.311809 + 0.950145i \(0.600935\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −13200.0 −0.803943
\(647\) −23604.0 −1.43426 −0.717132 0.696937i \(-0.754546\pi\)
−0.717132 + 0.696937i \(0.754546\pi\)
\(648\) 2872.00 0.174109
\(649\) −5040.00 −0.304834
\(650\) 0 0
\(651\) 0 0
\(652\) 2272.00 0.136470
\(653\) −16422.0 −0.984139 −0.492069 0.870556i \(-0.663759\pi\)
−0.492069 + 0.870556i \(0.663759\pi\)
\(654\) 15200.0 0.908818
\(655\) 0 0
\(656\) 7008.00 0.417098
\(657\) 13394.0 0.795357
\(658\) 0 0
\(659\) −26100.0 −1.54281 −0.771405 0.636345i \(-0.780446\pi\)
−0.771405 + 0.636345i \(0.780446\pi\)
\(660\) 0 0
\(661\) 3058.00 0.179943 0.0899716 0.995944i \(-0.471322\pi\)
0.0899716 + 0.995944i \(0.471322\pi\)
\(662\) 8456.00 0.496453
\(663\) 30624.0 1.79387
\(664\) −576.000 −0.0336644
\(665\) 0 0
\(666\) −2516.00 −0.146386
\(667\) 11880.0 0.689648
\(668\) −6096.00 −0.353086
\(669\) −14176.0 −0.819246
\(670\) 0 0
\(671\) −10824.0 −0.622736
\(672\) 0 0
\(673\) −10802.0 −0.618702 −0.309351 0.950948i \(-0.600112\pi\)
−0.309351 + 0.950948i \(0.600112\pi\)
\(674\) 2212.00 0.126414
\(675\) 0 0
\(676\) 4668.00 0.265589
\(677\) −10674.0 −0.605960 −0.302980 0.952997i \(-0.597982\pi\)
−0.302980 + 0.952997i \(0.597982\pi\)
\(678\) 16608.0 0.940747
\(679\) 0 0
\(680\) 0 0
\(681\) 22272.0 1.25325
\(682\) 3648.00 0.204823
\(683\) 28608.0 1.60272 0.801358 0.598185i \(-0.204111\pi\)
0.801358 + 0.598185i \(0.204111\pi\)
\(684\) 14800.0 0.827328
\(685\) 0 0
\(686\) 0 0
\(687\) 2800.00 0.155497
\(688\) −512.000 −0.0283718
\(689\) 12876.0 0.711954
\(690\) 0 0
\(691\) 2428.00 0.133669 0.0668346 0.997764i \(-0.478710\pi\)
0.0668346 + 0.997764i \(0.478710\pi\)
\(692\) 14808.0 0.813462
\(693\) 0 0
\(694\) 18672.0 1.02130
\(695\) 0 0
\(696\) −5760.00 −0.313696
\(697\) 28908.0 1.57097
\(698\) −23540.0 −1.27651
\(699\) 15696.0 0.849324
\(700\) 0 0
\(701\) −6618.00 −0.356574 −0.178287 0.983979i \(-0.557056\pi\)
−0.178287 + 0.983979i \(0.557056\pi\)
\(702\) −9280.00 −0.498933
\(703\) 3400.00 0.182409
\(704\) 768.000 0.0411152
\(705\) 0 0
\(706\) −16644.0 −0.887259
\(707\) 0 0
\(708\) 13440.0 0.713427
\(709\) 20510.0 1.08642 0.543208 0.839598i \(-0.317209\pi\)
0.543208 + 0.839598i \(0.317209\pi\)
\(710\) 0 0
\(711\) −5920.00 −0.312261
\(712\) 6480.00 0.341079
\(713\) 20064.0 1.05386
\(714\) 0 0
\(715\) 0 0
\(716\) 12720.0 0.663923
\(717\) 34560.0 1.80009
\(718\) −21360.0 −1.11023
\(719\) −31680.0 −1.64321 −0.821603 0.570061i \(-0.806920\pi\)
−0.821603 + 0.570061i \(0.806920\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6282.00 −0.323811
\(723\) −3824.00 −0.196703
\(724\) 8392.00 0.430782
\(725\) 0 0
\(726\) −18992.0 −0.970880
\(727\) 13196.0 0.673195 0.336597 0.941649i \(-0.390724\pi\)
0.336597 + 0.941649i \(0.390724\pi\)
\(728\) 0 0
\(729\) −30563.0 −1.55276
\(730\) 0 0
\(731\) −2112.00 −0.106861
\(732\) 28864.0 1.45744
\(733\) 8102.00 0.408259 0.204130 0.978944i \(-0.434564\pi\)
0.204130 + 0.978944i \(0.434564\pi\)
\(734\) 11768.0 0.591778
\(735\) 0 0
\(736\) 4224.00 0.211547
\(737\) 12288.0 0.614158
\(738\) −32412.0 −1.61667
\(739\) −12580.0 −0.626201 −0.313101 0.949720i \(-0.601368\pi\)
−0.313101 + 0.949720i \(0.601368\pi\)
\(740\) 0 0
\(741\) 46400.0 2.30033
\(742\) 0 0
\(743\) −29892.0 −1.47595 −0.737975 0.674828i \(-0.764218\pi\)
−0.737975 + 0.674828i \(0.764218\pi\)
\(744\) −9728.00 −0.479363
\(745\) 0 0
\(746\) −4196.00 −0.205934
\(747\) 2664.00 0.130483
\(748\) 3168.00 0.154858
\(749\) 0 0
\(750\) 0 0
\(751\) −40408.0 −1.96339 −0.981697 0.190450i \(-0.939005\pi\)
−0.981697 + 0.190450i \(0.939005\pi\)
\(752\) −3264.00 −0.158279
\(753\) 21216.0 1.02676
\(754\) −10440.0 −0.504247
\(755\) 0 0
\(756\) 0 0
\(757\) −32366.0 −1.55398 −0.776990 0.629513i \(-0.783254\pi\)
−0.776990 + 0.629513i \(0.783254\pi\)
\(758\) −7720.00 −0.369925
\(759\) 12672.0 0.606014
\(760\) 0 0
\(761\) 17238.0 0.821126 0.410563 0.911832i \(-0.365332\pi\)
0.410563 + 0.911832i \(0.365332\pi\)
\(762\) 1984.00 0.0943212
\(763\) 0 0
\(764\) 17568.0 0.831921
\(765\) 0 0
\(766\) 19176.0 0.904513
\(767\) 24360.0 1.14679
\(768\) −2048.00 −0.0962250
\(769\) −10850.0 −0.508792 −0.254396 0.967100i \(-0.581877\pi\)
−0.254396 + 0.967100i \(0.581877\pi\)
\(770\) 0 0
\(771\) 18672.0 0.872186
\(772\) 8632.00 0.402425
\(773\) 9102.00 0.423514 0.211757 0.977322i \(-0.432081\pi\)
0.211757 + 0.977322i \(0.432081\pi\)
\(774\) 2368.00 0.109969
\(775\) 0 0
\(776\) −8848.00 −0.409310
\(777\) 0 0
\(778\) 26820.0 1.23592
\(779\) 43800.0 2.01450
\(780\) 0 0
\(781\) 5184.00 0.237514
\(782\) 17424.0 0.796779
\(783\) 7200.00 0.328617
\(784\) 0 0
\(785\) 0 0
\(786\) −2112.00 −0.0958429
\(787\) −25504.0 −1.15517 −0.577585 0.816330i \(-0.696005\pi\)
−0.577585 + 0.816330i \(0.696005\pi\)
\(788\) 4296.00 0.194212
\(789\) −31584.0 −1.42512
\(790\) 0 0
\(791\) 0 0
\(792\) −3552.00 −0.159362
\(793\) 52316.0 2.34274
\(794\) 26228.0 1.17229
\(795\) 0 0
\(796\) −11360.0 −0.505835
\(797\) 14166.0 0.629593 0.314796 0.949159i \(-0.398064\pi\)
0.314796 + 0.949159i \(0.398064\pi\)
\(798\) 0 0
\(799\) −13464.0 −0.596148
\(800\) 0 0
\(801\) −29970.0 −1.32202
\(802\) 11676.0 0.514082
\(803\) 4344.00 0.190905
\(804\) −32768.0 −1.43736
\(805\) 0 0
\(806\) −17632.0 −0.770547
\(807\) 12720.0 0.554852
\(808\) −2064.00 −0.0898654
\(809\) 33210.0 1.44327 0.721633 0.692276i \(-0.243392\pi\)
0.721633 + 0.692276i \(0.243392\pi\)
\(810\) 0 0
\(811\) −39212.0 −1.69780 −0.848902 0.528550i \(-0.822736\pi\)
−0.848902 + 0.528550i \(0.822736\pi\)
\(812\) 0 0
\(813\) 39616.0 1.70897
\(814\) −816.000 −0.0351361
\(815\) 0 0
\(816\) −8448.00 −0.362425
\(817\) −3200.00 −0.137030
\(818\) 19060.0 0.814691
\(819\) 0 0
\(820\) 0 0
\(821\) 6222.00 0.264494 0.132247 0.991217i \(-0.457781\pi\)
0.132247 + 0.991217i \(0.457781\pi\)
\(822\) 20064.0 0.851353
\(823\) −31172.0 −1.32028 −0.660138 0.751144i \(-0.729502\pi\)
−0.660138 + 0.751144i \(0.729502\pi\)
\(824\) 7904.00 0.334161
\(825\) 0 0
\(826\) 0 0
\(827\) 264.000 0.0111006 0.00555029 0.999985i \(-0.498233\pi\)
0.00555029 + 0.999985i \(0.498233\pi\)
\(828\) −19536.0 −0.819955
\(829\) 29050.0 1.21707 0.608533 0.793528i \(-0.291758\pi\)
0.608533 + 0.793528i \(0.291758\pi\)
\(830\) 0 0
\(831\) 13168.0 0.549691
\(832\) −3712.00 −0.154676
\(833\) 0 0
\(834\) 45760.0 1.89993
\(835\) 0 0
\(836\) 4800.00 0.198578
\(837\) 12160.0 0.502164
\(838\) 14520.0 0.598550
\(839\) 21720.0 0.893752 0.446876 0.894596i \(-0.352537\pi\)
0.446876 + 0.894596i \(0.352537\pi\)
\(840\) 0 0
\(841\) −16289.0 −0.667883
\(842\) −24124.0 −0.987373
\(843\) 9264.00 0.378492
\(844\) −10672.0 −0.435243
\(845\) 0 0
\(846\) 15096.0 0.613488
\(847\) 0 0
\(848\) −3552.00 −0.143840
\(849\) −55936.0 −2.26115
\(850\) 0 0
\(851\) −4488.00 −0.180783
\(852\) −13824.0 −0.555871
\(853\) −6658.00 −0.267252 −0.133626 0.991032i \(-0.542662\pi\)
−0.133626 + 0.991032i \(0.542662\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −192.000 −0.00766638
\(857\) −13974.0 −0.556993 −0.278496 0.960437i \(-0.589836\pi\)
−0.278496 + 0.960437i \(0.589836\pi\)
\(858\) −11136.0 −0.443096
\(859\) −23780.0 −0.944544 −0.472272 0.881453i \(-0.656566\pi\)
−0.472272 + 0.881453i \(0.656566\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 27216.0 1.07538
\(863\) 12228.0 0.482324 0.241162 0.970485i \(-0.422471\pi\)
0.241162 + 0.970485i \(0.422471\pi\)
\(864\) 2560.00 0.100802
\(865\) 0 0
\(866\) 7676.00 0.301202
\(867\) 4456.00 0.174549
\(868\) 0 0
\(869\) −1920.00 −0.0749500
\(870\) 0 0
\(871\) −59392.0 −2.31047
\(872\) −7600.00 −0.295147
\(873\) 40922.0 1.58648
\(874\) 26400.0 1.02173
\(875\) 0 0
\(876\) −11584.0 −0.446789
\(877\) −11606.0 −0.446872 −0.223436 0.974719i \(-0.571727\pi\)
−0.223436 + 0.974719i \(0.571727\pi\)
\(878\) 14800.0 0.568879
\(879\) 2064.00 0.0792002
\(880\) 0 0
\(881\) 32958.0 1.26037 0.630183 0.776446i \(-0.282980\pi\)
0.630183 + 0.776446i \(0.282980\pi\)
\(882\) 0 0
\(883\) −8072.00 −0.307638 −0.153819 0.988099i \(-0.549157\pi\)
−0.153819 + 0.988099i \(0.549157\pi\)
\(884\) −15312.0 −0.582577
\(885\) 0 0
\(886\) 16704.0 0.633388
\(887\) 15756.0 0.596431 0.298216 0.954498i \(-0.403609\pi\)
0.298216 + 0.954498i \(0.403609\pi\)
\(888\) 2176.00 0.0822317
\(889\) 0 0
\(890\) 0 0
\(891\) −4308.00 −0.161979
\(892\) 7088.00 0.266058
\(893\) −20400.0 −0.764457
\(894\) 12000.0 0.448926
\(895\) 0 0
\(896\) 0 0
\(897\) −61248.0 −2.27983
\(898\) −21540.0 −0.800444
\(899\) 13680.0 0.507512
\(900\) 0 0
\(901\) −14652.0 −0.541763
\(902\) −10512.0 −0.388039
\(903\) 0 0
\(904\) −8304.00 −0.305517
\(905\) 0 0
\(906\) −7168.00 −0.262849
\(907\) −18776.0 −0.687372 −0.343686 0.939085i \(-0.611676\pi\)
−0.343686 + 0.939085i \(0.611676\pi\)
\(908\) −11136.0 −0.407006
\(909\) 9546.00 0.348318
\(910\) 0 0
\(911\) −20568.0 −0.748022 −0.374011 0.927424i \(-0.622018\pi\)
−0.374011 + 0.927424i \(0.622018\pi\)
\(912\) −12800.0 −0.464748
\(913\) 864.000 0.0313190
\(914\) −13388.0 −0.484503
\(915\) 0 0
\(916\) −1400.00 −0.0504992
\(917\) 0 0
\(918\) 10560.0 0.379664
\(919\) −6280.00 −0.225417 −0.112708 0.993628i \(-0.535953\pi\)
−0.112708 + 0.993628i \(0.535953\pi\)
\(920\) 0 0
\(921\) 71552.0 2.55996
\(922\) −6036.00 −0.215602
\(923\) −25056.0 −0.893530
\(924\) 0 0
\(925\) 0 0
\(926\) 28984.0 1.02859
\(927\) −36556.0 −1.29521
\(928\) 2880.00 0.101876
\(929\) 20430.0 0.721514 0.360757 0.932660i \(-0.382518\pi\)
0.360757 + 0.932660i \(0.382518\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7848.00 −0.275826
\(933\) 11136.0 0.390757
\(934\) −15552.0 −0.544836
\(935\) 0 0
\(936\) 17168.0 0.599523
\(937\) 8906.00 0.310508 0.155254 0.987875i \(-0.450380\pi\)
0.155254 + 0.987875i \(0.450380\pi\)
\(938\) 0 0
\(939\) 47024.0 1.63426
\(940\) 0 0
\(941\) 17418.0 0.603412 0.301706 0.953401i \(-0.402444\pi\)
0.301706 + 0.953401i \(0.402444\pi\)
\(942\) 35936.0 1.24295
\(943\) −57816.0 −1.99655
\(944\) −6720.00 −0.231692
\(945\) 0 0
\(946\) 768.000 0.0263952
\(947\) 2544.00 0.0872956 0.0436478 0.999047i \(-0.486102\pi\)
0.0436478 + 0.999047i \(0.486102\pi\)
\(948\) 5120.00 0.175411
\(949\) −20996.0 −0.718187
\(950\) 0 0
\(951\) 82608.0 2.81677
\(952\) 0 0
\(953\) −15402.0 −0.523525 −0.261763 0.965132i \(-0.584304\pi\)
−0.261763 + 0.965132i \(0.584304\pi\)
\(954\) 16428.0 0.557522
\(955\) 0 0
\(956\) −17280.0 −0.584597
\(957\) 8640.00 0.291841
\(958\) −27360.0 −0.922716
\(959\) 0 0
\(960\) 0 0
\(961\) −6687.00 −0.224464
\(962\) 3944.00 0.132183
\(963\) 888.000 0.0297148
\(964\) 1912.00 0.0638811
\(965\) 0 0
\(966\) 0 0
\(967\) 49444.0 1.64427 0.822136 0.569291i \(-0.192782\pi\)
0.822136 + 0.569291i \(0.192782\pi\)
\(968\) 9496.00 0.315303
\(969\) −52800.0 −1.75044
\(970\) 0 0
\(971\) 25188.0 0.832463 0.416231 0.909259i \(-0.363351\pi\)
0.416231 + 0.909259i \(0.363351\pi\)
\(972\) 20128.0 0.664204
\(973\) 0 0
\(974\) 15832.0 0.520832
\(975\) 0 0
\(976\) −14432.0 −0.473317
\(977\) −2946.00 −0.0964697 −0.0482348 0.998836i \(-0.515360\pi\)
−0.0482348 + 0.998836i \(0.515360\pi\)
\(978\) 9088.00 0.297139
\(979\) −9720.00 −0.317316
\(980\) 0 0
\(981\) 35150.0 1.14399
\(982\) −27864.0 −0.905475
\(983\) 15012.0 0.487089 0.243544 0.969890i \(-0.421690\pi\)
0.243544 + 0.969890i \(0.421690\pi\)
\(984\) 28032.0 0.908158
\(985\) 0 0
\(986\) 11880.0 0.383708
\(987\) 0 0
\(988\) −23200.0 −0.747055
\(989\) 4224.00 0.135809
\(990\) 0 0
\(991\) −5128.00 −0.164376 −0.0821878 0.996617i \(-0.526191\pi\)
−0.0821878 + 0.996617i \(0.526191\pi\)
\(992\) 4864.00 0.155678
\(993\) 33824.0 1.08094
\(994\) 0 0
\(995\) 0 0
\(996\) −2304.00 −0.0732982
\(997\) −49714.0 −1.57920 −0.789598 0.613625i \(-0.789711\pi\)
−0.789598 + 0.613625i \(0.789711\pi\)
\(998\) 16520.0 0.523979
\(999\) −2720.00 −0.0861431
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.4.a.b.1.1 1
5.4 even 2 490.4.a.o.1.1 1
7.6 odd 2 50.4.a.c.1.1 1
21.20 even 2 450.4.a.q.1.1 1
28.27 even 2 400.4.a.b.1.1 1
35.4 even 6 490.4.e.a.471.1 2
35.9 even 6 490.4.e.a.361.1 2
35.13 even 4 50.4.b.a.49.2 2
35.19 odd 6 490.4.e.i.361.1 2
35.24 odd 6 490.4.e.i.471.1 2
35.27 even 4 50.4.b.a.49.1 2
35.34 odd 2 10.4.a.a.1.1 1
56.13 odd 2 1600.4.a.d.1.1 1
56.27 even 2 1600.4.a.bx.1.1 1
105.62 odd 4 450.4.c.d.199.2 2
105.83 odd 4 450.4.c.d.199.1 2
105.104 even 2 90.4.a.a.1.1 1
140.27 odd 4 400.4.c.c.49.2 2
140.83 odd 4 400.4.c.c.49.1 2
140.139 even 2 80.4.a.f.1.1 1
280.69 odd 2 320.4.a.m.1.1 1
280.139 even 2 320.4.a.b.1.1 1
315.34 odd 6 810.4.e.c.271.1 2
315.104 even 6 810.4.e.w.541.1 2
315.139 odd 6 810.4.e.c.541.1 2
315.209 even 6 810.4.e.w.271.1 2
385.384 even 2 1210.4.a.b.1.1 1
420.419 odd 2 720.4.a.j.1.1 1
455.454 odd 2 1690.4.a.a.1.1 1
560.69 odd 4 1280.4.d.j.641.2 2
560.139 even 4 1280.4.d.g.641.1 2
560.349 odd 4 1280.4.d.j.641.1 2
560.419 even 4 1280.4.d.g.641.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.4.a.a.1.1 1 35.34 odd 2
50.4.a.c.1.1 1 7.6 odd 2
50.4.b.a.49.1 2 35.27 even 4
50.4.b.a.49.2 2 35.13 even 4
80.4.a.f.1.1 1 140.139 even 2
90.4.a.a.1.1 1 105.104 even 2
320.4.a.b.1.1 1 280.139 even 2
320.4.a.m.1.1 1 280.69 odd 2
400.4.a.b.1.1 1 28.27 even 2
400.4.c.c.49.1 2 140.83 odd 4
400.4.c.c.49.2 2 140.27 odd 4
450.4.a.q.1.1 1 21.20 even 2
450.4.c.d.199.1 2 105.83 odd 4
450.4.c.d.199.2 2 105.62 odd 4
490.4.a.o.1.1 1 5.4 even 2
490.4.e.a.361.1 2 35.9 even 6
490.4.e.a.471.1 2 35.4 even 6
490.4.e.i.361.1 2 35.19 odd 6
490.4.e.i.471.1 2 35.24 odd 6
720.4.a.j.1.1 1 420.419 odd 2
810.4.e.c.271.1 2 315.34 odd 6
810.4.e.c.541.1 2 315.139 odd 6
810.4.e.w.271.1 2 315.209 even 6
810.4.e.w.541.1 2 315.104 even 6
1210.4.a.b.1.1 1 385.384 even 2
1280.4.d.g.641.1 2 560.139 even 4
1280.4.d.g.641.2 2 560.419 even 4
1280.4.d.j.641.1 2 560.349 odd 4
1280.4.d.j.641.2 2 560.69 odd 4
1600.4.a.d.1.1 1 56.13 odd 2
1600.4.a.bx.1.1 1 56.27 even 2
1690.4.a.a.1.1 1 455.454 odd 2
2450.4.a.b.1.1 1 1.1 even 1 trivial