Properties

 Label 2450.2.c.l Level $2450$ Weight $2$ Character orbit 2450.c Analytic conductor $19.563$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2450 = 2 \cdot 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2450.c (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$19.5633484952$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{8} + 2 q^{9} +O(q^{10})$$ $$q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{8} + 2 q^{9} -6 q^{11} -i q^{12} -4 i q^{13} + q^{16} -2 i q^{18} + 2 q^{19} + 6 i q^{22} + 3 i q^{23} - q^{24} -4 q^{26} + 5 i q^{27} + 3 q^{29} -8 q^{31} -i q^{32} -6 i q^{33} -2 q^{36} -4 i q^{37} -2 i q^{38} + 4 q^{39} -9 q^{41} + 7 i q^{43} + 6 q^{44} + 3 q^{46} + i q^{48} + 4 i q^{52} + 6 i q^{53} + 5 q^{54} + 2 i q^{57} -3 i q^{58} -6 q^{59} -5 q^{61} + 8 i q^{62} - q^{64} -6 q^{66} + 5 i q^{67} -3 q^{69} -6 q^{71} + 2 i q^{72} -16 i q^{73} -4 q^{74} -2 q^{76} -4 i q^{78} -2 q^{79} + q^{81} + 9 i q^{82} + 3 i q^{83} + 7 q^{86} + 3 i q^{87} -6 i q^{88} -15 q^{89} -3 i q^{92} -8 i q^{93} + q^{96} -14 i q^{97} -12 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + 2q^{6} + 4q^{9} + O(q^{10})$$ $$2q - 2q^{4} + 2q^{6} + 4q^{9} - 12q^{11} + 2q^{16} + 4q^{19} - 2q^{24} - 8q^{26} + 6q^{29} - 16q^{31} - 4q^{36} + 8q^{39} - 18q^{41} + 12q^{44} + 6q^{46} + 10q^{54} - 12q^{59} - 10q^{61} - 2q^{64} - 12q^{66} - 6q^{69} - 12q^{71} - 8q^{74} - 4q^{76} - 4q^{79} + 2q^{81} + 14q^{86} - 30q^{89} + 2q^{96} - 24q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$1177$$ $$\chi(n)$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
99.1
 1.00000i − 1.00000i
1.00000i 1.00000i −1.00000 0 1.00000 0 1.00000i 2.00000 0
99.2 1.00000i 1.00000i −1.00000 0 1.00000 0 1.00000i 2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.c.l 2
5.b even 2 1 inner 2450.2.c.l 2
5.c odd 4 1 490.2.a.b 1
5.c odd 4 1 2450.2.a.bc 1
7.b odd 2 1 2450.2.c.g 2
7.d odd 6 2 350.2.j.b 4
15.e even 4 1 4410.2.a.bd 1
20.e even 4 1 3920.2.a.bc 1
35.c odd 2 1 2450.2.c.g 2
35.f even 4 1 490.2.a.c 1
35.f even 4 1 2450.2.a.w 1
35.i odd 6 2 350.2.j.b 4
35.k even 12 2 70.2.e.c 2
35.k even 12 2 350.2.e.e 2
35.l odd 12 2 490.2.e.h 2
105.k odd 4 1 4410.2.a.bm 1
105.w odd 12 2 630.2.k.b 2
140.j odd 4 1 3920.2.a.p 1
140.x odd 12 2 560.2.q.g 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.c 2 35.k even 12 2
350.2.e.e 2 35.k even 12 2
350.2.j.b 4 7.d odd 6 2
350.2.j.b 4 35.i odd 6 2
490.2.a.b 1 5.c odd 4 1
490.2.a.c 1 35.f even 4 1
490.2.e.h 2 35.l odd 12 2
560.2.q.g 2 140.x odd 12 2
630.2.k.b 2 105.w odd 12 2
2450.2.a.w 1 35.f even 4 1
2450.2.a.bc 1 5.c odd 4 1
2450.2.c.g 2 7.b odd 2 1
2450.2.c.g 2 35.c odd 2 1
2450.2.c.l 2 1.a even 1 1 trivial
2450.2.c.l 2 5.b even 2 1 inner
3920.2.a.p 1 140.j odd 4 1
3920.2.a.bc 1 20.e even 4 1
4410.2.a.bd 1 15.e even 4 1
4410.2.a.bm 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2450, [\chi])$$:

 $$T_{3}^{2} + 1$$ $$T_{11} + 6$$ $$T_{13}^{2} + 16$$ $$T_{19} - 2$$ $$T_{31} + 8$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$( 6 + T )^{2}$$
$13$ $$16 + T^{2}$$
$17$ $$T^{2}$$
$19$ $$( -2 + T )^{2}$$
$23$ $$9 + T^{2}$$
$29$ $$( -3 + T )^{2}$$
$31$ $$( 8 + T )^{2}$$
$37$ $$16 + T^{2}$$
$41$ $$( 9 + T )^{2}$$
$43$ $$49 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$36 + T^{2}$$
$59$ $$( 6 + T )^{2}$$
$61$ $$( 5 + T )^{2}$$
$67$ $$25 + T^{2}$$
$71$ $$( 6 + T )^{2}$$
$73$ $$256 + T^{2}$$
$79$ $$( 2 + T )^{2}$$
$83$ $$9 + T^{2}$$
$89$ $$( 15 + T )^{2}$$
$97$ $$196 + T^{2}$$