Properties

Label 2450.2.c.l
Level $2450$
Weight $2$
Character orbit 2450.c
Analytic conductor $19.563$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.5633484952\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{8} + 2 q^{9} +O(q^{10})\) \( q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{8} + 2 q^{9} -6 q^{11} -i q^{12} -4 i q^{13} + q^{16} -2 i q^{18} + 2 q^{19} + 6 i q^{22} + 3 i q^{23} - q^{24} -4 q^{26} + 5 i q^{27} + 3 q^{29} -8 q^{31} -i q^{32} -6 i q^{33} -2 q^{36} -4 i q^{37} -2 i q^{38} + 4 q^{39} -9 q^{41} + 7 i q^{43} + 6 q^{44} + 3 q^{46} + i q^{48} + 4 i q^{52} + 6 i q^{53} + 5 q^{54} + 2 i q^{57} -3 i q^{58} -6 q^{59} -5 q^{61} + 8 i q^{62} - q^{64} -6 q^{66} + 5 i q^{67} -3 q^{69} -6 q^{71} + 2 i q^{72} -16 i q^{73} -4 q^{74} -2 q^{76} -4 i q^{78} -2 q^{79} + q^{81} + 9 i q^{82} + 3 i q^{83} + 7 q^{86} + 3 i q^{87} -6 i q^{88} -15 q^{89} -3 i q^{92} -8 i q^{93} + q^{96} -14 i q^{97} -12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + 2q^{6} + 4q^{9} + O(q^{10}) \) \( 2q - 2q^{4} + 2q^{6} + 4q^{9} - 12q^{11} + 2q^{16} + 4q^{19} - 2q^{24} - 8q^{26} + 6q^{29} - 16q^{31} - 4q^{36} + 8q^{39} - 18q^{41} + 12q^{44} + 6q^{46} + 10q^{54} - 12q^{59} - 10q^{61} - 2q^{64} - 12q^{66} - 6q^{69} - 12q^{71} - 8q^{74} - 4q^{76} - 4q^{79} + 2q^{81} + 14q^{86} - 30q^{89} + 2q^{96} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 0 1.00000 0 1.00000i 2.00000 0
99.2 1.00000i 1.00000i −1.00000 0 1.00000 0 1.00000i 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.c.l 2
5.b even 2 1 inner 2450.2.c.l 2
5.c odd 4 1 490.2.a.b 1
5.c odd 4 1 2450.2.a.bc 1
7.b odd 2 1 2450.2.c.g 2
7.d odd 6 2 350.2.j.b 4
15.e even 4 1 4410.2.a.bd 1
20.e even 4 1 3920.2.a.bc 1
35.c odd 2 1 2450.2.c.g 2
35.f even 4 1 490.2.a.c 1
35.f even 4 1 2450.2.a.w 1
35.i odd 6 2 350.2.j.b 4
35.k even 12 2 70.2.e.c 2
35.k even 12 2 350.2.e.e 2
35.l odd 12 2 490.2.e.h 2
105.k odd 4 1 4410.2.a.bm 1
105.w odd 12 2 630.2.k.b 2
140.j odd 4 1 3920.2.a.p 1
140.x odd 12 2 560.2.q.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.c 2 35.k even 12 2
350.2.e.e 2 35.k even 12 2
350.2.j.b 4 7.d odd 6 2
350.2.j.b 4 35.i odd 6 2
490.2.a.b 1 5.c odd 4 1
490.2.a.c 1 35.f even 4 1
490.2.e.h 2 35.l odd 12 2
560.2.q.g 2 140.x odd 12 2
630.2.k.b 2 105.w odd 12 2
2450.2.a.w 1 35.f even 4 1
2450.2.a.bc 1 5.c odd 4 1
2450.2.c.g 2 7.b odd 2 1
2450.2.c.g 2 35.c odd 2 1
2450.2.c.l 2 1.a even 1 1 trivial
2450.2.c.l 2 5.b even 2 1 inner
3920.2.a.p 1 140.j odd 4 1
3920.2.a.bc 1 20.e even 4 1
4410.2.a.bd 1 15.e even 4 1
4410.2.a.bm 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2450, [\chi])\):

\( T_{3}^{2} + 1 \)
\( T_{11} + 6 \)
\( T_{13}^{2} + 16 \)
\( T_{19} - 2 \)
\( T_{31} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( 6 + T )^{2} \)
$13$ \( 16 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( ( -2 + T )^{2} \)
$23$ \( 9 + T^{2} \)
$29$ \( ( -3 + T )^{2} \)
$31$ \( ( 8 + T )^{2} \)
$37$ \( 16 + T^{2} \)
$41$ \( ( 9 + T )^{2} \)
$43$ \( 49 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 36 + T^{2} \)
$59$ \( ( 6 + T )^{2} \)
$61$ \( ( 5 + T )^{2} \)
$67$ \( 25 + T^{2} \)
$71$ \( ( 6 + T )^{2} \)
$73$ \( 256 + T^{2} \)
$79$ \( ( 2 + T )^{2} \)
$83$ \( 9 + T^{2} \)
$89$ \( ( 15 + T )^{2} \)
$97$ \( 196 + T^{2} \)
show more
show less